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Assumptions

1. Stationary, multivariate

yt =




y1t
y2t
...

yMt


 M × 1

Stationarity is assumed so that densities for a stretch of data are
time invariant. That is, they are of the form f(yt−L, .., yt) rather than
ft(yt−L, .., yt).

2. Markovian

The conditional density of yt given the entire past depends only on a
finite number of lags That is, f(yt|yt−τ , .., yt−1) = f(yt|xt−1) for every
τ ≥ L, where

xt−1 = (yt−L, .., yt−1)
′ ML× 1

3. Smooth

The density f(yt−L, .., yt), which is the same as f(xt−1, yt) in the notation
above, must have derivatives to the order ML/2 or higher and have tails

that are bounded above by P(yt−L, .., yt) exp
(
−1

2

∑L
τ=0 ‖yt−τ‖2

)
where P is

a polynomial of large but finite degree.



Transition Density

The transition density of a Markov process is the conditional density

f(yt|xt−1) = f(yt|yt−L, . . . , yt−1)

Given the functional form f(x, y) = f(y−L, . . . , y−1, y0) of the joint density the
transition density can be obtained from

f(y|x) =
f(x, y)∫
f(x, y) dy

.

Conversely, given the functional form of a transition density f(y|x) = f(y0|y−L, . . . , y−1)
the marginal density can be recovered by solving the equation

f(y) =

∫
f(y|x)f(x) dx

for f(.) and the joint density can be obtained from this solution using

f(x, y) = f(y−L, . . . , y−1, y0) = f(y|x)f(x)

Thus, either f(x, y) or f(y|x) can be regarded as containing all the probabilistic
information about a Markovian process {yt} and either is a proper focus of
nonparametric interest. We shall focus on estimation of the transition density.
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Application

The application used for illustration is the S&P 500 price and vol-

ume series from 1928–1987 used in Gallant, Rossi, and Tauchen

(1992, 1993). The data are in file nyse.dat have been adjusted

to remove calendar effects as described in nyse.doc. The multi-

variate series used for analysis is

yt =


 100 ∗ [log(Pt)− log(Pt−1)]

log(Vt)




where Pt is the closing Standard and Poors price index and Vt is

the daily volume on the New York Stock Exchange. We abbre-

viate as

yt =


 ∆pt

vt






Interpretation

Using the GRT nonparametric estimate f̂n(y|x) of the transition

density, we will illustrate some analyses that are possible once

a nonparametric transition density estimate has been obtained

because it seems reasonable to be sure that having an estimate is

of some practical value before going to the bother of derivation

and computation.

The GRT fit to the S&P 500 that we shall use to illustrate the

interpretation of a nonparametric fit has L = 16 :

f̂(y|x) = f̂n(∆p0, v0 |∆p−16, v−16, . . . ,∆p−1, v−1)

f̂(yt|xt−1) = f̂n(∆pt, vt |∆pt−16, vt−16, . . . ,∆pt−1, vt−1)



Simulation

One important application is simulation. From a simulation, one

can asses the reasonableness of a fit by comparing simulated

data to actual data. Also, one can compute both conditional and

unconditional expectations of nonlinear functions by simulating

and averaging.
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Visualization

A visual impression of the conditional density is of interest.

Shown next are surface and contour plots of

f̂n(y, x)

in the variable

y =

(
∆p
v

)

with the elements of x set to the unconditional mean of the data.

That is,

x = (y−16, . . . , y−1)
′ = (ȳ, · · · , ȳ)′ 32× 1
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One-step ahead dynamics

Density:

f̂n(∆p0, v0|∆p−16, v−16, . . . ,∆p−1, v−1)

Held fixed:

∆pt = sample mean for t = −16, . . . ,−2

vt = sample mean for t=-16,...,-1

Vary:

∆p−1 over -15 to +15 sample std. devs. from the sample mean

Examine:

E(v|x) =
∫∫

v f̂n(p, v|x) dp dv

Var(v|x) =
∫∫

[v − E(v|x)]2 f̂n(p, v|x) dp dv

where x = (∆p−16, v−16, . . . ,∆p−1, v−1)

Conclusion:

Large price movements are followed by high and volatile volume.





Multi-step ahead dynamics

Density:

f̂n(yj|xj−1) Ê, V̂ar computed wrt this density

yj = (∆pj, vj)′ xj−1 = (∆pj−16, vj−16, . . . ,∆pj−1, vj−1)
′

A Mean Profile:

ŷj(x) = Ê[ Ê(yj|xj−1) |x0 = x] j = 0,1,2, . . . , J

A Volatility Profile:

V̂j(x) = Ê[ V̂ar(yj|xj−1) |x0 = x] j = 1,2, . . . , J

A Shock:

x+

x0

x−

•
• • • • • • • • • •

•︸ ︷︷ ︸
x

positive shock
sample mean
negative shock

A Differential Response:

Mean: ŷj(x+)− ŷj(xo) j = 0,1, . . . , J

Volatility: V̂j(x+)− V̂j(xo) j = 1, . . . , J



Negative ∆p shock

Positive ∆p shock



Sup-Norm Bands

The sup-norm bands shown in the previous plots were con-

structed as follows:

Bootstrap:

Using the initial conditions from the data and the estimated

density, generate 500 simulated data sets. Estimate a density

and compute a profile for each of the simulated data sets.

Sup-norm confidence bands:

ǫ-bands are plotted about the profile computed from the data

that are just wide enough to contain 95% of the profiles com-

puted from the simulated data sets.



Profile Bundles

A visual method for assessing persistence. One can fit an exponential curve
to the bundles and compute a half-life to get a quantitative measure.

Price Profile:

∆̂pj(x) = E
[
E(∆pj|xj−1)

∣∣∣x
]

j = 1, . . . ,100

Volume Profile:

v̂j(x) = E
[
E(vj|xj−1)

∣∣∣x
]

j = 1, . . . ,100

Price Volatility Profile:

V̂j(x) = E
[
Var(∆pj|xj−1)

∣∣∣x
]

j = 1, . . . ,100

Profile Bundles: Evaluate at the data points

x = xs, s = 28,156,258, . . . ,16028

every 128th, 125 profiles in total.
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Notation for a Multivariate Polynomial

Degree K, dimension M

P(z) =
K∑

|α|=0

aαz
α

where

zα = (z1)
α1 · (z2)α2 · · · (zM)αM

|α| = |α1|+ |α2|+ . . .+ |αM |

Example, K=2, M=2

P(z) = a(0,0) + a(1,0)z1 + a(0,1)z2︸ ︷︷ ︸
linear terms

+ a(1,1)z1z2 + a(2,0)z
2
1 + a(0,2)z

2
2︸ ︷︷ ︸

quadratic terms



Hermite Expansions: Rationale (1)

An unnormalized Hermite function has the form

P(z)
√
φ(z)

where

φ(z) = NM(0, I) = (2π)−
1
2Me−

1
2z

′z

A function g(z) that satisfies

‖g‖22 =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g2(z) dz1 · · · dzM < ∞

is called an L2 function and the collection of such functions is

denoted by L2(−∞,∞).



Hermite Expansions: Rationale (2)

The Hermite functions are dense in L2(−∞,∞) which means that

lim
K→∞

∥∥∥∥g(z)− P(z)
√
φ(z)

∥∥∥∥
2
= 0

where the coefficients {aα}|α|≤K of P(z) are those that minimize

the approximation error ‖g(z)− P(z)
√
φ(z)‖2.



Hermite Expansions: Rationale (3)

Let h(z) be a density function. Because
∫

h(z) dz =
∫ ∞

−∞
· · ·

∫ ∞

−∞
h(z) dz1 · · · dzM = 1,

√
h(z) is in L2(−∞,∞) and can therefore be approximated by

P(z)
√
φ(z) as accurately as desired by taking K large enough.

This fact motivates using

hK(z) =
P2(z)φ(z)

∫ P2(s)φ(s) ds

to approximate h(z), where the division is to guarantee that

hK(z) integrates to one.



The Main Idea

Take hK(z) as the parent density and use a location-scale trans-

form

y = Rz + µ

to generate a location-scale family of densities

f(y|θ) =

{
P
[
R−1(y − µ)

]}2
φ
[
R−1(y − µ)

]

|det(R)| ∫ P2(s)φ(s) ds

which can be estimated from data {yt}nt=1 by quasi maximum

likelihood

θ̂ =
θ

argmax
n∏

t=1

f(yt|θ)

The density estimate is

f̂(y) = f(y|θ̂)



Consistency

The consistency of the estimator was established by Gallant, A.

Ronald, and Douglas W. Nychka (1987), “Semi-Nonparametric

Maximum Likelihood Estimation,” Econometrica 55, 363–390.



Some Remarks

f(y|θ) =

{
P
[
R−1(y − µ)

]}2
φ
[
R−1(y − µ)

]

|det(R)|
∫
P2(s)φ(s) ds

Note that P2(z)/
∫
P2(s)φ(s) ds is homogeneous of degree zero in the coeffi-

cients {aα}Kα=0. To achieve identification set a0 = 1.

Note also that

NM(y|µ,Σ) =
φ
[
R−1(y − µ)

]

|det(R)|
where Σ = RR′ so that

f(y|θ) ∝ P2
[
R−1(y − µ)

]
N(y|µ,Σ)

Therefore, f(y|θ) with K = 0 is the normal density.

The constant of proportionality is 1/
∫
P2(s)φ(s) ds

above.



SNP Density: IID Data

Location-scale transform:

y = Rz + µ R upper triangular

Density:

f(y|θ) ∝ P2
[
R−1(y − µ)

]
N(y|µ,RR′)

K = 0 ⇒ y ∼ NM(µ,RR′)

Example: K = 2, M = 2

R =

(
R11 R12

0 R22

)

θ = (a(0,0), a(1,0), a(0,1),

a(1,1), a(2,0), a(0,2),

µ1, µ2, R11, R12, R22)
′

a(0,0) = 1



How well does SNP do?

Rate results:

Fenton, Victor M., and A. Ronald Gallant (1996), “Convergence

Rates of SNP Density Estimators,” Econometrica 64, 719–727.

Qualitative comparison:

Fenton, Victor M., and A. Ronald Gallant (1996), “Qualitative

and Asymptotic Performance of SNP Density Estimators,” Jour-

nal of Econometrics 74, 77–118.
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Theoretical, Kernel, and SNP L1(−∞,∞) Error Rates. The figure shows Monte Carlo

estimates of
∫ ∞
−∞ |f̂n − fo| dx based on ten repetitions. In each of the three panels, in

the curve marked k f̂n is a normal kernel estimator with bandwidth Bn−1/5 where B

is optimal for fo with respect to E
∫ ∞
−∞ (f̂n − fo)2 dx, in the curve marked h f̂n is an

SNP estimator with pn = n1/5 and µ and σ estimated, and in the curve marked r the
theoretical rate An−2/5 is plotted with A chosen to give the best least squares fit to
the average of the curves marked h and k. In the panel marked Normal, the data are
simulated from a standard normal distribution. In the panel marked Mixture the data are
simulated from a mixture of a N(-3,1) with probability 0.3 and a N(4,1) with probability
0.7. In the panel marked Gamma, the data are simulated from a gamma distribution
with parameters α = 7 and β = 1.
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The Marron-Wand Test Suite. In each panel is plotted one of the
fifteen densities proposed by Marron and Wand (1992) as a battery
for use in evaluating nonparametric density estimators. The labels
at the top of each panel are as in Marron and Wand.
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Plots of SNP Estimates, n=400, Marron-Wand Test Suite. In each
panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density,

the degree p that gives the smallest value for
√ ∫ 3

−3
(f̂p − fo)2 dx is

selected.



-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

gaussian

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

skewed_unimodal

-3 -2 -1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

strongly_skewed

-3 -2 -1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

kurtotic_unimodal

-3 -2 -1 0 1 2 3

0
1

2
3

4

outlier

-3 -2 -1 0 1 2 3
0.

0
0.

1
0.

2
0.

3

bimodal

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

separated_bimodal

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

skewed_bimodal

-3 -2 -1 0 1 2 3

0.
0

0.
10

0.
20

0.
30

trimodal

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

claw

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

double_claw

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

asymmetric_claw

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

asymmetric_double_claw

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

smooth_comb

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

discrete_comb

Plots of Kernel Estimates, n=400, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman’s rule-of-thumb bandwidth.
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Plots of SNP Estimates, n=1600, Marron-Wand Test Suite. In
each panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density, the

degree p that gives the smallest value for
√ ∫ 3

−3
(f̂p − fo)2 dx is

selected.
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Plots of Kernel Estimates, n=1600, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman’s rule-of-thumb bandwidth.
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Plots of SNP Estimates, n=5625, Marron-Wand Test Suite. In
each panel the SNP estimate is plotted as a solid line and the density
that was sampled is plotted as a dotted line. For each density, the

degree p that gives the smallest value for
√ ∫ 3

−3
(f̂p − fo)2 dx is

selected.
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Plots of Kernel Estimates, n=5625, Marron-Wand Test Suite. In
each panel the kernel estimate is plotted as a solid line and the
density that was sampled is plotted as a dotted line. Bandwidth
selection is by least-squares cross-validation within the limits of 0.25
to 1.5 times Silverman’s rule-of-thumb bandwidth.



Choice of K

Coppejans, Mark, and A. Ronald Gallant (2002), “Cross Validated SNP Den-
sity Estimates,” Journal of Econometrics 110, 27–65.

Bottom line: BIC seems to work well.

Estimation: Equivalent to maximum likelihood, but more stable numerically
is to minimize the negative of the average log likelihood.

θ̂ =
θ

argmin sn(θ)

sn(θ) = −1

n

n∑

t=1

log [f(yt|θ)]

Schwarz criterion: Choose K to minimize

BIC(K) = sn(θ̂) +
p

2n
log(n)

where p is the number of free parameters in θ.
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Densities considered. The plot labeled sv is the density of a scale
mixture of normals with parameters chosen such that the density
has mean 0, variance 1/4, and raw kurtosis 8; orln is the density of
the second largest order statistic in a sample of size 100 from the
log normal with location parameter -3 and scale parameter 1. The
densities trimodal, gaussian, and smooth comb are densities from
the Marron-Wand test suite.
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Scale Mixture of Normals. Plotted is the integrated squared error (ISE) and its
cross validated estimate (CV) for a realization of size n, as shown in each plot, from the

density p(y|ρ) =
∫ ∞
−∞ n(y|ρ1, e2u)n(u|ρ2, ρ23) du with ρ chosen so that the density has mean

0, variance 1/4, and raw kurtosis 8. Solid line is ISE, dashed line is its leave-one-out CV
estimate (CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample
CV estimates (CVH). Upper dotted horizontal line is ISE achieved by a cross-validated
kernel estimate and lower dotted line is best kernel ISE for this realization. Vertical lines
indicate BIC, CVL, and CVH choices of K, as marked.
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Second Largest Order Statistic of the Lognormal. Plotted is the integrated squared
error (ISE) and its cross validated estimate (CV) for a realization of size n, as shown

in each plot, from the density p(y|ρ) = N(N−1)
y

[
Φ
(
log y−ρ2

ρ3

)]N−2 [
1−Φ

(
log y−ρ2

ρ3

)]
φ
(
log y−ρ2

ρ3

)
where y > 0, φ and Φ denote the standard normal density and distribution functions,
respectively, and (N, ρ2, ρ3) = (100,−3,1). Solid line is ISE, dashed line is its leave-
one-out CV estimate (CVL), and dashed and dotted line is the average of ten, 10%
hold-out-sample CV estimates (CVH). Upper dotted horizontal line is ISE achieved
by a cross-validated kernel estimate and lower dotted line is best kernel ISE for this
realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.



0 10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

cvh

cvl
bic n =0400

0 10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

cvh

cvl
bic n =0900

0 10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

cvh

cvl
bic n =1600

0 10 20 30 40 50 60 70 80 90

0

0.01

0.02

0.03

0.04

cvh

cvl
bic n =2500

Trimodal. Plotted is the integrated squared error (ISE) and its cross validated estimate
(CV) for a realization of size n, as shown in each plot, from the trimodal density of the
Marron-Wand test suite. Solid line is ISE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV
estimates (CVH). Upper dotted horizontal line is ISE achieved by a cross-validated
kernel estimate and lower dotted line is best kernel ISE for this realization. Vertical
lines indicate BIC, CVL, and CVH choices of K, as marked.
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Trimodal. Plotted are SNP density estimates a realization of size 900 and values of K
as shown in each plot, from the trimodal density of the Marron-Wand test suite. Solid
line is the estimate, dashed line is true density.
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Gaussian. Plotted is the integrated squared error (ISE) and its cross validated estimate
(CV) for a realization of size n, as shown in each plot, from the gaussian density of the
Marron-Wand test suite. Solid line is ISE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV
estimates (CVH). Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.
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Smooth Comb. Plotted is the integrated squared error (ISE) and its cross validated
estimate (CV) for a realization of size n, as shown in each plot, from the smooth
comb density of the Marron-Wand test suite. Solid line is ISE, dashed line is its leave-
one-out CV estimate (CVL), and dashed and dotted line is the average of ten, 10%
hold-out-sample CV estimates (CVH). Upper dotted horizontal line is ISE achieved
by a cross-validated kernel estimate and lower dotted line is best kernel ISE for this
realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.
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• Assumptions for time series analysis

• A Bivariate Application

• Hermite Expansions

• SNP Density for IID Data
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⊲ Non-homogeneous Innovations

• Tutorial on using SNP code.



SNP Density: IID Data

Location-scale transform:

y = Rz + µ R upper triangular

Density:

f(y|θ) ∝ P2
[
R−1(y − µ)

]
N(y|µ,RR′)

K=0 ⇒ Gaussian z

K > 0 ⇒ non-Gaussian z



Extension to Time Series

The idea is to modify the location and scale transforms of the

SNP density for iid data to be functions of the past, which is the

standard method of modifying a model for iid data for application

to time series data. Lastly, the SNP density itself is modified to

accommodate non-homogeneous innovations. We shall proceed

step-by-step.



SNP Transition Density for Time Series Data (1)

VAR location function:

y = Rz + µxt−1
R upper triangular

µxt−1
= b0 +Bxt−1 linear in the past

xt−1 = (yt−Lu
, . . . , yt−1)

′

b0 is M × 1, B is M × Lu,

Density:

f(y|θ) ∝ P2
[
R−1(y − µxt−1

)
]
N(y|µxt−1

, RR′)

Kz = 0 ⇒ Gaussian VAR, homogeneous z
Kz > 0 ⇒ non-Gaussian VAR, homogeneous z

Example: Kz = 2, M = 2, Lu = 1

θ = (a(0,0), a(1,0), a(0,1), a(1,1), a(2,0), a(0,2),

b01, b02, B11, B21, B12, B22,

R11, R12, R22)
′



SNP Transition Density for Time Series Data (2)

GARCH-type (BEKK) scale function:

y = Rxt−1
z + µxt−1

Rxt−1
upper triangular

µxt−1
= b0 +Bxt−1

xt−1 = (yt−Lu
, . . . , yt−1)

′

Σxt−1
= R0R

′
0 +

Lg∑

i=1

QiΣxt−1−i
Q′

i +

Lr∑

i=1

Pi(yt−i − µxt−1−i
)(yt−i − µxt−1−i

)′P ′
i

Σxt−1
is factored into (Rxt−1

)(Rxt−1
)′ after computation. The Qi and Pi can be

scaler, diagonal, or full M ×M matrices.

Density:

f(y|θ) ∝ P2
[
R−1

xt−1
(y − µxt−1

)
]
N(y|µxt−1

, Rxt−1
R′

xt−1
)

Kz = 0 ⇒ Gaussian GARCH, homogeneous z
Kz > 0 ⇒ non-Gaussian GARCH, homogeneous z

Example: Kz = 2, M = 2, Lu = 1, Lg = Lr = 1, P full and Q scalar

θ = (a(0,0), a(1,0), a(0,1), a(1,1), a(2,0), a(0,2),

b01, b02, B11, B21, B12, B22,

R0,11, R0,12, R0,22, P1,11, P1,21, P1,12, P1,22, Q1,00)
′



SNP Transition Density for Time Series Data (3)

More general scale function adds a leverage effect and a level effect:

Σxt−1
= R0R

′
0

+

Lg∑

i=1

QiΣxt−1−i
Q′

i

+

Lr∑

i=1

Pi(yt−i − µxt−1−i
)(yt−i − µxt−1−i

)′P ′
i

+

Lv∑

i=1

max[0, Vi(yt−i − µxt−1−i
)]max[0, Vi(yt−i − µxt−1−i

)]′

+

Lw∑

i=1

Wi x(1),t−ix
′
(1),t−iW

′
i .

R0 is upper triangular; Pi, Qi, Vi, and Wi can be scalar, diagonal, or full M by
M matrices. Controlled by setting switches Ptype, Qtype, Vtype, and Wtype
to one of the characters ’s’, ’d’, or ’f’. The notation x(1),t−i indicates that
only the first column of xt−i enters the computation. The max(0, x) function
is applied elementwise.

Leverage effect useful for equity returns, level effect for bond returns.



SNP for Non-homogeneous Innovations (1)

The Past:

x = (xt−Lp, . . . , xt−1)
′

Polynomial Part:

Non-homogeneous innovations are accommodated by letting the

polynomial part of the SNP model

P(z) =
Kz∑

|α|=0

aαz
α

have coefficients aα that are polynomials in x

aα(x) =
Kx∑

|β|=0

aαβx
β

It is denoted by P(z, x).



SNP for Non-homogeneous Innovations (2)

The SNP density for non-homogeneous innovations is Hermite

polynomial in z whose coefficients are polynomials in x

Polynomial Part:

P(z, x) =
Kz∑

|α|=0

Kx∑

|β|=0

aαβx
βzα

SNP density:

hK(z|x) =
P(z, x)φ(z)

∫ P(s, x)φ(s) ds



SNP Transition Density for Time Series Data (4)

Density:

f(y|θ) ∝ P2
[
R−1

xt−1
(y − µxt−1

), xt−1

]
N(y|µxt−1

, Rxt−1
R′

xt−1
)

x = (xt−Lp
, . . . , xt−1)

′

Example: M = 2, Kz = 2, Kx = 1, Lu = 1, Lp = 1, Lg = Lr = 1, P full and Q
scalar, Lv = Lw = 0

θ = (a(0,0),(0,0), a(1,0),(0,0), a(0,1),(0,0),

a(1,1),(0,0), a(2,0),(0,0), a(0,2),(0,0),

a(0,0),(1,0), a(1,0),(1,0), a(0,1),(1,0),

a(1,1),(1,0), a(2,0),(1,0), a(0,2),(1,0),

a(0,0),(0,1), a(1,0),(0,1), a(0,1),(0,1),

a(1,1),(0,1), a(2,0),(0,1), a(0,2),(0,1),

b01, b02, B11, B21, B12, B22,

R0,11, R0,12, R0,22, P1,11, P1,21, P1,12, P1,22, Q1,00)
′



Consistency

If f(y|x, θ) is estimated by quasi maximum likelihood, i.e.

θ̂n =
θ

argmin sn(θ)

sn(θ) = −1

n

n∑

t=1

log f(yt|xt−1, θ),

and K = (Kz,Kx) grows with sample size, then the estimator

f̂n(y|x) = f(y|x, θ̂n)
converges almost surely to the true density f(y|x) in Sobolev

norm as sample size increases. K can depend on the data.

Reference:

Gallant, A. Ronald, and Douglas W. Nychka (1987), “Seminon-

parametric Maximum Likelihood Estimation,” Econometrica 55,

363–390.



Restrictions Implied by Settings of the Tuning Parameters

Parameter setting Characterization of {yt}

Lu=0, Lg=0, Lr=0, Lp≥ 0, Kz=0, Kx=0 iid Gaussian

Lu> 0, Lg=0, Lr=0, Lp≥ 0, Kz=0, Kx=0 Gaussian VAR

Lu> 0, Lg=0, Lr=0, Lp≥ 0, Kz> 0, Kx=0 semiparametric VAR

Lu≥ 0, Lg=0, Lr> 0, Lp≥ 0, Kz=0, Kx=0 Gaussian ARCH

Lu≥ 0, Lg=0, Lr> 0, Lp≥ 0, Kz> 0, Kx=0 semiparametric ARCH

Lu≥ 0, Lg> 0, Lr> 0, Lp≥ 0, Kz=0, Kx=0 Gaussian GARCH

Lu≥ 0, Lg> 0, Lr> 0, Lp≥ 0, Kz> 0, Kx=0 semiparametric GARCH

Lu≥ 0, Lg≥ 0, Lr≥ 0, Lp> 0, Kz> 0, Kx> 0 nonlinear nonparametric



Standard Data Transformation

Sample mean and variance

ȳ =
1

n

n∑

t=1

ỹt

S =
1

n

n∑

t=1

(ỹt − ȳ)(ỹt − ȳ)′

ỹt denotes the raw data

Apply the methods above to

yt = S−1/2(ỹt − ȳ)

where S−1/2 denotes the Cholesky factor of the inverse of S.

Taking S diagonal keeps parameters interpretable.



Problem

If the true density f(y|x) is heavy tailed, then xt−1 will contain

extreme observations which have a strong and undesirable influ-

ence on estimates when Lr > 0 or Lr > 0.

Cure

Replace each component of x by its log spline transform

x̂i =

{
(1/2)[xi − σtr − log(1− xi − σtr)] xi < −σtr
xi −σtr < xi < σtr

(1/2)[xi + σtr + log(1 + xi − σtr)] σtr < xi.

The consistency result is not affected by this transform.

A logistic transform can also be used for this purpose. It is a more aggressive
solution to the problem but has poor properties with persistent data such as
interest rates. It does work well with strongly mean reverting data such as
stock returns.



-stran stran

The logistic and logarithmic spline transforms. The dashed line shows the
logistic transform. The dotted line shows the logarithmic spline transfor-
mation. The solid line is a 45 degree line, which represents no transfor-
mation. The two vertical lines are at x = −σtr and x = σtr, respectively.



Order in Which Transformations are Applied

ỹt → yt → xt−1 → x̂t−1 → µx, Rx

raw centered, lagged log spline location,
data scaled data data data scale



Problem

The SNP density f(y|x, θ) can become very small at extreme val-

ues of y or x. This is a nuisance in applications such as EMM

that require taking logarithms of the SNP density evaluated over

data generated by structural models at trial values of the param-

eters. The simulated data can be absurd relative to the actual

data, but the computations must be performed nonetheless.

Cure

Replace the SNP density throughout all the discussion above by

f∗(y|x, θ) =

{
P2
[
R−1

x (y − µx), x
]
+ ǫ0

}
nM(y|µx, RxR′

x)∫
[P(s, x)]2φ(s) ds+ ǫ0

where ǫ0 is some small value such as 10−3. The consistency

result is not affected.



Problem

Large M or large Lp can generate a large number of interactions

for even modest settings of Kz or Kx .

Cure

Filters with parameters Iz and Ix that limit the high order in

P(z|x); e.g. Iz = 2 means only cross product terms are included.

Example:

M = 2, Kz = 4, and Iz = 3 imply that the interactions are

α = (1,1), (2,1), (1,2)



Problem

The coefficients of P(z, x) are rectangular: aαβ. In practice, only

coefficients with small α show strong dependence on x. Stated

differently, estimates of aαβ are nearly 0 when α large and β 6= 0;

one would like an easy method to put aαβ = 0 exactly.

Cure

Filters with parameters maxKz and max Iz put all aαβ = 0 with

either |α| > maxKz or an interaction within α larger than max Iz.

Example: Next slide



Example: M = 2,

Kz = 4, Iz = 2, Kx = 1, Ix = 0, maxKz = 0, max Iz = 0

Lu = 1, Lp = 1, Lg = Lr = 1, P full and Q scalar, Lv = Lw = 0

θ = (a(0,0),(0,0),

a(1,0),(0,0), a(0,1),(0,0),

a(1,1),(0,0), a(2,0),(0,0), a(0,2),(0,0),

a(3,0),(0,0), a(0,3),(0,0),

a(4,0),(0,0), a(0,4),(0,0),

a(0,0),(1,0), a(0,0),(0,1),

b01, b02, B11, B21, B12, B22,

R0,11, R0,12, R0,22, P1,11, P1,21, P1,12, P1,22, Q1,00)
′



Tuning Parameters

Major:

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix)

Suggested Major:

Lg = Lr = 1, Lp = 1, Kz = 4, Iz = 2, Kx = 1, Ix = 0

Recommended Minor:

Diagonal S, full ARCH, scalar GARCH, logarithmic spline trans-

form with σtr = 2, maxKz = max Iz = 0, ǫ0 = 10−3.



Availability

C++ code and a User’s Guide are available by clicking on

“Browse webfiles” and then “snp” at http://www.aronaldg.org


