
PENN STATE UNIVERSITY

Department of Economics

Econ 597D Sec 001 Computational Economics Gallant

Homework 6 Fall 2015

Due Oct 6, 2015

Implement a class with the following declaration:

class polycoef {

private:

INTEGER deg; //degree of polynomial

REAL* pc; //array of len=deg+1 containing coefficients

INTEGER len; //indexing is pc[i], i=0,...,deg

public:

polycoef(); //default constructor

polycoef(INTEGER degree); //explicit constructor

polycoef(const polycoef& a); //copy constructor

~polycoef(); //destructor

polycoef& operator=(const polycoef& a); //assignment operator

REAL& operator[](INTEGER i); //lvalue element access

const REAL& operator[](INTEGER i) const; //rvalue element access

INTEGER degree() const; //returns deg

friend polycoef operator+(const polycoef& a, const polycoef& b); //summation

};

The purpose of the class is to represent a polynomial and implement addition of polynomials.

Here is a main that uses every method in the class

int main()

{

polycoef a(3);

for (INTEGER i=0; i<=a.degree(); i++) a[i] = REAL(i);

1



polycoef b(5);

for (INTEGER i=0; i<=b.degree(); i++) b[i] = REAL(i);

polycoef c;

c = a + b;

polycoef d = c;

for (INTEGER i=0; i<=c.degree(); i++) cout << c[i] <<" "<< d[i] << ’\n’;

return 0;

}

This is a container class similar to class intvec. You can look at that code for hints on

how to implement class polycoef. Notice that, unlike class intvec, the arguments of

operator+ need not have the same length; the polycoef that is returned will have length

the larger of the two arguments.

If you are ambitious implement operator* for extra credit.

Turn in your code, a sample main that executes it, and the output.

2


