Computational Economics and Econometrics Efficient Method of Moments

by

A. Ronald Gallant Penn State University

©2015, A. Ronald Gallant

Review of Ideas

- The ideas have already been presented in the habit model case study.
- EMM is a simulated method of moments estimator with an optimal choice of moments: the SNP scores.
 - Gallant, A. Ronald, and George Tauchen (1996), "Which Moments to Match?," *Econometric Theory* 12, 657–681.
 - Gallant, A. Ronald, and Jonathan R.
 Long (1997), "Estimating Stochastic
 Differential Equations Efficiently by Minimum Chi-Squared," *Biometrika* 84, 125– 141.

2

Review of Ideas

- The case study code was the preliminary version of the EMM code.
 - EMM code has a better user interface.
 - SNP scores are automatically generated from an SNP parmfile.
 - Efficiency improvements and parallelization.
- Change of notation to be consistent with SNP and EMM User's Guides: $\theta \rightarrow \rho$

Characteristics of Models of Specific Interest

- Likelihood not available.
- Prior information $\pi_1(\rho)$ on model parameters may be available.
- Prior information $\pi_2(\rho, \psi)$ on functionals of the model may be available, i.e. $\psi = \Psi(\mathcal{M}_{\rho})$.
- Model can be simulated.

1

Example

Stocastic volatility model

$$y_t = a_0 + a_1(y_{t-1} - a_0) + \exp(v_t)u_{1t}$$

$$v_t = b_0 + b_1(v_{t-1} - b_0) + u_2t$$

$$u_{1t} = z_{1t}$$

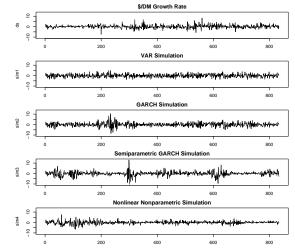
$$u_{2t} = s\left(r z_{1t} + \sqrt{1 - r^2} z_{2t}\right),$$

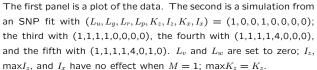
where the errors $z_t = (z_{1t}, z_{2t})$ are iid $N_2(0, I)$.

These equations imply

$$\mathsf{Var}(u) = \mathcal{E}(uu') = \begin{pmatrix} 1 & sr \\ sr & s^2 \end{pmatrix}$$

Fig 1. Changes in Weekly \$/DM Exchange Rates: 1975–1990





Some Notations

$$\bar{y} = \frac{1}{n} \sum_{t=1}^{n} \begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix}$$
$$S_t = \left[\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} - \bar{y} \right] \left[\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} - \bar{y} \right]'$$
$$m_t = \begin{pmatrix} y_t \\ y_{t-1} \\ \text{vech}(S_t) \end{pmatrix}$$

 \tilde{m}_t denotes evaluation at data

 \hat{m}_t denotes evaluation at a simulation

SMM with a GMM Criterion

• Output and parameters of the stochastic volatility model are

 $y_t \in \Re^1$

$$\rho = (a_0, a_1, b_0, b_1, s, r) \in \Re^6$$

• Data are denoted as $\{\tilde{y}_t\}_{t=1}^n$, simulations as $\{\hat{y}_t\}_{t=1}^n$.

5

A GMM Criterion – Moment Functions

Moment function for data:

$$\tilde{m}_n = \frac{1}{n} \sum_{t=1}^n \tilde{m}_t$$

Moment function for a simulation:

$$\hat{m}_N(\rho) = \frac{1}{N} \sum_{t=1}^N \hat{m}_t$$

GMM Cross Sectional Weight Function

 \tilde{W}_n is an estimate of the variance of $\sqrt{n\,\tilde{m}_n}$

$$ilde{W}_n = rac{1}{n}\sum_{i=1}^n \left(ilde{m}_i - ilde{m}_n
ight) \left(ilde{m}_i - ilde{m}_n
ight)'$$

10

GMM Time Series Weight Function

 \tilde{W}_n is an estimate of the variance of $\sqrt{n\,\tilde{m}_n}$

$$\tilde{W}_n = \sum_{\tau = -[n^{1/5}]}^{[n^{1/5}]} w\left(\frac{\tau}{[n^{1/5}]}\right) \tilde{W}_{n\tau}$$

where

$$w(u) = \begin{cases} 1 - 6|u|^2 + 6|u|^3 & \text{if } 0 < u < \frac{1}{2} \\ 2(1 - |u|)^3 & \text{if } \frac{1}{2} \le u < 1 \end{cases}$$
$$\tilde{W}_{n\tau} = \begin{cases} \frac{1}{n} \sum_{t=1+\tau}^n (\tilde{m}_t - \tilde{m}_n) (\tilde{m}_{t-\tau} - \tilde{m}_n)' & \tau \ge 0 \\ \tilde{W}'_{n,-\tau} & \tau < 0 \end{cases}$$

GMM Criterion Function

$$s_n(\rho) = \frac{1}{2} \left[\tilde{m}_n - \hat{m}_N(\rho) \right]' \left(\tilde{W}_n \right)^{-1} \left[\tilde{m}_n - \hat{m}_N(\rho) \right]$$

9

EMM Criterion Function – 1

EMM is SMM with a different GMM criterion function.

The GMM moment equations above

$$\tilde{m}_n - \hat{m}_N(\rho)$$

are replaced by the scores from an SNP fit

$$m(\rho, \tilde{\theta}) = \frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f(\hat{y}_t | \hat{x}_{t-1}, \tilde{\theta})$$

where $f(y_t|x_{t-1}, \theta)$ is an SNP density chosen by BIC and with its parameters θ set to the value $\tilde{\theta}$ estimated from the data.

Remember that a tilde ($\tilde{}$) represents something computed from data and a circumflex ($\hat{}$) represents something computed from a simulation with parameter values of the structural model set to ρ . **Details follow**.

13

EMM Criterion Function – 2

• For any QMLE estimator

$$\tilde{\theta} = \underset{\theta}{\operatorname{argmax}} \frac{1}{n} \sum_{t=1}^{n} \log f(\tilde{y}_t | \tilde{x}_{t-1}, \theta),$$

a sample average satisfies

$$0 = \frac{1}{n} \sum_{t=1}^{n} \frac{\partial}{\partial \theta} \log f(\tilde{y}_{t} | \tilde{x}_{t-1}, \tilde{\theta})$$

because these are the first order conditions of the optimization problem.

- The SNP estimator is a QMLE estimator.
- Therefore a large simulation from a correctly specified structural model $p(y_t|x_{t-1}, \rho)$ will satisfy

$$0 = m(\rho, \tilde{\theta}) = \frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f(\hat{y}_t | \hat{x}_{t-1}, \tilde{\theta})$$

except for sampling variation in $\tilde{\theta}$. The equality holds exactly in the limit as n and N tend to infinity.

14

EMM Criterion Function – 3

EMM finds ρ that satisfies the first order conditions $0 = m(\rho, \tilde{\theta})$ as nearly as possible by computing

$$\hat{\rho} = \underset{\rho}{\operatorname{argmin}} m'(\rho, \tilde{\theta}) (\tilde{W})^{-1} m(\rho, \tilde{\theta}),$$

where

$$\begin{split} m(\rho,\tilde{\theta}) &= \frac{1}{N} \sum_{t=1}^{N} \frac{\partial}{\partial \theta} \log f(\hat{y}_{t} | \hat{x}_{t-1}, \tilde{\theta}) \\ \tilde{W} &= \frac{1}{n} \sum_{t=1}^{n} \left[\frac{\partial}{\partial \theta} \log f(\tilde{y}_{t} | \tilde{x}_{t-1}, \tilde{\theta}) \right] \left[\frac{\partial}{\partial \theta} \log f(\tilde{y}_{t} | \tilde{x}_{t-1}, \tilde{\theta}) \right] \end{split}$$

This estimator achieves the same efficiency as maximum likelihood: Gallant, A. Ronald, and Jonathan R. Long (1997), "Estimating Stochastic Differential Equations Efficiently by Minimum Chi-Squared," *Biometrika* 84, 125–141.

Asymptotics

Under weak regularity conditions that accommodate both time series and cross sectional data (Gallant, 1987) $\hat{\rho}_n$ tends to the parameter value ρ^o that minimizes

$$s^{o}(\rho) = \lim_{n \to \infty} s_n(\rho)$$

and $\sqrt{n}(\hat{\rho}_n - \rho^o)$ is asymptotically normal with mean zero and variance $\mathcal{J}^{-1}\mathcal{I}\mathcal{J}^{-1}$, where \mathcal{J} is the Hessian

$$\mathcal{J} = \frac{\partial}{\partial \rho \partial \rho'} \, s^o(\rho^o)$$

and $\ensuremath{\mathcal{I}}$ is Fisher's information

$$\mathcal{I} = \operatorname{Var}\left[\frac{\partial}{\partial \rho'} \sqrt{n \, s_n(\rho^o)}\right]$$
$$= \mathcal{E}\left[\frac{\partial}{\partial \rho'} \sqrt{n \, s_n(\rho^o)}\right] \left[\frac{\partial}{\partial \rho'} \sqrt{n \, s_n(\rho^o)}\right]'$$

For SNP, $\mathcal{I} = \mathcal{J}$ so that only one of the two has to be computed; e.g. correctly specified mle or GMM with correct weight matrix.

Computations

For
$$s_n(\rho) = \frac{1}{2} [\tilde{m}_n - \hat{m}_N(\rho)]' (\tilde{W}_n)^{-1} [\tilde{m}_n - \hat{m}_N(\rho)]$$

• must compute the estimator

 $\hat{\rho}_n = \operatorname{argmin} s_n(\rho)$

• an estimate of the Hessian

$$\mathcal{J} = \frac{\partial}{\partial \rho \partial \rho'} \, s^o(\rho)$$

• an estimate of the information

$$\mathcal{I} = \operatorname{Var}\left[\frac{\partial}{\partial \rho'}\sqrt{n}\,s_n(\rho^o)\right] = \mathcal{E}\left[\frac{\partial}{\partial \rho'}\sqrt{n}\,s_n(\rho^o)\right] \left[\frac{\partial}{\partial \rho'}\sqrt{n}\,s_n(\rho^o)\right]'$$
• and an estimate of the variance of $\sqrt{n}(\hat{\rho}_n - \rho^o)$

$$V_n = \operatorname{Var}\left[\sqrt{n(\hat{
ho}_n -
ho^o)}
ight] = \mathcal{J}^{-1}\mathcal{I}\mathcal{J}^{-1}$$

Computational Strategy – $\hat{\rho} \& \hat{\mathcal{J}}^{-1}$

- Chernozhukov, Victor, and Han Hong (2003), "An MCMC Approach to Classical Estimation," *Journal of Econometrics* 115, 293– 346.
- Put $\ell(\rho) = e^{-n s_n(\rho)}$. Apply Bayesian MCMC methods with $\ell(\rho)$ as the likelihood and $\pi(\rho, \psi) = \pi_1(\rho)\pi_2(\rho)\pi_3(\rho, \psi)$ as the prior.
- From the resulting MCMC chain $\{\rho_i\}_{i=1}^R,$ put

$$\hat{\rho}_n = \underset{\rho_i}{\operatorname{argmax}} \ell(\rho_i) \pi(\rho_i, \psi^i) \text{ or } \hat{\rho}_n = \bar{\rho}_R = \frac{1}{R} \sum_{t=1}^R \rho_i$$

i.e. the mode or the mean, and put

$$\hat{\mathcal{J}}^{-1} = \left(\frac{n}{R}\right) \sum_{t=1}^{R} \left(\rho_i - \bar{\rho}_R\right) \left(\rho_i - \bar{\rho}_R\right)'$$

18

17

Metropolis-Hastings MCMC Chain

Proposal density: $T(\rho_{here}, \rho_{there})$

Proposal: ρ_{prop} drawn from $T(\rho_{old}, \rho)$

Simulate: Get $s_n(\rho_{prop}), \psi_{prop}, \text{ and } \pi(\rho_{prop}, \psi_{prop})$

Likelihood: Put $\ell(\rho) = e^{-n s_n(\rho)}$

Put ρ_{new} to ρ_{prop} with probability

$$\begin{split} \alpha &= \min\left[1, \frac{\pi(\rho_{prop}, \psi_{prop})\ell(\rho_{prop})T(\rho_{prop}, \rho_{old})}{\pi(\rho_{old}, \psi_{old})\ell(\rho_{old})T(\rho_{old}, \rho_{prop})}\right]\\ \text{Put } \rho_{new} \text{ to } \rho_{old} \text{ with probability } 1 - \alpha. \end{split}$$

Computational Strategy – $\hat{\mathcal{I}}$

- For ρ set to $\hat{\rho}_n$, simulate the model and generate I independent data sets $\{\hat{y}_{t,i}\}_{t=1}^n$, $i = 1, \ldots, I$, each of exactly the same size n of the original data.
- Let $\hat{s}_{n,i}(\rho)$ denote the criterion function corresponding to data set $\{\hat{y}_{t,i}\}_{t=1}^{n}$. (Store in C++ STL vector indexed by *i*.)
- Compute $\frac{\partial}{\partial \rho'} \sqrt{n} \, \hat{s}_{n,i}(\bar{\rho}_R)$.
- An estimate of the information is

$$\widehat{\mathcal{I}} = \frac{1}{I} \sum_{i=1}^{I} \left[\frac{\partial}{\partial \rho'} \sqrt{n} \, \widehat{s}_{n,i}(\bar{\rho}_R) \right] \left[\frac{\partial}{\partial \rho'} \sqrt{n} \, \widehat{s}_{n,i}(\bar{\rho}_R) \right]'$$

EMM Enhancements

Nearly all of the computational cost of the MCMC chain is due to solving the asset pricing equations and computing the criterion function $s_n(\rho)$. This cost can be minimized as follows:

- Reject immediately if $\pi_1(\rho) = 0$.
- Put ρ on a grid. Grid increments determined by sensitivity of $\{\hat{y}_t\}_{t=1}^N$ to ρ elements. E.g. 0.001 for g and δ , and 0.5 for γ .
- Store $s_n(\rho)$, ψ , $\pi_2(\rho)$, $\pi_3(\rho, \psi)$ in a C++ STL associative map indexed by ρ .
- Use table lookup to avoid all recomputation.
- The longer the chain, the faster it runs.

The EMM code does all of this; the case study the first only.

21

Computational Strategy – EMM MCMC

- 1. Propose: Draw ρ_{prop} from $T(\rho_{old}, \rho)$.
- 2. Check support: Check $\pi_1(\rho)$. If $\pi_1(\rho) = 0$, then put ρ_{new} to ρ_{old} . Go to 1.
- 3. Check map: If ρ_{prop} in map, α can be computed cheaply. Put ρ_{new} to ρ_{prop} with probability α . Put ρ_{new} to ρ_{old} with probability 1α . Go to 1.
- 4. Simulate: Check $\pi_2(\rho)$. If $\pi_2(\rho) = 0$, then add results to map, put ρ_{new} to ρ_{old} , and go to 1.
- 5. Evaluate: $s_n(\rho_{prop})$, ψ_{prop} , $\pi(\rho_{prop}, \psi_{prop})$ and put in map. Compute α . Put ρ_{new} to ρ_{prop} with probability α . Put ρ_{new} to ρ_{old} with probability $1 - \alpha$. Go to 1.

22

Tutorial

- Go through Section 6 of EMM User's Guide
- In connection with the files at argux6://home/arg/t/compecon/src/ cases/emm/emmrun