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Goal

• Systematic comparison of three macro/finance models.

• Likelihood based.

• Using Bayesian methods because data are sparse.

⊲ Prior information augments the data.



Statistical Literature – Frequentist

• Bansal, Ravi, A. Ronald Gallant, and George Tauchen (2007),

“Rational Pessimism, Rational Exuberance, and Asset Pric-

ing Models,” Review of Economic Studies 74, 1005–1033.

• Concerns

⊲ A frequentist comparison was defeated by sparse data.

⊲ Models compared by performance on macro “puzzles”

⊲ Modified proposer’s models – imposed co-integration

⊲ Used a general purpose solution method.



Statistical Literature – Bayesian

• Gallant, A. Ronald, and Robert E. McCulloch (2009), “On

the Determination of General Scientific Models with Appli-

cation to Asset Pricing,” Journal of the American Statistical

Association 104, 117–131.

⊲ Related: Dejong, Ingram, and Whiteman (2000), Del Ne-

gro and Schorfheide (2004), etc.

• Advantages

⊲ Can be used when no likelihood is available.

⊲ Permits latent variables

⊲ Augments sparse data with prior information.



Macro/Finance Literature

• Current practice

⊲ List some puzzles – i.e. list some sample moments

⊲ Propose a model

⊲ Check it against the list of puzzles

• Concerns

⊲ Chaotic – lists vary

⊲ Few organized head-to-head comparisons

⊲ In the hands of the proposers

• Most relevant

⊲ Beeler, Jason, and John Y. Campbell (2008), “The Long-

Run Risks Model and Aggregate Asset Prices: An Empir-

ical Assessment,” NBER, W14788

⊲ Bansal, R, D. Kiku. and A. Yaron (2009). “An Empir-

ical Evaluation of the Long-Run Risks Model for Asset

Prices,” NBER, W15504



Models Considered

• Habit

Campbell, J. Y., and J. Cochrane. (1999). “By Force

of Habit: A Consumption-based Explanation of Aggregate

Stock Market Behavior.” Journal of Political Economy 107,

205–251.

• Long run risks

Bansal, R., and A. Yaron. (2004). “Risks For the Long Run:

A Potential Resolution of Asset Pricing Puzzles.” Journal of

Finance 59, 1481–1509.

• Prospect theory

Barberis, N, M.Huang, and T. Santos (2001), “Prospect

Theory and Asset Prices,” The Quarterly Journal of Eco-

nomics 116, 1–53.



Fairness

• Use the proposer’s model.

• Use the proposer’s solution method.

• Use the same prior across all models.

⊲ P (−0.104 < rf < 1.896) = 0.95

⊲ A preference for model parameters close to the proposer’s

calibration.



Fig 1. Data, 1925–2008
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The red line is at 1930 and the blue at 1950.



Results

• If one believes that the extreme consumption growth fluctu-

ations of 1930–1949 can recur, then the long run risks model

is preferred.

⊲ Although they have not in the last sixty years.

⊲ Even counting the current recession.

• Otherwise, the habit model is preferred.



Posterior Probabilities

1930–2008 1950–2008

Relative hab lrr pro hab lrr pro

Trivariate 0.00 1.00 1.00 0.00
Bivariate 0.00 1.00 0.00 1.00 0.00 0.00
Univariate 0.28 0.48 0.24 0.44 0.42 0.14

Absolute

Trivariate 0.00 0.00 0.00 0.00
Bivariate 0.00 0.41 0.28 0.31 0.16 0.08
Univariate 0.29 0.36 0.10 0.40 0.39 0.29
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Habit Persistence Asset Pricing Model

Driving Processes

Consumption: ct − ct−1 = g+ vt

Dividends: dt − dt−1 = g+ wt

Random Shocks:

(

vt
wt

)

∼ NID

[(

0
0

)

,

(

σ2 ρσσw
ρσσw σ2

w

)]

The time increment is one month. Lower case denotes logarithms of upper

case quantities; i.e. ct = log(Ct), dt = log(Dt). From Campbell and Cochrane

(1999).



Habit Persistence Asset Pricing Model

Utility function

E0





∞
∑

t=0

δt
(StCt)

1−γ − 1

1− γ



 ,

Habit persistence

Surplus ratio: st − s̄ = φ (st−1 − s̄) + λ(st−1)vt−1

Sensitivity function: λ(s) =

{

1
S̄

√

1− 2(s− s̄)− 1 st ≤ smax

0 st > smax

Et is conditional expectation with respect to St, St−1, ... . Lower case denotes

logarithms of upper case quantities: st = log(St). S̄ and smax can be computed

from model parameters θ = (g, σ, ρ, σw, φ, δ, γ) as S̄ = σ
√

γ/(1− φ), smax =

s̄+ (1− S̄2)/2. From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing Model

Return on dividends

V (St) = Et







δ

(

St+1Ct+1

StCt

)−γ(
Dt+1

Dt

)

[

1 + V (St+1)
]







rdt = log

[

1 + V (St)

V (St−1)

(

Dt

Dt−1

)]

V (·) is defined as the solution of the Euler condition above. It is the price

dividend ratio; i.e. Pdt/Dt = V (St), where Pdt is the price of the asset that

pays the dividend stream. rdt is the logarithmic real return, i.e. rdt = log(Pdt+

Dt) − log(Pd,t−1), where Pdt and Dt are measured in real (inflation adjusted)

dollars. Dividend error can be integrated out analytically. Consumption error

integrated by quadrature. From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing Model

Solution Method

Approximate the log policy function

v(st) = logV (est)

by a piecewise linear function and use policy function iteration.

Campbell and Cochrane used Gauss’s intquad1 and set join

points at s̄, smax, smax − 0.01, smax − 0.02, smax − 0.03, smax −

0.04, and log(kSmax/11) for k = 1, . . . ,10. We used Gauss-

Hermite quadrature; we added the abscissae of the Gauss-

Hermite quadrature formula at the maximum and minimum of

the above join points; we deleted all points less than 0.001 apart.

Figure 2, next slide, plots the approximation at the Campbell

and Cochrane parameter values.



Fig 2. Piecewise Linear Approximation
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Habit Persistence Asset Pricing Model

Risk Free Rate

rft = − log







Et



δ

(

St+1Ct+1

StCt

)−γ










rft is the logarithmic return on an asset that pays one real dollar one month

hence with certainty. From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing Model

Large Model Output

Given model parameters

θ = (g, σ, ρ, σw, φ, δ, γ)

simulate monthly and aggregate to annual:

Cat =
11
∑

k=0

C12t−k

cat = log(Cat )

radt =
11
∑

k=0

rd,12t−k

raft =
11
∑

k=0

rf,12t−k



Habit Persistence Asset Pricing Model

Prior Distribution

p(θ) = N

[

raf |0.896,

(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2




where the θ∗i are the calibrated values from Campbell and

Cochrane (1999) and raf = limn→∞(1/n)
∑n
t=1 r

a
ft.

The scale factor on φ and δ is 0.001 rather than 0.1.

This is not an independence prior (next slide).



Table 1. Correlation Matrix
of the Habit Model Prior

g σ ρ σw φ δ γ

g 1.00 0.05 0.05 -0.02 -0.02 0.18 0.06
σ 0.05 1.00 0.04 -0.07 0.03 0.05 0.06
ρ 0.05 0.04 1.00 0.03 0.10 0.04 0.08
σw -0.02 -0.07 0.03 1.00 -0.02 0.02 -0.01
φ -0.02 0.03 0.10 -0.02 1.00 0.47 0.32
δ 0.18 0.05 0.04 0.02 0.47 1.00 -0.26
γ 0.06 0.06 0.08 -0.01 0.32 -0.26 1.00



Table 2. Habit Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.

g 0.00157547 0.00008128 0.00166893 0.00007473
σ 0.00440979 0.00022113 0.00502777 0.00018533
ρ 0.20068359 0.01072491 0.19445801 0.00931413
σw 0.03228760 0.00169052 0.03193665 0.00138630
φ 0.98826599 0.00042475 0.98769760 0.00033629
δ 0.99046326 0.00043605 0.99033737 0.00044495
γ 2.04296875 0.08924751 1.97558594 0.07720679

rf 0.97796400 0.13273052 1.02530400 0.12647089
rd − rf 6.04969200 0.07700698 6.26854800 0.07426341
σrd 19.67246807 0.14078849 20.17062220 0.14442220

Parameter values are for the monthly frequency. Returns are annualized. Mode is the

mode of the multivariate density. It actually occurs in the MCMC chain whereas other

measures of central tendency may not even satisfy support conditions. In the data,

rd − rf = 5.59 − 0.89 = 5.5 and σrd = 19.72. The auxiliary model is f5. The data are

annual stock returns and consumption growth 1930–2008.



Fig 3. Habit Model Prior and Posterior Returns
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Fig 4. Habit Model Prior and Posterior Forecasts
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Long Run Risks Asset Pricing Model

Driving Processes

Consumption: ct+1 − ct = µc + xt + σtηt+1

Dividends: dt+1 − dt = µd + φdxt + πdσtηt+1 + φuσtut+1

Long Run Risks: xt+1 = ρxt + φeσtet+1

Stochastic Volatility: σ2
t+1 = σ̄2 + ν(σ2

t − σ̄
2) + σwwt+1

Random Shocks:











ηt
et
wt
ut











∼ NID
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0
0
0
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0 1 0 0
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The time increment is one month. Lower case denotes logarithms of upper

case quantities; i.e. ct = log(Ct), dt = log(Dt). From Bansal, Kiku, and Yaron

(2007).



Long Run Risks Asset Pricing Model

Epstein-Zin utility function

Ut =



(1− δ)C
ψ−1
ψ

t + δ
(

EtU
1−γ
t+1

)

ψ−1
ψ(1−γ)





ψ
ψ−1

.

where

γ is the coefficient of risk aversion

ψ is the elasticity of inter temporal

substitution

Et is conditional expectation with respect to xt, σt.



Long Run Risks Asset Pricing Model

Return on consumption

mrst+1 = δ
1−γ

1−1/ψ exp

[(

γ − 1

ψ − 1

)

(ct+1−ct) +

(

1/ψ − γ

1− 1/ψ

)

rc,t+1

]

VC(xt, σt) = Et

{

mrst+1

(

Ct+1

Ct

)

[

1 + VC(xt+1, σt+1)
]

}

rct = log

[

1 + VC(xt, σt)

VC(xt−1, σt−1)

(

Ct

Ct−1

)]

VC(·) is defined as the solution of the Euler condition above. It is the price

consumption ratio; i.e. Pct/Ct = VC(xt, σt), where Pct is the price of the asset

that pays the consumption stream. rct is the logarithmic real return, i.e.

rct = log(Pct+Ct)− log(Pc,t−1), where Pct and Ct are measured in real (inflation

adjusted) dollars.



Long Run Risks Asset Pricing Model

Solution Method

Use the log linear approximation

rc,t+1
.
= κ0 + κ1zt+1 + ∆ct+1 − zt

κ1 = [exp(z̄)]/[1 + exp(z̄)]

k0 = log[1 + exp(z̄)]− κ1z̄

where zt = log(Pc,t/Ct) and z̄ is its endogenous mean.

To compute z̄, use the approximation

zt
.
= A0(z̄) +A1(z̄)xt +A2(z̄)σ

2
t

Ai(z̄) = tedious expressions in model parameters and z̄

and solve the fixed point problem

z̄ = A0(z̄) +A1(z̄)xt +A2(z̄)σ
2
t



Long Run Risks Asset Pricing Model

Return on dividends

mrst+1 = δ
1−γ

1−1/ψ exp

[(

γ − 1

ψ − 1

)

(ct+1−ct) +

(

1/ψ − γ

1− 1/ψ

)

rc,t+1

]

VD(xt, σt) = Et

{

mrst+1

(

Dt+1

Dt

)

[

1 + VD(xt+1, σt+1)
]

}

rdt = log

[

1 + VD(xt, σt)

VD(xt−1, σt−1)

(

Dt

Dt−1

)]

VD(·) is defined as the solution of the Euler condition above. It is the price

dividend ratio; i.e. Pdt/Dt = VD(xt, σt), where Pct is the price of the asset

that pays the dividend stream. rdt is the logarithmic real return, i.e. rdt =

log(Pdt + Dt) − log(Pd,t−1), where Pdt and Dt are measured in real (inflation

adjusted) dollars.

Solution method is similar to the foregoing.



Long Run Risks Asset Pricing Model

Risk Free Rate

rft = − log Et
{

mrst+1

}

rft is the logarithmic return on an asset that pays one real dollar one month

hence with certainty.

Solution method is similar to the foregoing.



Long Run Risks Asset Pricing Model

Large Model Output

Given model parameters

θ = (δ, γ, ψ, µc, ρ, φe, σ̄
2, ν, σw, µd, φd, πd, φu)

simulate monthly and aggregate to annual:

Cat =
11
∑

k=0

C12t−k

cat = log(Cat )

radt =
11
∑

k=0

rd,12t−k

raft =
11
∑

k=0

rf,12t−k



Long Run Risks Asset Pricing Model

Prior Distribution

p(θ) = N

[

raf |0.896,

(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2




where the θ∗i are calibrated values and raf = limn→∞(1/n)
∑n
t=1 r

a
ft.

The standard deviation on ρ and ν is 0.01 rather than 0.1.

This is not an independence prior (next slide).



Table 3. Correlation Matrix of the
Long Run Risks Model Prior

δ γ ψ µc ρ φe σ̄2 ν σw µd φd πd φu

δ 1.00 -0.44 -0.16 -0.08 0.20 -0.31 0.19 -0.12 -0.12 0.18 -0.12 0.31 0.05
γ -0.44 1.00 -0.04 -0.15 -0.36 0.11 0.07 0.18 0.18 -0.05 -0.17 -0.27 0.00
ψ -0.16 -0.04 1.00 0.06 -0.07 -0.05 -0.08 -0.04 0.11 0.13 -0.15 0.17 0.05
µc -0.08 -0.15 0.06 1.00 0.22 0.19 -0.12 0.07 0.02 0.05 0.22 0.14 -0.04
ρ 0.20 -0.36 -0.07 0.22 1.00 0.20 -0.42 0.05 -0.03 0.08 0.17 0.16 -0.26
φe -0.31 0.11 -0.05 0.19 0.20 1.00 -0.26 0.19 -0.02 -0.21 0.29 -0.22 -0.17
σ̄2 0.19 0.07 -0.08 -0.12 -0.42 -0.26 1.00 -0.40 0.09 -0.07 -0.26 -0.02 0.33
ν -0.12 0.18 -0.04 0.07 0.05 0.19 -0.40 1.00 -0.14 -0.05 0.36 -0.03 -0.04
σw -0.12 0.18 0.11 0.02 -0.03 -0.02 0.09 -0.14 1.00 0.05 -0.31 -0.18 0.03
µd 0.18 -0.05 0.13 0.05 0.08 -0.21 -0.07 -0.05 0.05 1.00 -0.05 0.30 0.10
φd -0.12 -0.17 -0.15 0.22 0.17 0.29 -0.26 0.36 -0.31 -0.05 1.00 -0.04 -0.31
πd 0.31 -0.27 0.17 0.14 0.16 -0.22 -0.02 -0.03 -0.18 0.30 -0.04 1.00 0.02
φu 0.05 0.00 0.05 -0.04 -0.26 -0.17 0.33 -0.04 0.03 0.10 -0.31 0.02 1.00



Table 4. Long Run Risks Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.

δ 0.99961090 0.00031172 0.99964905 0.00029362
γ 9.89062500 0.48583545 9.92187500 0.50121255
ψ 1.49609375 0.07859747 1.53906250 0.07244585
µc 0.00148392 0.00007031 0.00151825 0.00007685
ρ 0.98413086 0.00468241 0.98284912 0.00320064
φe 0.03204346 0.00160150 0.03204346 0.00162241
σ̄2 0.00004041 0.00000196 0.00004160 0.00000196
ν 0.98730469 0.00441105 0.98199463 0.00299350
σw 0.00000168 0.00000009 0.00000169 0.00000008
µd 0.00120926 0.00006114 0.00121307 0.00006030
φd 2.78906250 0.14620180 2.88281250 0.15095447
πd 4.07031250 0.20586470 4.17187500 0.19923412
φu 6.14062500 0.31996896 6.45312500 0.30424633

rf 0.94398000 0.12177703 0.90874800 0.11709356
rd − rf 4.30737600 0.48844526 4.11223200 0.28433000
σrd 18.28002188 0.17586080 19.07839616 0.13239826

Parameter values are for the monthly frequency. Returns are annualized. Mode is the mode

of the multivariate density. It actually occurs in the MCMC chain whereas other measures of

central tendency may not even satisfy support conditions. In the data, rd− rf = 5.59−0.89 =

5.5 and σrd = 19.72. The auxiliary model is f5. The data are annual stock returns and

consumption growth 1930–2008.



Fig 5. Long Run Risks Model Prior and Posterior Returns
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Fig 6. Long Run Risks Model Prior and Posterior Forecasts
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Prospect Theory Asset Pricing Model

Driving Processes

Aggregate Consumption: c̄t+1 − c̄t = gC + σCηt+1

Dividends: dt+1 − dt = gD + σDǫt+1

Random Shocks:

(

ηt
ǫt

)

∼ NID

[(

0
0

)

,

(

1 ω
ω 1

)]

C̄t is aggregate, per capita consumption which is exogenous to the agent.

The time increment is one year. Lower case denotes logarithms of upper

case quantities; i.e. c̄t = log(C̄t), dt = log(Dt). All variables are real. From

Barberis, Huang, Santos (2001).



Prospect Theory Asset Pricing Model

Other Model Variables

• Gross Stock Return: Rt

• Gross Risk Free Rate: Rf = ρ−1 exp
(

γgC − γ
2σ2
C/2

)

• Allocation to Risky Asset: St

• Gain or Loss: Xt+1 = St(Rt+1 −Rf)

• Benchmark Level (State Variable): zt+1 = η

(

zt
R̄

Rt+1

)

+(1−η)

• Choose R̄ to make Median {zt} = 1

• The Agent’s Consumption: Ct



Prospect Theory Asset Pricing Model

Utility function

E0





∞
∑

t=0



 ρt
C

1−γ
t − 1

1− γ
+ b0C̄

−γ
t ρt+1

[

St v̂(Rt+1, zt)
]









Utility from Gains and Losses:
[

St v̂(Rt+1, zt)
]

v̂(Rt+1, zt)

= Rt+1 −Rf zt ≤ 1, Rt+1 ≥ ztRf

= (ztRf −Rf) + λ(Rt+1 − ztRf) zt ≤ 1, Rt+1 < ztRf

= Rt+1 −Rf zt > 1, Rt+1 ≥ Rf

= λ(zt)(Rt+1 −Rf) zt > 1, Rt+1 < Rf

λ(zt) = λ+ k(zt − 1)



Fig 7. Utility of Gains and Losses
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The dot-dash line represents the case where the investor has prior

gains (z < 1), the dashed line the case of prior losses (z > 1), and

the solid line the case where the investor has neither prior gains nor

losses (z = 1).



Prospect Theory Asset Pricing Model

Return on dividends

1 = ρ exp
(

gD − γgC + γ2σ2
C(1− ω2)/2

)

× Et

[

1 + f(zt+1)

f(zt)
exp[(σD − γωσC)ǫt+1]

]

+ b0ρ Et

[

v̂

(

1 + f(zt+1)

f(zt)
exp(gD + σDǫt+1), zt

)]

rdt = log

[

1 + f(zt)

f(zt−1)
exp(gD + σDǫt)

]

f(·) is defined as the solution of the Euler condition above. It is the price

dividend ratio; i.e. Pdt/Dt = f(zt), where Pct is the price of the asset that pays

the dividend stream. rdt is the logarithmic real return, i.e. rdt = log(Pdt +

Dt) − log(Pd,t−1), where Pdt and Dt are measured in real (inflation adjusted)

dollars.



Prospect Theory Asset Pricing Model

Self Referential Equations

zt+1 = η

(

zt
R̄

Rt+1

)

+ (1− η)

Rt+1 =
1 + f(zt+1)

f(zt)
exp(gD + σDǫt+1)

1 = Median{zt}



Prospect Theory Asset Pricing Model

Solution Method

Approximate f by a piecewise linear function f(0)(z).

Approximate R̄ by (1+ f(1)) exp(gD)/f(1), which is a departure

from Barberis, Huang, and Santos (2001).

Define h(0) such that zt+1 = h(0)(zt, ǫt+1) solves the self refer-

ential equations that define zt+1 and Rt+1 on previous slide. A

root finding problem. We use Brent’s method.

Substitute h(0)(zt, ǫt+1) into the Euler equation. Use Gauss-

Hermite quadrature to integrate out ǫt+1. Solve for f(1)(z). A

root finding problem at each join point of f(1) .

Repeat h(i) → f(i+1) until convergence.



Fig 8. Piecewise Linear Approximation
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Prospect Theory Asset Pricing Model

Risk Free Rate

rf = log
[

ρ−1 exp
(

γgC − γ
2σ2
C/2

)]

rft is the logarithmic return on an asset that pays one real dollar one year

hence with certainty.



Prospect Theory Asset Pricing Model

Large Model Output

Given model parameters

θ = (gC, gD, σC, σD, ω, γ, ρ, λ, k, b0, η)

simulate annually and set

cat = log(Ct)

radt = rdt

raft = rf



Prospect Asset Pricing Model

Prior Distribution

p(θ) = N

[

raf |0.896,

(

1

1.96

)2
] p
∏

i=1

N



θi | θ
∗
i ,

(

0.1θ∗i
1.96

)2




where the θ∗i are the calibrated values from Barberis, Huang,

Santos (2001) and raf = limn→∞(1/n)
∑n
t=1 r

a
ft.

This is not an independence prior (seen next slide).



Table 5. Correlation Matrix of the
Prospect Theory Model Prior

gC gD σC σD ω γ ρ λ k b0 η

gC 1.00 -0.19 -0.14 -0.03 -0.09 0.09 -0.05 0.11 -0.04 -0.08 0.31
gD -0.19 1.00 -0.03 0.06 0.03 0.15 0.11 -0.05 0.12 -0.36 -0.28
σC -0.14 -0.03 1.00 0.14 -0.06 -0.21 -0.24 0.18 -0.20 -0.06 -0.15
σD -0.03 0.06 0.14 1.00 0.12 -0.23 -0.12 0.13 0.10 -0.01 -0.06
ω -0.09 0.03 -0.06 0.12 1.00 -0.17 0.16 -0.01 -0.06 0.04 -0.25
γ 0.09 0.15 -0.21 -0.23 -0.17 1.00 0.06 0.03 -0.11 -0.07 0.05
ρ -0.05 0.11 -0.24 -0.12 0.16 0.06 1.00 -0.10 0.15 0.26 0.07
λ 0.11 -0.05 0.18 0.13 -0.01 0.03 -0.10 1.00 -0.07 -0.08 -0.02
k -0.04 0.12 -0.20 0.10 -0.06 -0.11 0.15 -0.07 1.00 -0.25 0.07
b0 -0.08 -0.36 -0.06 -0.01 0.04 -0.07 0.26 -0.08 -0.25 1.00 0.24
η 0.31 -0.28 -0.15 -0.06 -0.25 0.05 0.07 -0.02 0.07 0.24 1.00



Table 6. Prospect Theory Model

Prior Posterior

Parameter Mode Std.Dev. Mode Std.Dev.

gC 0.01828003 0.00093413 0.01846313 0.00095215
gD 0.01870728 0.00095276 0.01849365 0.00097794
σC 0.03918457 0.00200690 0.03295898 0.00201110
σD 0.12231445 0.00611083 0.11962891 0.00597238
ω 0.14794922 0.00694094 0.14892578 0.00801015
γ 0.98632812 0.05145608 0.96484375 0.04958596
ρ 0.99972534 0.00163604 0.99969482 0.00202090
λ 2.17968750 0.11486810 2.23437500 0.11761822
k 9.82812500 0.53189914 9.90625000 0.53634137
b0 2.00195312 0.10967111 1.89355469 0.12735310
η 0.91601562 0.04412695 0.85375977 0.02405305

rf 1.75579200 0.05667617 1.76136000 0.06495191
rd − rf 5.92353600 0.19235810 4.88326800 0.12334973
σrd 27.97748380 0.92424294 22.90177286 0.29273615

Parameter values are for the annual frequency. Returns are annualized. Mode is the

mode of the multivariate density. It actually occurs in the MCMC chain whereas other

measures of central tendency may not even satisfy support conditions. In the data,

rd − rf = 5.59 − 0.89 = 5.5 and σrd = 19.72. The auxiliary model is f5. The data are

annual stock returns and consumption growth 1930–2008.



Fig 9. Prospect Theory Model Prior and Posterior Returns
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Fig 10. Prospect Theory Model Prior and Posterior Forecasts
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Bayesian Inference for

General Scientific Models

• Gallant and McCulloch (2009)

• The ideas for model estimation are not new.

⊲ What is new is a computational strategy that works.

⊲ Extremely computationally intensive.

• The ideas for absolute model assessment are probably new.

⊲ “No attribution is correct.” Steve Stigler.



Genesis is in II/EMM Notions

• Structural model: p(y|x, θ)

• Auxiliary model: f(y|x, η)

• Assumption: f nests p

• Binding function:

g(θ) 7→
η

argmin
∫ ∫

log p(y|x, θ)− log f(y|x, η) dP (y, x|θ)

⊲ Use KL because it can be computed without knowledge

of p(y|x, θ) provided simulation from p(y|x, θ) is possible.

⊲ g(θ) 7→
η

argmax
∑N
t=1 log f(ŷt|x̂t, η)

• Likelihood: p(y|x, θ) = f(y|x, g(θ))



Computing the Binding Function

1. For each θ of an MCMC chain of length R, generate a sim-

ulation {ŷt, x̂t}
N
t=1 from p(y|x, θ), N = 5000.

2. The start value of η is the mode of an MCMC chain {ηt}
K
t=1

with likelihood
∑N
t=1 log f(ŷt|x̂t, η) and a flat prior, K = 200.

• For use later compute Sη ← Sη + (ηK/2 − ηK)(ηK/2 − ηK)′

• Ση = 1
RSη

3. Compute
η

argmax
∑N
t=1 log f(ŷt|x̂t, η) using BFGS.



An Essential Refinement

• At each iteration of the θ-chain, recompute

ηold = g(θold)

by BFGS using

ηproposed = g(θproposed)

as a start; use recomputed if

N
∑

t=1

log f(ŷt|x̂t, η)

increases.

• Similarly, recompute ηproposed using ηold for a start.



Computing the Posterior

For data {yt, xt}
n
t=1 use MCMC with prior π(θ) and likelihood

L(θ) =
n
∑

t=1

log f(yt|xt, g(θ))

.

• g(θ) 7→
η

argmax
∑N
t=1 log f(ŷt|x̂t, η)

• The prior can depend on functionals of p(y|x, θ) that can be

computed from the simulation {ŷt, x̂t}
N
t=1, e.g. risk free rate.



Relative Model Comparison

Compute posterior probabilities for structural models

p1(y|x, θ1), p2(y|x, θ2), p3(y|x, θ3)

with priors

π(θ1), π(θ2), π(θ3)

from their θ-chains.

• Use method f5 of Gamerman and Lopes (2006),

• Use the same auxiliary model f(y|x, η) for each model.



Relative Model Comparison

• Equivalent to comparing the models

f(y|x, g1(θ1)), f(y|x, g2(θ2)), f(y|x, g3(θ3))

with priors

π(θ1), π(θ2), π(θ3)

.• This is an important observation.

• Inference is actually being conducted with likelihoods
∏

f(y|x, g1(θ1)),
∏

f(y|x, g2(θ2)),
∏

f(y|x, g3(θ3)),

not
∏

p1(y|x, θ1),
∏

p2(y|x, θ2),
∏

p3(y|x, θ3).

• If f(y|x, η) nests p1(y|x, θ1), p2(y|x, θ2), p3(y|x, θ3), then the

former and later are the same.



Fig 11. Relative Model Comparison

Shown is relative model comparison under a change of variables of integration θ 7→ η.

The contours show the likelihood of the auxiliary model f(·| η). The curved lines show

the manifolds M = {η ∈ H : η = g(θ), θ ∈ Θ} for Models 1 and 2. Thickness is

proportional to the priors π1 and π2. Posterior probabilities are proportional to the

integral of the likelihood over the manifold weighted by the prior.



Absolute Model Assessment

• Likelihood: auxiliary model f(y|x, η).

• Prior: πκ(η) ∝ exp
(

−1
2 minθ [η − g(θ)]

′(κΣη)−1[η − g(θ)]
)

• Assign equal prior probability to a sequence of model speci-

fications that differ only in their κ priors; e.g.

κ1 < κ2 < κ3

• Compute posterior probabilities under κ1, κ2, and κ3.

• Low posterior probability under κ1 is evidence against the

model.



Fig 12. Absolute Model Assessment – Reject

The contours show the likelihood of the auxiliary model f(·| η). The shaded areas show

priors κ1, κ2, κ3. The crosses show the mode of the posterior under κ1, κ2, κ3. The

posterior probabilities for absolute model assessment are proportional to the integral of

the likelihood over respective the shaded area.



Fig 13. Absolute Model Assessment – Accept

The contours show the likelihood of the auxiliary model f(·| η). The shaded areas show

priors κ1, κ2, κ3. The crosses show the mode of the posterior under κ1, κ2, κ3. The

posterior probabilities for absolute model assessment are proportional to the integral of

the likelihood over the respective shaded area.



Common Sense Auxiliary Model f1

• Mean function:

⊲ One lag

⊲ Linear

Variance function:

⊲ GARCH(1,1)

Errors:

⊲ Normal



Nesting Auxiliary Model f5

• Mean function:

⊲ Two lags

⊲ Nonlinear

Variance function:

⊲ GARCH(1,1)

⊲ Leverage

Errors:

⊲ Flexible SNP density



Outline

• Overview

• Models considered

• Bayesian inference for general scientific models

• Results

⊲ Relative comparison

⊲ Absolute assessment

⊲ Diagnostics
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Model Assessment

Relative Performance in Annual Data

Stock Returns

Posterior Probabilities for Three Models

1930–2008 1950–2008

Habit Persistence 0.28 0.44

Long Run Risks 0.48 0.42

Prospect Theory 0.24 0.14

Data are annual stock returns. The auxiliary model has a two-lag nonlinear
mean function, a GARCH variance function with leverage, and a flexible error
distribution.



Model Assessment

Absolute Performance in Annual Data

Stock Returns

Posterior Probabilities for Three Models

1930–2008 1950–2008

Prior hab lrr pro hab lrr pro

κ = 0.1 0.29 0.36 0.10 0.40 0.39 0.29
κ = 1.0 0.30 0.26 0.30 0.38 0.35 0.34
κ = 10.0 0.41 0.38 0.60 0.22 0.26 0.37

The data are annual stock returns over the years shown. The auxiliary model
has a two-lag nonlinear mean function, GARCH variance function with lever-
age, and a flexible error distribution. κ is the standard deviation of a prior
that imposes the habit model (hab), the long run risks model (lrr), and the
prospect theory model (pro), repectively, on the auxilliary model. The prior
weakens as κ increases.



Model Assessment

Relative Performance in Annual Data

Consumption Growth and Stock Returns

Posterior Probabilities for Three Models

1930–2008 1950–2008

Habit Persistence 0.00 1.00

Long Run Risks 1.00 0.00

Prospect Theory 0.00 0.00

Data are annual consumption growth and stock returns. The auxiliary model
has a two-lag nonlinear mean function, a GARCH variance function with
leverage, and a flexible error distribution.



Model Assessment

Absolute Performance in Annual Data

Consumption Growth and Stock Returns

Posterior Probabilities for Three Models

1930–2008 1950–2008

Prior hab lrr pro hab lrr pro

κ = 0.1 0.00 0.41 0.28 0.31 0.16 0.08
κ = 1.0 0.00 0.36 0.28 0.31 0.21 0.08
κ = 10.0 1.00 0.23 0.44 0.38 0.64 0.84

The data are annual consumption growth and stock returns over the years
shown. The auxiliary model has a two-lag nonlinear mean function, GARCH
variance function with leverage, and a flexible error distribution. κ is the
standard deviation of a prior that imposes the habit model (hab), the long
run risks model (lrr), and the prospect theory model (pro), repectively, on the
auxilliary model. The prior weakens as κ increases.



Model Assessment

Relative Performance in Annual Data

Consumption Growth, Stock Returns

and the Price Dividend Ratio

Posterior Probabilities for Three Models

1930–2008 1950–2008

Habit Persistence 0.00 1.00

Long Run Risks 1.00 0.00

Data are annual consumption growth, stock returns, and the price dividend
ratio. The auxiliary model is a one-lag VAR with homegeneous errors.



Model Assessment

Relative Performance in Annual Data

Consumption Growth, Stock Returns

and the Price Dividend Ratio

Posterior Probabilities for Three Models

1930–2008 1950–2008

Prior hab lrr hab lrr

κ = 0.1 0.00 0.00 0.00 0.00
κ = 1.0 0.00 0.00 0.33 0.00
κ = 10.0 1.00 0.00 0.67 1.00

Data are annual consumption growth, stock returns, and the price dividend
ratio. The auxiliary model is a one-lag VAR with homegeneous errors. κ is
the standard deviation of a prior that imposes the habit model (hab), the long
run risks model (lrr), and the prospect theory model (pro), repectively, on the
auxilliary model. The prior weakens as κ increases.



Table 7. Diagnostics for the Habit Persistence Model

1930–2008 1950–2008

Mode Mode Diag- Mode Mode Diag-
Parameter κ = 0.1 κ = 10 nostic κ = 0.1 κ = 10 nostic

b0,1 -0.08 -0.05 -1.30 -0.06 -0.05 -0.21
b0,2 0.07 0.04 0.53 0.06 0.04 0.34
B11 0.08 0.16 -1.62 0.09 0.15 -1.21
B21 -0.16 -0.09 -0.94 -0.15 -0.22 0.64
B12 0.29 0.32 -0.80 0.29 0.23 1.58
B22 0.02 0.02 -0.10 0.02 0.00 0.35
R0,11 -0.03 -0.01 -0.23 -0.03 -0.06 0.41
R0,12 0.23 0.27 -0.85 0.23 0.22 0.29
R0,22 0.21 0.21 -0.07 0.20 0.26 -0.74
P11 -0.06 0.17 -4.98 -0.05 -0.02 -0.55
P22 -0.21 -0.22 0.16 -0.21 -0.24 0.93
Q11 0.91 0.91 -0.04 0.91 0.91 0.13

Shown are the posterior modes from fitting (f1, πκ) to the bivariate con-
sumption growth and stock returns data over the periods and κ values
shown together with the diagnostic, which is the change in each param-
eter estimate divided by the posterior standard deviation under κ = 10.



Fig 14. Conditional Mean of the Habit Persistence Model
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The solid line is the conditional mean of auxiliary model f1 with its parameters set to the

posterior mode from fitting (f1, πκ) with κ = 10 to the bivariate consumption growth and

stock returns data over the period 1930–2008. The dashed line is the same with κ = 0.1. κ
is the standard deviation of a prior that imposes the habit persistence model on the auxiliary

model f1. The prior weakens as κ increases.



Fig 15. Conditional Volatility of the Habit Persistence Model
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The solid line is the conditional volatility of auxiliary model f1 with its parameters set to the

posterior mode from fitting (f1, πκ) with κ = 10 to the bivariate consumption growth and

stock returns data over the period 1930–2008. The dashed line is the same with κ = 0.1. κ
is the standard deviation of a prior that imposes the habit persistence model on the auxiliary

model f1. The prior weakens as κ increases.



Fig 16. Conditional Means of the Three Models
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The solid line is the conditional mean of the long run risks model with its parameters set to

the posterior mode from fitting to the bivariate consumption growth and stock returns data

over the period 1930–2008 using auxiliary model f5. The dashed line is the same for the

habit persistence model and the dot-dash line is the same for the prospect theory model. The

shaded area is ±1.96 posterior standard deviations.



Fig 17. Conditional Volatility of the Three Models
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The solid line is the conditional volatility of the long run risks model with its parameters set

to the posterior mode from fitting to the bivariate consumption growth and stock returns

data over the period 1930–2008 using auxiliary model f5. The dashed line is the same for

the habit persistence model and the dot-dash line is the same for the prospect theory model.

The shaded area is ±1.96 posterior standard deviations.
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⊲ Role of the auxiliary model

⊲ Do results depend on the choice of auxiliary model?



The Auxiliary Model

• Common sense suggests that the auxiliary model f1(y|x, η)

that best fits the data should be used, particularly for abso-

lute model assessment.

• Theory dictates that for correct Bayesian inference an auxil-

iary model f5(y|x, η) that nests the structural models under

consideration be used.

• How to choose? Particularly in our case because the nesting

model is absurd.



Points of View

• Using f1 instead if f5 means that a likelihood that differs

from the structural model’s likelihood is being used.

⊲ Inference cannot be regarded as relating to the structural

model.

• Using f1 instead of f5 is akin to GMM estimation.

⊲ One only asks the structural model to match certain fea-

tures of the data and allows it to ignore others.



Logically Correct Approach

• Use the nesting model f5(y|x, η) together with a prior π(η)

that forces equality, i.e., f5(y|x, η)π(η) =f1(y|x, η).

• Does not work, even for relaxed priors that do not force

equality.

⊲ There do not exist parameter settings for these strucural

models and solution methods that will stop them from

emitting bizarre simulations.



Sensitivity

• Does the choice of auxiliary model affect results?

• Does the choice of sample period, 1930–2008 or 1950–2008,

interact with the choice of auxiliary model?



Table 8. Auxiliary Models

f0 f1 f2 f3 f4 f5

Mean 1 lag 1 lag 1 lag 1 lag 1 lag 2 lags

Variance constant garch garch garch garch garch

leverage leverage leverage leverage

Errors normal normal normal flexible flexible flexible

nonlinear nonlinear

Parms univar 3 5 6 10 11 12

Parms bivar 9 12 14 22 24 28

Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. Parms
univar is the number of parameters when yt = rdt and parms cgsr is the
same when yt = (ct − ct−1, rdt). The habit model has 7 parameters, the
long run risks model has 13, and the prospect theory model has 11.



Table 9. Posterior Probability,
Stock Returns, 1930–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.47 0.71 0.28 0.36 0.28 0.28

LR Risks 0.49 0.25 0.57 0.34 0.45 0.48

Prospect 0.04 0.04 0.15 0.30 0.27 0.24

The data are annual stock returns 1930–2008. Variance matrices are of
the BEKK form. When evaluated, data are centered and scaled and lags
are attenuated by a spline transform. The number of MCMC repetitions
is R = 25000.



Table 10. Posterior Probability,
Stock Returns, 1950–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.51 0.49 0.44 0.42 0.46 0.44

LR Risks 0.47 0.42 0.51 0.49 0.45 0.42

Prospect 0.02 0.10 0.05 0.09 0.09 0.14

The data are annual stock returns 1950–2008. Variance matrices are of
the BEKK form. When evaluated, data are centered and scaled and lags
are attenuated by a spline transform. The number of MCMC repetitions
is R = 25000.



Table 11. Posterior Probability, Consumption
Growth and Stock Returns, 1930–2008

Model f0 f1 f2 f3 f4 f5

Habit 0.00 0.00 0.00 0.00 0.00 0.00

LR Risks 1.00 1.00 1.00 1.00 1.00 1.00

Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1930–2008.
Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. The
number of MCMC repetitions is R = 25000.



Table 12. Posterior Probability, Consumption
Growth and Stock Returns, 1950–2008

Model f0 f1 f2 f3 f4 f5

Habit 1.00 1.00 1.00 1.00 1.00 1.00

LR Risks 0.00 0.00 0.00 0.00 0.00 0.00

Prospect 0.00 0.00 0.00 0.00 0.00 0.00

The data are annual stock returns and consumption growth 1950–2008.
Variance matrices are of the BEKK form. When evaluated, data are
centered and scaled and lags are attenuated by a spline transform. The
number of MCMC repetitions is R = 25000.



Fig 18. Sensitivity to Specification of the Risk Aversion Parmater
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models f0 through f5. From the left, the first
column is for the bivariate data data from 1930–2008, the second
for 1950–2008, the third for the univariate data 1930–2008, and
the fourth for 1950–2008.



Fig 19. Sensitivity to Specification of the Equity Premium
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models f0 through f5. From the left, the first
column is for the bivariate data data from 1930–2008, the second
for 1950–2008, the third for the univariate data 1930–2008, and
the fourth for 1950–2008.



Fig 20. Sensitivity to Specification of Stock Returns Volatility
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models f0 through f5. From the left, the first
column is for the bivariate data data from 1930–2008, the second
for 1950–2008, the third for the univariate data 1930–2008, and
the fourth for 1950–2008.



Fig 21. Sensitivity to Specification of the Correlation
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In each plot, the solid line is the posterior mean and the dashed
lines are plus and minus 1.96 posterior standard deviations plotted
against the auxiliary models f0 through f5. From the left, the first
column is for the bivariate data data from 1930–2008, the second
for 1950–2008.


