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Review of Ideas

• The ideas have already been presented in

the habit model case study.

• EMM is a simulated method of moments

estimator with an optimal choice of mo-

ments: the SNP scores.

– Gallant, A. Ronald, and George Tauchen

(1996), “Which Moments to Match?,”

Econometric Theory 12, 657–681.

– Gallant, A. Ronald, and Jonathan R.

Long (1997), “Estimating Stochastic

Differential Equations Efficiently by Min-

imum Chi-Squared,” Biometrika 84, 125–

141.
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Review of Ideas

• The case study code was the preliminary

version of the EMM code.

– EMM code has a better user interface.

– SNP scores are automatically generated

from an SNP parmfile.

– Efficiency improvements and paralleliza-

tion.

• Change of notation to be consistent with

SNP and EMM User’s Guides: θ → ρ
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Characteristics of Models

of Specific Interest

• Likelihood not available.

• Prior information π1(ρ) on model parame-

ters may be available.

• Prior information π2(ρ, ψ) on functionals

of the model may be available, i.e. ψ =

Ψ(Mρ).

• Model can be simulated.
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Example

Stocastic volatility model

yt = a0 + a1(yt−1 − a0) + exp(vt)u1t

vt = b0 + b1(vt−1 − b0) + u2t

u1t = z1t

u2t = s

(

r z1t+

√

1− r2 z2t

)

,

where the errors zt = (z1t, z2t) are iid N2(0, I).

These equations imply

Var(u) = E(uu′) =

(

1 sr

sr s2

)
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Fig 1. Changes in Weekly $/DM Exchange

Rates: 1975–1990
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The first panel is a plot of the data. The second is a simulation from

an SNP fit with (Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1,0,0,1,0,0,0,0);

the third with (1,1,1,1,0,0,0,0), the fourth with (1,1,1,1,4,0,0,0),

and the fifth with (1,1,1,1,4,0,1,0). Lv and Lw are set to zero; Iz,

maxIz, and Ix have no effect when M = 1; maxKz = Kz.
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SMM with a GMM Criterion

• Output and parameters of the stochastic

volatility model are

yt ∈ ℜ1

ρ = (a0, a1, b0, b1, s, r) ∈ ℜ6

• Data are denoted as {ỹt}nt=1, simulations as

{ŷt}Nt=1.
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Some Notations

ȳ =
1

n

n
∑

t=1

(

yt
yt−1

)

St =

[(

yt
yt−1

)

− ȳ

] [(

yt
yt−1

)

− ȳ

]′

mt =







yt
yt−1

vech(St)







m̃t denotes evaluation at data

m̂t denotes evaluation at a simulation
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A GMM Criterion

– Moment Functions

Moment function for data:

m̃n =
1

n

n
∑

t=1

m̃t

Moment function for a simulation:

m̂N(ρ) =
1

N

N
∑

t=1

m̂t
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GMM Cross Sectional

Weight Function

W̃n is an estimate of the variance of
√
n m̃n

W̃n =
1

n

n
∑

i=1

(m̃i − m̃n) (m̃i − m̃n)
′
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GMM Time Series

Weight Function

W̃n is an estimate of the variance of
√
n m̃n

W̃n =
[n1/5]
∑

τ=−[n1/5]

w

(

τ

[n1/5]

)

W̃nτ

where

w(u) =

{

1− 6|u|2 +6|u|3 if 0 < u < 1
2

2(1− |u|)3 if 1
2
≤ u < 1

W̃nτ =

{

1
n

∑n
t=1+τ (m̃t − m̃n) (m̃t−τ − m̃n)

′ τ ≥ 0

W̃ ′
n,−τ τ < 0
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GMM Criterion Function

sn(ρ) =
1

2
[m̃n − m̂N(ρ)]′

(

W̃n

)−1
[m̃n − m̂N(ρ)]
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EMM Criterion Function – 1

EMM is SMM with a different GMM criterion

function.

The GMM moment equations above

m̃n − m̂N(ρ)

are replaced by the scores from an SNP fit

m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃),

where f(yt|xt−1, θ) is an SNP density chosen by

BIC and with its parameters θ set to the value

θ̃ estimated from the data.

Remember that a tilde (˜) represents something com-

puted from data and a circumflex (ˆ) represents some-

thing computed from a simulation with parameter values

of the structural model set to ρ. Details follow.
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EMM Criterion Function – 2

• For any QMLE estimator

θ̃ =
θ

argmax
1

n

n
∑

t=1

log f(ỹt|x̃t−1, θ),

a sample average satisfies

0 =
1

n

n
∑

t=1

∂

∂θ
log f(ỹt|x̃t−1, θ̃)

because these are the first order conditions of the
optimization problem.

• The SNP estimator is a QMLE estimator.

• Therefore a large simulation from a correctly spec-
ified structural model p(yt|xt−1, ρ) will satisfy

0 = m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃),

except for sampling variation in θ̃. The equality
holds exactly in the limit as n and N tend to infinity.
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EMM Criterion Function – 3

EMM finds ρ that satisfies the first order condi-

tions 0 = m(ρ, θ̃) as nearly as possible by com-

puting

ρ̂ =
ρ

argminm′(ρ, θ̃)(W̃ )−1m(ρ, θ̃),

where

m(ρ, θ̃) =
1

N

N
∑

t=1

∂

∂θ
log f(ŷt|x̂t−1, θ̃)

W̃ =
1

n

n
∑

t=1

[
∂

∂θ
log f(ỹt|x̃t−1, θ̃)][

∂

∂θ
log f(ỹt|x̃t−1, θ̃)]

′

This estimator achieves the same efficiency as maximum likelihood:

Gallant, A. Ronald, and Jonathan R. Long (1997), “Estimat-

ing Stochastic Differential Equations Efficiently by Minimum Chi-

Squared,” Biometrika 84, 125–141.
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Asymptotics

Under weak regularity conditions that accom-

modate both time series and cross sectional

data (Gallant, 1987) ρ̂n tends to the parame-

ter value ρo that minimizes

so(ρ) = lim
n→∞ sn(ρ)

and
√
n(ρ̂n − ρo) is asymptotically normal with

mean zero and variance J−1IJ−1, where J is

the Hessian

J =
∂

∂ρ∂ρ′
so(ρo)

and I is Fisher’s information

I = Var

[

∂

∂ρ′
√
n sn(ρ

o)

]

= E
[

∂

∂ρ′
√
n sn(ρ

o)

] [

∂

∂ρ′
√
n sn(ρ

o)

]′

For SNP, I = J so that only one of the two

has to be computed; e.g. correctly specified

mle or GMM with correct weight matrix.
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Computations

For sn(ρ) = 1
2
[m̃n − m̂N(ρ)]

′ (W̃n

)−1
[m̃n − m̂N(ρ)]

• must compute the estimator

ρ̂n =
ρ

argmin sn(ρ)

• an estimate of the Hessian

J =
∂

∂ρ∂ρ′
so(ρ)

• an estimate of the information

I = Var

[

∂

∂ρ′
√
n sn(ρ

o)

]

= E
[

∂

∂ρ′
√
n sn(ρ

o)

] [

∂

∂ρ′
√
n sn(ρ

o)

]′

• and an estimate of the variance of
√
n(ρ̂n − ρo)

Vn = Var [
√
n(ρ̂n − ρo)] = J −1IJ −1
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Computational Strategy

– ρ̂ & Ĵ−1

• Chernozhukov, Victor, and Han Hong (2003),

“An MCMC Approach to Classical Estima-

tion,” Journal of Econometrics 115, 293–

346.

• Put ℓ(ρ) = e−n sn(ρ). Apply Bayesian MCMC

methods with ℓ(ρ) as the likelihood and

π(ρ, ψ) = π1(ρ)π2(ρ)π3(ρ, ψ) as the prior.

• From the resulting MCMC chain {ρi}Ri=1,

put

ρ̂n =
ρi

argmax ℓ(ρi)π(ρi, ψ
i) or ρ̂n = ρ̄R =

1

R

R
∑

t=1

ρi

i.e. the mode or the mean, and put

Ĵ−1 =

(

n

R

) R
∑

t=1

(ρi − ρ̄R) (ρi − ρ̄R)
′
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Metropolis-Hastings

MCMC Chain

Proposal density: T (ρhere, ρthere)

Proposal: ρprop drawn from T (ρold, ρ)

Simulate: Get sn(ρprop), ψprop, and π(ρprop, ψprop)

Likelihood: Put ℓ(ρ) = e−n sn(ρ)

Put ρnew to ρprop with probability

α = min

[

1,
π(ρprop, ψprop)ℓ(ρprop)T (ρprop, ρold)

π(ρold, ψold)ℓ(ρold)T (ρold, ρprop)

]

Put ρnew to ρold with probability 1− α.
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Computational Strategy – Î

• For ρ set to ρ̂n, simulate the model and

generate I independent data sets {ŷt,i}nt=1,

i = 1, . . . , I, each of exactly the same size

n of the original data.

• Let ŝn,i(ρ) denote the criterion function

corresponding to data set {ŷt,i}nt=1. (Store

in C++ STL vector indexed by i.)

• Compute ∂
∂ρ′

√
n ŝn,i(ρ̄R).

• An estimate of the information is

Î =
1

I

I
∑

i=1

[

∂

∂ρ′
√
n ŝn,i(ρ̄R)

] [

∂

∂ρ′
√
n ŝn,i(ρ̄R)

]′
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EMM Enhancements

Nearly all of the computational cost of the

MCMC chain is due to solving the asset pricing

equations and computing the criterion function

sn(ρ). This cost can be minimized as follows:

• Reject immediately if π1(ρ) = 0.

• Put ρ on a grid. Grid increments deter-

mined by sensitivity of {ŷt}Nt=1 to ρ ele-

ments. E.g. 0.001 for g and δ, and 0.5

for γ.

• Store sn(ρ), ψ, π2(ρ), π3(ρ, ψ) in a C++

STL associative map indexed by ρ.

• Use table lookup to avoid all recomputa-

tion.

• The longer the chain, the faster it runs.

The EMM code does all of this; the case study

the first only.
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Computational Strategy

– EMM MCMC

1. Propose: Draw ρprop from T (ρold, ρ).

2. Check support: Check π1(ρ). If π1(ρ) = 0,

then put ρnew to ρold. Go to 1.

3. Check map: If ρprop in map, α can be com-

puted cheaply. Put ρnew to ρprop with prob-

ability α. Put ρnew to ρold with probability

1− α. Go to 1.

4. Simulate: Check π2(ρ). If π2(ρ) = 0, then

add results to map, put ρnew to ρold, and

go to 1.

5. Evaluate: sn(ρprop), ψprop, π(ρprop, ψprop)

and put in map. Compute α. Put ρnew

to ρprop with probability α. Put ρnew to ρold
with probability 1− α. Go to 1.
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Tutorial

• Go through Section 6 of EMM User’s Guide

• In connection with the files at

argux6://home/arg/t/compecon/src/

cases/emm/emmrun
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