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Review of Ideas

• The ideas have already been presented in the habit model

case study.

• EMM is a simulated method of moments estimator with an

optimal choice of moments: the SNP scores.

– Gallant, A. Ronald, and George Tauchen (1996), “Which

Moments to Match?,” Econometric Theory 12, 657–681.

– Gallant, A. Ronald, and Jonathan R. Long (1997), “Es-

timating Stochastic Differential Equations Efficiently by

Minimum Chi-Squared,” Biometrika 84, 125–141.



Review of Ideas

• The case study code was the preliminary version of the EMM

code.

– EMM code has a better user interface.

– SNP scores are automatically generated from an SNP

parmfile.

– Efficiency improvements and parallelization.

• Change of notation to be consistent with SNP and EMM

User’s Guides: θ → ρ



Characteristics of Models of Specific Interest

• Likelihood not available.

• Prior information π1(ρ) on model parameters may be avail-

able.

• Prior information π2(ρ, ψ) on functionals of the model may

be available, i.e. ψ = Ψ(Mρ).

• Model can be simulated.



Example

Stocastic volatility model

yt = a0 + a1(yt−1 − a0) + exp(vt)u1t

vt = b0 + b1(vt−1 − b0) + u2t

u1t = z1t

u2t = s

(

r z1t+

√

1− r2 z2t

)

,

where the errors zt = (z1t, z2t) are iid N2(0, I).

These equations imply

Var(u) = E(uu′) =

(

1 sr

sr s2

)



Fig 1. Changes in Weekly $/DM Exchange Rates: 1975–1990
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The first panel is a plot of the data. The second is a simulation from an SNP fit with

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1,0,0,1,0,0,0,0); the third with (1,1,1,1,0,0,0,0), the

fourth with (1,1,1,1,4,0,0,0), and the fifth with (1,1,1,1,4,0,1,0). Lv and Lw are set to

zero; Iz, maxIz, and Ix have no effect when M = 1; maxKz = Kz.



SMM with a GMM Criterion

• Output and parameters of the stochastic volatility model are

yt ∈ ℜ1

ρ = (a0, a1, b0, b1, s, r) ∈ ℜ6

• Data are denoted as {ỹt}nt=1, simulations as {ŷt}Nt=1.



Some Notation

ȳ =
1

n

n
∑

t=1

(

yt
yt−1

)

St =

[(

yt
yt−1

)

− ȳ

] [(

yt
yt−1

)

− ȳ

]′

mt =







yt
yt−1

vech(St)







m̃t denotes evaluation at data

m̂t denotes evaluation at a simulation



A GMM Criterion – Moment Functions

Moment function for data:

m̃n =
1

n

n
∑

t=1

m̃t

Moment function for a simulation:

m̂N(ρ) =
1

N

N
∑

t=1

m̂t



GMM Cross Sectional Weight Function

W̃n is an estimate of the variance of
√
n m̃n

W̃n =
1

n

n
∑

i=1

(m̃i − m̃n) (m̃i − m̃n)
′



GMM Time Series Weight Function

W̃n is an estimate of the variance of
√
n m̃n

W̃n =
[n1/5]
∑

τ=−[n1/5]

w

(

τ

[n1/5]

)

W̃nτ

where

w(u) =

{

1− 6|u|2 +6|u|3 if 0 < u < 1
2

2(1− |u|)3 if 1
2
≤ u < 1

W̃nτ =

{

1
n

∑n
t=1+τ (m̃t − m̃n) (m̃t−τ − m̃n)

′ τ ≥ 0

W̃ ′
n,−τ τ < 0



GMM Criterion Function

sn(ρ) =
1

2
[m̃n − m̂N(ρ)]′

(

W̃n

)−1
[m̃n − m̂N(ρ)]



EMM Criterion Function – 1

EMM is SMM with a different GMM criterion function.

The GMM moment equations above

m̃n − m̂N(ρ)

are replaced by the scores from an SNP fit

m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃),

where f(yt|xt−1, θ) is an SNP density chosen by BIC and with its

parameters θ set to the value θ̃ estimated from the data.

Remember that a tilde (˜) represents something computed from data and a

circumflex (ˆ) represents something computed from a simulation with param-

eter values of the structural model set to ρ. Details follow.



EMM Criterion Function – 2

• For any QMLE estimator

θ̃ =
θ

argmax
1

n

n
∑

t=1

log f(ỹt|x̃t−1, θ),

a sample average satisfies

0 =
1

n

n
∑

t=1

∂

∂θ
log f(ỹt|x̃t−1, θ̃)

because these are the first order conditions of the optimization problem.

• The SNP estimator is a QMLE estimator.

• Therefore a large simulation from a correctly specified structural model
p(yt|xt−1, ρ) will satisfy

0 = m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃),

except for sampling variation in θ̃. The equality holds exactly in the limit
as n and N tend to infinity.



EMM Criterion Function – 3

EMM finds ρ that satisfies the first order conditions 0 = m(ρ, θ̃)

as nearly as possible by computing

ρ̂ =
ρ

argminm′(ρ, θ̃)(W̃ )−1m(ρ, θ̃),

where

m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃)

W̃ =
1

n

n
∑

t=1

[
∂

∂θ
log f(ỹt|x̃t−1, θ̃)][

∂

∂θ
log f(ỹt|x̃t−1, θ̃)]

′

This estimator achieves the same efficiency as maximum likelihood:

Gallant, A. Ronald, and Jonathan R. Long (1997), “Estimating Stochastic Differential Equa-

tions Efficiently by Minimum Chi-Squared,” Biometrika 84, 125–141.



Asymptotics

Under weak regularity conditions that accommodate both time

series and cross sectional data (Gallant, 1987) ρ̂n tends to the

parameter value ρo that minimizes

so(ρ) = lim
n→∞ sn(ρ)

and
√
n(ρ̂n − ρo) is asymptotically normal with mean zero and

variance J−1IJ−1, where J is the Hessian

J =
∂

∂ρ∂ρ′
so(ρo)

and I is Fisher’s information

I = Var

[

∂

∂ρ′
√
n sn(ρ

o)

]

= E
[

∂

∂ρ′
√
n sn(ρ

o)

] [

∂

∂ρ′
√
n sn(ρ

o)

]′

For SNP, I = J so that only one of the two has to be computed;

e.g. correctly specified mle or GMM with correct weight matrix.



Computations

For sn(ρ) = 1
2 [m̃n − m̂N(ρ)]′

(

W̃n

)−1
[m̃n − m̂N(ρ)]

• must compute the estimator

ρ̂n =
ρ

argmin sn(ρ)

• an estimate of the Hessian

J =
∂

∂ρ∂ρ′
so(ρ)

• an estimate of the information

I = Var

[

∂

∂ρ′
√
n sn(ρ

o)

]

= E
[

∂

∂ρ′
√
n sn(ρ

o)

] [

∂

∂ρ′
√
n sn(ρ

o)

]′

• and an estimate of the variance of
√
n(ρ̂n − ρo)

Vn = Var [
√
n(ρ̂n − ρo)] = J−1IJ−1



Computational Strategy – ρ̂ & Ĵ−1

• Chernozhukov, Victor, and Han Hong (2003), “An MCMC

Approach to Classical Estimation,” Journal of Econometrics

115, 293–346.

• Put ℓ(ρ) = e−n sn(ρ). Apply Bayesian MCMC methods with

ℓ(ρ) as the likelihood and π(ρ, ψ) = π1(ρ)π2(ρ)π3(ρ, ψ) as the

prior.

• From the resulting MCMC chain {ρi}Ri=1, put

ρ̂n =
ρi

argmax ℓ(ρi)π(ρi, ψ
i) or ρ̂n = ρ̄R =

1

R

R
∑

t=1

ρi

i.e. the mode or the mean, and put

Ĵ−1 =

(

n

R

) R
∑

t=1

(ρi − ρ̄R) (ρi − ρ̄R)
′



Metropolis-Hastings MCMC Chain

Proposal density: T (ρhere, ρthere)

Proposal: ρprop drawn from T (ρold, ρ)

Simulate: Get sn(ρprop), ψprop, and π(ρprop, ψprop)

Likelihood: Put ℓ(ρ) = e−n sn(ρ)

Put ρnew to ρprop with probability

α = min

[

1,
π(ρprop, ψprop)ℓ(ρprop)T (ρprop, ρold)

π(ρold, ψold)ℓ(ρold)T (ρold, ρprop)

]

Put ρnew to ρold with probability 1− α.



Computational Strategy – Î

• For ρ set to ρ̂n, simulate the model and generate I indepen-

dent data sets {ŷt,i}nt=1, i = 1, . . . , I, each of exactly the same

size n of the original data.

• Let ŝn,i(ρ) denote the criterion function corresponding to

data set {ŷt,i}nt=1. (Store in C++ STL vector indexed by i.)

• Compute ∂
∂ρ′

√
n ŝn,i(ρ̄R).

• An estimate of the information is

Î =
1

I

I
∑

i=1

[

∂

∂ρ′
√
n ŝn,i(ρ̄R)

] [

∂

∂ρ′
√
n ŝn,i(ρ̄R)

]′



EMM Enhancements

Nearly all of the computational cost of the MCMC chain is due

to solving the asset pricing equations and computing the crite-

rion function sn(ρ). This cost can be minimized as follows:

• Reject immediately if π1(ρ) = 0.

• Put ρ on a grid. Grid increments determined by sensitivity

of {ŷt}Nt=1 to ρ elements. E.g. 0.001 for g and δ, and 0.5 for γ.

• Store sn(ρ), ψ, π2(ρ), π3(ρ, ψ) in a C++ STL associative map

indexed by ρ.

• Use table lookup to avoid all recomputation.

• The longer the chain, the faster it runs.

The EMM code does all of this; the case study the first only.



Computational Strategy – EMM MCMC

1. Propose: Draw ρprop from T (ρold, ρ).

2. Check support: Check π1(ρ). If π1(ρ) = 0, then put ρnew to

ρold. Go to 1.

3. Check map: If ρprop in map, α can be computed cheaply.

Put ρnew to ρprop with probability α. Put ρnew to ρold with

probability 1− α. Go to 1.

4. Simulate: Check π2(ρ). If π2(ρ) = 0, then add results to

map, put ρnew to ρold, and go to 1.

5. Evaluate: sn(ρprop), ψprop, π(ρprop, ψprop) and put in map.

Compute α. Put ρnew to ρprop with probability α. Put ρnew

to ρold with probability 1− α. Go to 1.



Tutorial

• Go through Section 6 of EMM User’s Guide

• In connection with the files at

argux6://home/arg/t/compecon/src/cases/emm/emmrun


