Computational Economics

 and Econometrics
Efficient Method of Moments

by
A. Ronald Gallant
Penn State University

(C)2015, A. Ronald Gallant

Review of Ideas

- The ideas have already been presented in the habit model case study.
- EMM is a simulated method of moments estimator with an optimal choice of moments: the SNP scores.
- Gallant, A. Ronald, and George Tauchen (1996), "Which Moments to Match?," Econometric Theory 12, 657-681.
- Gallant, A. Ronald, and Jonathan R. Long (1997), "Estimating Stochastic Differential Equations Efficiently by Minimum Chi-Squared," Biometrika 84, 125-141.

Review of Ideas

- The case study code was the preliminary version of the EMM code.
- EMM code has a better user interface.
- SNP scores are automatically generated from an SNP parmfile.
- Efficiency improvements and parallelization.
- Change of notation to be consistent with SNP and EMM User's Guides: $\theta \rightarrow \rho$

Characteristics of Models of Specific Interest

- Likelihood not available.
- Prior information $\pi_{1}(\rho)$ on model parameters may be available.
- Prior information $\pi_{2}(\rho, \psi)$ on functionals of the model may be available, i.e. $\psi=\psi\left(\mathcal{M}_{\rho}\right)$.
- Model can be simulated.

Example

Stocastic volatility model

$$
\begin{aligned}
y_{t} & =a_{0}+a_{1}\left(y_{t-1}-a_{0}\right)+\exp \left(v_{t}\right) u_{1 t} \\
v_{t} & =b_{0}+b_{1}\left(v_{t-1}-b_{0}\right)+u 2_{t} \\
u_{1 t} & =z_{1 t} \\
u_{2 t} & =s\left(r z_{1 t}+\sqrt{1-r^{2}} z_{2 t}\right)
\end{aligned}
$$

where the errors $z_{t}=\left(z_{1 t}, z_{2 t}\right)$ are iid $N_{2}(0, I)$.

These equations imply

$$
\operatorname{Var}(u)=\mathcal{E}\left(u u^{\prime}\right)=\left(\begin{array}{cc}
1 & s r \\
s r & s^{2}
\end{array}\right)
$$

Fig 1. Changes in Weekly \$/DM Exchange Rates: 1975-1990

Nonlinear Nonparametric Simulation

The first panel is a plot of the data. The second is a simulation from an SNP fit with $\left(L_{u}, L_{g}, L_{r}, L_{p}, K_{z}, I_{z}, K_{x}, I_{x}\right)=(1,0,0,1,0,0,0,0)$; the third with ($1,1,1,1,0,0,0,0$), the fourth with ($1,1,1,1,4,0,0,0$), and the fifth with ($1,1,1,1,4,0,1,0$). L_{v} and L_{w} are set to zero; $I_{z}, \max I_{z}$, and I_{x} have no effect when $M=1 ; \max K_{z}=K_{z}$.

SMM with a GMM Criterion

- Output and parameters of the stochastic volatility model are

$$
\begin{gathered}
y_{t} \in \Re^{1} \\
\rho=\left(a_{0}, a_{1}, b_{0}, b_{1}, s, r\right) \in \Re^{6}
\end{gathered}
$$

- Data are denoted as $\left\{\tilde{y}_{t}\right\}_{t=1}^{n}$, simulations as $\left\{\hat{y}_{t}\right\}_{t=1}^{N}$.

Some Notation

$$
\begin{gathered}
\bar{y}=\frac{1}{n} \sum_{t=1}^{n}\binom{y_{t}}{y_{t-1}} \\
S_{t}=\left[\binom{y_{t}}{y_{t-1}}-\bar{y}\right]\left[\binom{y_{t}}{y_{t-1}}-\bar{y}\right]^{\prime} \\
m_{t}=\left(\begin{array}{c}
y_{t} \\
y_{t-1} \\
\operatorname{vech}\left(S_{t}\right)
\end{array}\right)
\end{gathered}
$$

\tilde{m}_{t} denotes evaluation at data
\widehat{m}_{t} denotes evaluation at a simulation

A GMM Criterion - Moment Functions

Moment function for data:

$$
\tilde{m}_{n}=\frac{1}{n} \sum_{t=1}^{n} \tilde{m}_{t}
$$

Moment function for a simulation:

$$
\widehat{m}_{N}(\rho)=\frac{1}{N} \sum_{t=1}^{N} \widehat{m}_{t}
$$

GMM Cross Sectional Weight Function

\tilde{W}_{n} is an estimate of the variance of $\sqrt{ } n \tilde{m}_{n}$

$$
\tilde{W}_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(\tilde{m}_{i}-\tilde{m}_{n}\right)\left(\tilde{m}_{i}-\tilde{m}_{n}\right)^{\prime}
$$

GMM Time Series Weight Function

\tilde{W}_{n} is an estimate of the variance of $\sqrt{ } n \tilde{m}_{n}$

$$
\tilde{W}_{n}=\sum_{\tau=-\left[n^{1 / 5}\right]}^{\left[n^{1 / 5}\right]} w\left(\frac{\tau}{\left[n^{1 / 5}\right]}\right) \tilde{W}_{n \tau}
$$

where

$$
\begin{gathered}
w(u)= \begin{cases}1-6|u|^{2}+6|u|^{3} & \text { if } 0<u<\frac{1}{2} \\
2(1-|u|)^{3} & \text { if } \frac{1}{2} \leq u<1\end{cases} \\
\tilde{W}_{n \tau}= \begin{cases}\frac{1}{n} \sum_{t=1+\tau}^{n}\left(\tilde{m}_{t}-\tilde{m}_{n}\right)\left(\tilde{m}_{t-\tau}-\tilde{m}_{n}\right)^{\prime} & \tau \geq 0 \\
\tilde{W}_{n,-\tau}^{\prime} & \tau<0\end{cases}
\end{gathered}
$$

GMM Criterion Function

$$
s_{n}(\rho)=\frac{1}{2}\left[\tilde{m}_{n}-\hat{m}_{N}(\rho)\right]^{\prime}\left(\tilde{W}_{n}\right)^{-1}\left[\tilde{m}_{n}-\hat{m}_{N}(\rho)\right]
$$

EMM Criterion Function - 1

EMM is SMM with a different GMM criterion function.

The GMM moment equations above

$$
\tilde{m}_{n}-\hat{m}_{N}(\rho)
$$

are replaced by the scores from an SNP fit

$$
m(\rho, \tilde{\theta})=\frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f\left(\hat{y}_{t} \mid \widehat{x}_{t-1}, \tilde{\theta}\right),
$$

where $f\left(y_{t} \mid x_{t-1}, \theta\right)$ is an SNP density chosen by BIC and with its parameters θ set to the value $\tilde{\theta}$ estimated from the data.

Remember that a tilde (${ }^{\sim}$) represents something computed from data and a circumflex (${ }^{\wedge}$) represents something computed from a simulation with parameter values of the structural model set to ρ. Details follow.

EMM Criterion Function - 2

- For any QMLE estimator

$$
\tilde{\theta}=\underset{\theta}{\operatorname{argmax}} \frac{1}{n} \sum_{t=1}^{n} \log f\left(\tilde{y}_{t} \mid \tilde{x}_{t-1}, \theta\right),
$$

a sample average satisfies

$$
0=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial}{\partial \theta} \log f\left(\tilde{y}_{t} \mid \tilde{x}_{t-1}, \tilde{\theta}\right)
$$

because these are the first order conditions of the optimization problem.

- The SNP estimator is a QMLE estimator.
- Therefore a large simulation from a correctly specified structural model $p\left(y_{t} \mid x_{t-1}, \rho\right)$ will satisfy

$$
0=m(\rho, \widetilde{\theta})=\frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f\left(\hat{y}_{t} \mid \widehat{x}_{t-1}, \tilde{\theta}\right),
$$

except for sampling variation in $\tilde{\theta}$. The equality holds exactly in the limit as n and N tend to infinity.

EMM Criterion Function - 3

EMM finds ρ that satisfies the first order conditions $0=m(\rho, \tilde{\theta})$ as nearly as possible by computing

$$
\hat{\rho}=\underset{\rho}{\operatorname{argmin}} m^{\prime}(\rho, \tilde{\theta})(\tilde{W})^{-1} m(\rho, \tilde{\theta}),
$$

where

$$
\begin{gathered}
m(\rho, \tilde{\theta})=\frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f\left(\hat{y}_{t} \mid \widehat{x}_{t-1}, \tilde{\theta}\right) \\
\tilde{W}=\frac{1}{n} \sum_{t=1}^{n}\left[\frac{\partial}{\partial \theta} \log f\left(\tilde{y}_{t} \mid \tilde{x}_{t-1}, \tilde{\theta}\right)\right]\left[\frac{\partial}{\partial \theta} \log f\left(\tilde{y}_{t} \mid \tilde{x}_{t-1}, \tilde{\theta}\right)\right]^{\prime}
\end{gathered}
$$

This estimator achieves the same efficiency as maximum likelihood:
Gallant, A. Ronald, and Jonathan R. Long (1997), "Estimating Stochastic Differential Equations Efficiently by Minimum Chi-Squared," Biometrika 84, 125-141.

Asymptotics

Under weak regularity conditions that accommodate both time series and cross sectional data (Gallant, 1987) $\hat{\rho}_{n}$ tends to the parameter value ρ^{o} that minimizes

$$
s^{o}(\rho)=\lim _{n \rightarrow \infty} s_{n}(\rho)
$$

and $\sqrt{n}\left(\hat{\rho}_{n}-\rho^{o}\right)$ is asymptotically normal with mean zero and variance $\mathcal{J}^{-1} \mathcal{I J}^{-1}$, where \mathcal{J} is the Hessian

$$
\mathcal{J}=\frac{\partial}{\partial \rho \partial \rho^{\prime}} s^{o}\left(\rho^{o}\right)
$$

and \mathcal{I} is Fisher's information

$$
\mathcal{I}=\operatorname{Var}\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]=\mathcal{E}\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]^{\prime}
$$

For SNP, $\mathcal{I}=\mathcal{J}$ so that only one of the two has to be computed; e.g. correctly specified mle or GMM with correct weight matrix.

Computations

For $s_{n}(\rho)=\frac{1}{2}\left[\tilde{m}_{n}-\widehat{m}_{N}(\rho)\right]^{\prime}\left(\tilde{W}_{n}\right)^{-1}\left[\tilde{m}_{n}-\widehat{m}_{N}(\rho)\right]$

- must compute the estimator

$$
\hat{\rho}_{n}=\underset{\rho}{\operatorname{argmin}} s_{n}(\rho)
$$

- an estimate of the Hessian

$$
\mathcal{J}=\frac{\partial}{\partial \rho \partial \rho^{\prime}} s^{o}(\rho)
$$

- an estimate of the information

$$
\mathcal{I}=\operatorname{Var}\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]=\mathcal{E}\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n s_{n}\left(\rho^{o}\right)\right]^{\prime}
$$

- and an estimate of the variance of $\sqrt{ } n\left(\hat{\rho}_{n}-\rho^{o}\right)$

$$
V_{n}=\operatorname{Var}\left[\sqrt{ } n\left(\hat{\rho}_{n}-\rho^{o}\right)\right]=\mathcal{J}^{-1} \mathcal{I} \mathcal{J}^{-1}
$$

Computational Strategy $-\hat{\rho} \& \hat{\mathcal{J}}^{-1}$

- Chernozhukov, Victor, and Han Hong (2003), "An MCMC Approach to Classical Estimation," Journal of Econometrics 115, 293-346.
- Put $\ell(\rho)=e^{-n s_{n}(\rho)}$. Apply Bayesian MCMC methods with $\ell(\rho)$ as the likelinood and $\pi(\rho, \psi)=\pi_{1}(\rho) \pi_{2}(\rho) \pi_{3}(\rho, \psi)$ as the prior.
- From the resulting MCMC chain $\left\{\rho_{i}\right\}_{i=1}^{R}$, put

$$
\hat{\rho}_{n}=\underset{\rho_{i}}{\operatorname{argmax}} \ell\left(\rho_{i}\right) \pi\left(\rho_{i}, \psi^{i}\right) \text { or } \hat{\rho}_{n}=\bar{\rho}_{R}=\frac{1}{R} \sum_{t=1}^{R} \rho_{i}
$$

i.e. the mode or the mean, and put

$$
\widehat{\mathcal{J}}^{-1}=\left(\frac{n}{R}\right) \sum_{t=1}^{R}\left(\rho_{i}-\bar{\rho}_{R}\right)\left(\rho_{i}-\bar{\rho}_{R}\right)^{\prime}
$$

Metropolis-Hastings MCMC Chain

Proposal density: $T\left(\rho_{\text {here }}, \rho_{\text {there }}\right)$
Proposal: $\rho_{\text {prop }}$ drawn from $T\left(\rho_{\text {old }}, \rho\right)$
Simulate: Get $s_{n}\left(\rho_{\text {prop }}\right), \psi_{\text {prop }}$, and $\pi\left(\rho_{\text {prop }}, \psi_{\text {prop }}\right)$
Likelihood: Put $\ell(\rho)=e^{-n s_{n}(\rho)}$

Put $\rho_{\text {new }}$ to $\rho_{\text {prop }}$ with probability

$$
\alpha=\min \left[1, \frac{\pi\left(\rho_{\text {prop }}, \psi_{\text {prop }}\right) \ell\left(\rho_{\text {prop }}\right) T\left(\rho_{\text {prop }}, \rho_{\text {old }}\right)}{\pi\left(\rho_{\text {old }}, \psi_{\text {old }}\right) \ell\left(\rho_{\text {old }}\right) T\left(\rho_{\text {old }}, \rho_{\text {prop }}\right)}\right]
$$

Put $\rho_{\text {new }}$ to $\rho_{\text {old }}$ with probability $1-\alpha$.

Computational Strategy - $\hat{\mathcal{I}}$

- For ρ set to $\hat{\rho}_{n}$, simulate the model and generate I independent data sets $\left\{\hat{y}_{t, i}\right\}_{t=1}^{n}, i=1, \ldots, I$, each of exactly the same size n of the original data.
- Let $\widehat{s}_{n, i}(\rho)$ denote the criterion function corresponding to data set $\left\{\hat{y}_{t, i}\right\}_{t=1}^{n}$. (Store in C ++ STL vector indexed by i.)
- Compute $\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n \widehat{s}_{n, i}\left(\bar{\rho}_{R}\right)$.
- An estimate of the information is

$$
\widehat{\mathcal{I}}=\frac{1}{I} \sum_{i=1}^{I}\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n \widehat{s}_{n, i}\left(\bar{\rho}_{R}\right)\right]\left[\frac{\partial}{\partial \rho^{\prime}} \sqrt{ } n \widehat{s}_{n, i}\left(\bar{\rho}_{R}\right)\right]^{\prime}
$$

EMM Enhancements

Nearly all of the computational cost of the MCMC chain is due to solving the asset pricing equations and computing the criterion function $s_{n}(\rho)$. This cost can be minimized as follows:

- Reject immediately if $\pi_{1}(\rho)=0$.
- Put ρ on a grid. Grid increments determined by sensitivity of $\left\{\hat{y}_{t}\right\}_{t=1}^{N}$ to ρ elements. E.g. 0.001 for g and δ, and 0.5 for γ.
- Store $s_{n}(\rho), \psi, \pi_{2}(\rho), \pi_{3}(\rho, \psi)$ in a C++ STL associative map indexed by ρ.
- Use table lookup to avoid all recomputation.
- The longer the chain, the faster it runs.

The EMM code does all of this; the case study the first only.

Computational Strategy - EMM MCMC

1. Propose: Draw $\rho_{\text {prop }}$ from $T\left(\rho_{\text {old }}, \rho\right)$.
2. Check support: Check $\pi_{1}(\rho)$. If $\pi_{1}(\rho)=0$, then put $\rho_{\text {new }}$ to $\rho_{\text {old }}$. Go to 1.
3. Check map: If $\rho_{\text {prop }}$ in map, α can be computed cheaply. Put $\rho_{\text {new }}$ to $\rho_{\text {prop }}$ with probability α. Put $\rho_{\text {new }}$ to $\rho_{\text {old }}$ with probability $1-\alpha$. Go to 1 .
4. Simulate: Check $\pi_{2}(\rho)$. If $\pi_{2}(\rho)=0$, then add results to map, put $\rho_{\text {new }}$ to $\rho_{\text {old }}$, and go to 1 .
5. Evaluate: $s_{n}\left(\rho_{p r o p}\right), \psi_{\text {prop }}, \pi\left(\rho_{p r o p}, \psi_{p r o p}\right)$ and put in map. Compute α. Put $\rho_{\text {new }}$ to $\rho_{\text {prop }}$ with probability α. Put $\rho_{\text {new }}$ to $\rho_{\text {old }}$ with probability $1-\alpha$. Go to 1 .

Tutorial

- Go through Section 6 of EMM User's Guide
- In connection with the files at argux6://home/arg/t/compecon/src/cases/emm/emmrun

