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Review of Ideas

e [ he ideas have already been presented in the habit model
case study.

e EMM is a simulated method of moments estimator with an
optimal choice of moments: the SNP scores.

— Gallant, A. Ronald, and George Tauchen (1996), “Which
Moments to Match?,” Econometric Theory 12, 657—681.

— Gallant, A. Ronald, and Jonathan R. Long (1997), “Es-
timating Stochastic Differential Equations Efficiently by
Minimum Chi-Squared,” Biometrika 84, 125—141.



Review of Ideas
e [ he case study code was the preliminary version of the EMM
code.
— EMM code has a better user interface.

— SNP scores are automatically generated from an SNP
parmfile.

— Efficiency improvements and parallelization.

e Change of notation to be consistent with SNP and EMM
User’'s Guides: 6 — p



Characteristics of Models of Specific Interest

e Likelihood not available.

e Prior information m1(p) on model parameters may be avail-
able.

e Prior information m>(p,v) on functionals of the model may
be available, i.e. ¢ = W (M,).

e Model can be simulated.



Example

Stocastic volatility model

yt = ag+ai1(yi—1 — ag) + exp(vr)uyy
v = bg+b1(vi—1 —bg) + u2y

Uit — =1t

Uop = S (rzlt +\V1-— TQZQt) :

where the errors zy = (214, 20¢) are iid N»(0O,1).

These equations imply

Var(u) = &(uu) = ( Lot )



Fig 1. Changes in Weekly $/DM Exchange Rates: 1975-1990
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GARCH Simulation
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Semiparametric GARCH Simulation
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The first panel is a plot of the data. The second is a simulation from an SNP fit with
(Ly,Lg, Ly, Ly, K, I, K4, I;) = (1,0,0,1,0,0,0,0); the third with (1,1,1,1,0,0,0,0), the
fourth with (1,1,1,1,4,0,0,0), and the fifth with (1,1,1,1,4,0,1,0). L, and L,, are set to
zero; 1., maxlI,, and I, have no effect when M = 1; maxK, = K,.



SMM with a GMM Criterion

e Output and parameters of the stochastic volatility model are

y € R
P = (a’07a17b07b1737r) S %6

e Data are denoted as {7:};~ 1, simulations as {gt}ivzl.



Some Notation

my; denotes evaluation at data

m: denotes evaluation at a simulation



A GMM Criterion — Moment Functions

Moment function for data:
1 mn
- Z My
n :
Moment function for a simulation:

1 N
my(p) = N ;



GMM Cross Sectional Weight Function

Wy, is an estimate of the variance of /nmn,

- 1 2 - - -
Wn:; Z (M — mn) (mi_mn),



GMM Time Series Weight Function

Wy, is an estimate of the variance of /n mn

where

[n1/%] _
L S (7L

r=—[nl/9]

1-6lu2+6u® ifo<u<i
w(u) =9 2(1 — |u)3 if 2 <u<1

] a X (=) (s =)’ 720
nT W’ - < O

n,—T



GMM Criterion Function

n(p) = 2 i — Ay (D) (W) ™ [ — iy (o))



EMM Criterion Function — 1
EMM is SMM with a different GMM criterion function.

The GMM moment equations above

mp — my(p)
are replaced by the scores from an SNP fit
1 M9 _
m(p,0) =~ 2 5909 f (GtlEi-1,6),
where f(y¢|zi;—1,0) is an SNP density chosen by BIC and with its
parameters 6 set to the value 0 estimated from the data.

Remember that a tilde (7) represents something computed from data and a
circumflex (7) represents something computed from a simulation with param-

eter values of the structural model set to p. Details follow.



EMM Criterion Function — 2

e For any QMLE estimator

- 1 —
6 = argmax— lo yt|Te—1,0),
g nz g f(ye|Ti—1,0)

0 t=1
a sample average satisfies
1 0 _
0= — — lo Ut|Tt—1, 0
n;:l 50 9 f(yt|Zt-1,0)

because these are the first order conditions of the optimization problem.

e The SNP estimator is a QMLE estimator.

e Therefore a large simulation from a correctly specified structural model
p(yi|xi—1, p) will satisfy

N

~ 1 0 ~
0=m(p,0) = =5 Zlog f(Gl|zi1,0),
mp.0) = 3 5109 f 71,0

except for sampling variation in . The equality holds exactly in the limit
as n and N tend to infinity.



EMM Criterion Function — 3

EMM finds p that satisfies the first order conditions 0 = m(p, 9)
as nearly as possible by computing

5 = argmin m/(p, &) (W) " tm(p, d),
P
where

1 X5
m(p7 0) — N Z a_ log f(ytlxt 179)

:IH

3 (55108 Sl D510 S Gl 1, DY

This estimator achieves the same efficiency as maximum likelihood:

Gallant, A. Ronald, and Jonathan R. Long (1997), “Estimating Stochastic Differential Equa-

tions Efficiently by Minimum Chi-Squared,” Biometrika 84, 125—141.



Asymptotics

Under weak regularity conditions that accommodate both time
series and cross sectional data (Gallant, 1987) p, tends to the
parameter value p° that minimizes

s°(p) = lim sp(p)

n—oo
and /n(pn — p°) is asymptotically normal with mean zero and
variance 71771 where J is the Hessian
a 0] o
S
9007 (p°)
and Z is Fisher's information

J =

7T = Var [% VN sn(po)] =& [ \/n Sn(po)] [% VN sn(po)]
p p

For SNP, 7 = 7 so that only one of the two has to be computed;
e.g. correctly specified mle or GMM with correct weight matrix.



Computations

~ N ~ \—1__ N
For  sn(p) = 5 [Mn — mn(p)) (Wn) ~ [n — i (p)]
e Must compute the estimator

Pn = argfgnin sn(p)

e an estimate of the Hessian
0
J =

0]
900 ° (p)

e an estimate of the information
o o !
T = Var [— n Sn<p0>] — ¢ [ n Sn<p0>] [5 n Sn<p0>]

e and an estimate of the variance of /n(pn — p°)

Vo = Var [yn(pn — p)] =T 12T}



Computational Strategy — p & J1

e Chernozhukov, Victor, and Han Hong (2003), “An MCMC
Approach to Classical Estimation,” Journal of Econometrics
115, 293—-346.

e Put 4(p) = e~msn(p)  Apply Bayesian MCMC methods with

¢(p) as the likelihood and w(p,v) = m1(p)m(p)73(p, 1) as the
prior.

e From the resulting MCMC chain {p;}*;, put

~ - o 1 B
pn = argmax £(p;)w(p;, ") OF pn=pr=—= >_ p;
pi k=
i.e. the mode or the mean, and put

J 1= (%) tijl (pi — Pr) (Pi — PR)’



Metropolis-Hastings MCMC Chain

Proposal density: T'(pperes Pthere)

Proposal: pprop drawn from T'(p,id4, p)

Simulate: Get sp(pprop), Yprop, and w(pprop, Yprop)
Likelihood: Put £(p) = e~ "sn(p)

W(Ppmpa ¢pr0p)£(,0pT0p)T(Ppr0pa Pold)
T(Potd> Yold)(Potd) T (Pold> Pprop)
Put pnew to p, g With probability 1 — a.

a=min |1,



P

Computational Strategy — 7

e For p set to pn, simulate the model and generate I indepen-
dent data sets {y; ;};*-1, ¢ =1,...,1, each of exactly the same
size n of the original data.

o Let 5, ;(p) denote the criterion function corresponding to
data set {y;;};—1. (Store in C4++ STL vector indexed by i.)

e Compute a%’ V15, i(PR)-

e An estimate of the information is
12 To

-1y (2

Ii=1 9p

/

VN §n,i(ﬁR>

0 S
8—,0’ V4L Sn,i(pR)



EMM Enhancements

Nearly all of the computational cost of the MCMC chain is due
to solving the asset pricing equations and computing the crite-
rion function s, (p). This cost can be minimized as follows:

e Reject immediately if w1(p) = 0.

e Put p on a grid. Grid increments determined by sensitivity
of {g:}__; to p elements. E.g. 0.001 for g and 4, and 0.5 for ~.

e Store sp(p), ¥, mo(p), m3(p,1p) in a C+-+4 STL associative map
indexed by p.

e Use table lookup to avoid all recomputation.
e T he longer the chain, the faster it runs.

The EMM code does all of this; the case study the first only.



Computational Strategy — EMM MCMC

1. Propose: Draw pprop from T (pyiq, p)-

2. Check support: Check m1(p). If m1(p) = 0, then put ppew to
Pold- GO to 1.

3. Check map: If pprop in Map, o can be computed cheaply.
Put pnew tO pprop With probability a. Put ppew to p,q With
probability 1 — «. Go to 1.

4. Simulate: Check m(p). If mo(p) = 0, then add results to
map, put ppew to p,q, @and go to 1.

Compute a. Put ppew tO pprop With probability a. Put ppew
to p,q With probability 1 — «. Go to 1.



Tutorial

e GO through Section 6 of EMM User’'s Guide

e In connection with the files at

argux6://home/arg/t/compecon/src/cases/emm/emmrun



