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Abstract

SNP is a method of nonparametric time series analysis. The method employs an expansion

in Hermite functions to approximate the conditional density of a multivariate process. An

appealing feature of this expansion is that it is a nonlinear nonparametric model that directly

nests the Gaussian VAR model, the semiparametric VAR model, the Gaussian ARCH model,

the semiparametric ARCH model, the Gaussian GARCH model, and the semiparametric

GARCH model. The unrestricted SNP expansion is more general than any of these models.

The SNP model is fitted using conventional maximum likelihood together with a model

selection strategy that determines the appropriate order of expansion.

The program has switches that allow direct computation of functionals of the fitted

density such as conditional means, conditional variances, and points for plotting the density.

Other switches generate simulated sample paths which can be used to compute nonlinear

functionals of the density by Monte Carlo integration, notably the nonlinear analogs of the

impulse-response mean and volatility profiles used in traditional VAR, ARCH, and GARCH

analysis. Simulated sample paths can also be used to set bootstrapped sup-norm confidence

bands on these and other functionals.

The purpose of this Guide is to review the underlying methodology and to walk the

user through an application. Our intent is that the Guide be self contained and that little

reference to the cited literature will be required to use the program and the SNP method.

What is new in Version 9.0 is implementation in C++ via a matrix class, generalizing the

variance function to the BEKK, provisions for leverage and level effects in the variance func-

tion, allowing scalar, diagonal, or full matrices for each component of the variance function,

removing all nesting restrictions for estimates started from a previous fit, and elimination of

third party optimization software.

The code and this guide are available at http://econ.duke.edu/webfiles/arg/snp.
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1 Introduction

For a stationary, multivariate time series, the one-step-ahead conditional density represents

the process. The conditional density incorporates all information about various characteris-

tics of the series including conditional heteroskedasticity, non-normality, time irreversibility,

and other forms of nonlinearities. These properties are now widely considered to be im-

portant features of many time series processes. Since the conditional density completely

characterizes a process, it is thus naturally viewed as the fundamental statistical object of

interest.

SNP is nonparametric method, based on an expansion in Hermite functions, for esti-

mation of the conditional density. The method was first proposed by Gallant and Tauchen

(1989) in connection with an asset pricing application. Estimation of SNP models entails us-

ing a standard maximum likelihood procedure together with a model selection strategy that

determines the appropriate degree of the expansion. Under reasonable regularity conditions,

the estimator is consistent.

The method has undergone a number of refinements and extensions, all of which are

available as features of a C++ program that is in the public domain. The tasks of model

fitting and specification testing have been greatly simplified, and, to a large extent, auto-

mated within the program. For a given data set, these tasks are now no more demanding in

terms of total computational effort than those of typical nonlinear methods.

The program also incorporates many additional features related to prediction, residual

analysis, plotting, and simulation. These capabilities are designed to facilitate subsequent

analysis and interpretation. Predicted values and residuals, for instance, are of central

importance for undertaking diagnostic analysis and calculating measures of fit. Density

plots are useful for visualizing key characteristics of the process such as asymmetries and

heavy tails. Simulation has numerous potential applications. One is Monte Carlo analysis,

in particular setting bootstrapped confidence intervals, as described in Gallant, Rossi, and

Tauchen (1992). Another is nonlinear error shock analysis, described in Gallant, Rossi, and

Tauchen (1993), which develops the nonlinear analog of conventional error shock analysis

for linear VAR models. An important new application is reprojection, which is a form of
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nonlinear Kalman filtering, that can be used to forecast the unobservables of nonlinear latent

variables models; the leading example is forecasting the volatility process of continuous-time

stochastic volatility models (Gallant and Tauchen, 1998).

This guide provides a general overview of the method along with detailed instructions

for using the computer program. The topics covered include model formulation, estimation,

and specification testing. Also included is a worked example using a realistic data set. The

example shows how to tailor the code for a specific application and it takes the reader

through all aspects of model fitting, including pointing out the pitfalls. The example also

shows how to utilize each of the extended features of the program related to prediction,

residual analysis, plotting, and simulation.

1.1 The SNP Method

The method is termed SNP, which stands for SemiNonParametric, to suggest that it lies

halfway between parametric and nonparametric procedures. The leading term of the series

expansion is an established parametric model known to give a reasonable approximation to

the process; higher order terms capture departures from that model. With this structure, the

SNP approach does not suffer from the curse of dimensionality to the same extent as kernels

and splines. In regions where data are sparse, the leading term helps to fill in smoothly

between data points. Where data are plentiful, the higher order terms accommodate devi-

ations from the leading term and fits are comparable to the kernel estimates proposed by

Robinson (1983).

The theoretical foundation of the method is the Hermite series expansion, which for

time series data is particularly attractive on the basis of both modeling and computational

considerations. In terms of modeling, the Gaussian component of the Hermite expansion

makes it easy to subsume into the leading term familiar time series models, including VAR,

ARCH, and GARCH models (Engle, 1982; Bollerslev, 1986). These models are generally

considered to give excellent first approximations in a wide variety of applications. In terms

of computation, a Hermite density is easy to evaluate and differentiate. Also, its moments

are easy to evaluate because they correspond to higher moments of the normal, which can

be computed using standard recursions. Finally, a Hermite density turns out to be very
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practicable to sample from, which facilitates simulation.

1.2 Refinements and Extensions

A sequence of empirical applications, beginning with Gallant and Tauchen (1989), has stim-

ulated extensions and refinements of the SNP methodology. The original asset-pricing ap-

plication was a limited information maximum likelihood situation where both the likeli-

hood (which is the product of one-step-ahead conditional densities) and the Euler conditions

(structural equations) had to have nonparametric properties and be mathematically conve-

nient. This naturally lead to a series expansion type of approach so that standard algorithms

could be used to optimize the likelihood subject to the Euler conditions.

Extensions to better adapt the method to markedly conditionally heteroskedastic pro-

cesses such as exchange rate data were developed by Gallant, Hsieh, and Tauchen (1991).

Further extensions to robustify the methodology against extremely heavy tailed processes

such as real interest rate data were reported Gallant, Hansen, and Tauchen (1990). Processes

such as bivariate stock price and volume series can require a high degree Hermite polynomial

to fit them which generates a plethora of irrelevant interactions. Gallant, Rossi, and Tauchen

(1992) described filters to remove them. Efficient method of moments (EMM), applications

(Gallant and Tauchen, 1996, 2004; Ahn, Dittmar, and Gallant 2002, Ahn, Dittmar, Gallant,

and Gao, 2003; Chernov, Gallant, Ghysels, and Tauchen, 2003) lead to the development of

further robustifications and the addition of a GARCH leading term (Gallant, Hsieh, and

Tauchen, 1997; Gallant and Long 1997; Gallant and Tauchen, 1997; Gallant and Tauchen,

1998). The SNP density is also useful for synthesizing a likelihood in Bayesian applications

(Gallant and McCulloch, 2009; Aldrich and Gallant, 2011).

Our description of the SNP nonlinear time series methodology in Section 3 incorporates

the above refinements.

3



2 Building and Running SNP

2.1 Availability

The code and this guide are available at http://econ.duke.edu/webfiles/arg/snp. It has run

under the Sun, GNU, and Microsoft C++ compilers.

This program is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this

program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,

Boston, MA 02110-1301 USA.

2.2 Building and Running SNP

Download snp.tar from http://econ.duke.edu/webfiles/arg/snp. On a Unix machine

use tar -xf snp.tar to expand the tar archive into a directory that will be named snp.

On a Windows machine use unzip; i.e., Windows recognizes a Unix tar archive as a zip file.

The distribution has the following directory structure:

lib

libscl

libsnp

snpman

snprun

snpsrc

svfx

Often one changes the name snp of the parent directory to a name that represents the project

one is working on. For the example in the manual snp was renamed sv as short for stochastic

volatility.
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First the two libraries libscl and libsnp must be built, in that order. On a Unix ma-

chine change directory to lib/libscl/gpp and type make. For Microsoft Windows, a batch

file supplied by Microsoft with their compiler must be executed first. The following is an

example:

C:"\Program Files\Microsoft Visual Studio .NET\Vc7\bin\"vcvars32.bat

The exact syntax will depend on where the Microsoft C++ compiler is installed. Change

directory to lib\libscl\ms and type nmake. Building libsnp and libsnp is similar.

To run the SNP example that comes with the distribution on a Unix machine within the

directory snprun copy makefile.gpp to makefile, type make and then ./snp. For Microsoft

copy makefile.ms to makefile, type C:"\...\"vcvars32.bat, nmake, then snp, etc.

3 Estimation and Model Selection

In this section, we describe an estimation strategy for nonlinear time series analysis pro-

posed by Gallant and Tauchen (1989) and its extensions. These extensions are: an ARCH

leading term, which better adapts the method to markedly conditionally heteroskedastic

processes, proposed by Gallant, Hsieh, and Tauchen (1991); a spline transformation, which

imposes stationarity on fits to extremely persistent data such as interest rates (Gallant and

Tauchen, 1998); and, filters, which remove the high order interactions in fits to multiple

time series, proposed by Gallant, Rossi, and Tauchen (1992). New to this release is a BEKK

variance function, which is a generalization of GARCH and which has not yet been tested

in applications.

The derivation of the SNP model that we present here provides a fundamental under-

standing of the model so that one appreciate the implications of the tuning parameters. It

does not provide the mathematical connection with the results of Gallant and Nychka (1987)

that is required for theoretical work. For this, see Gallant, Hsieh, and Tauchen (1991). See

Gallant and Tauchen (1992) for a description of the simulation algorithm.

3.1 Estimation

As stated above, the SNP method is based on the notion that a Hermite expansion can

be used as a general purpose approximation to a density function. Letting z denote an
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M−vector, we can write the Hermite density as h(z) ∝ [P(z)]2φ(z) where P(z) denotes a

multivariate polynomial of degree Kz and φ(z) denotes the density function of the (mul-

tivariate) Gaussian distribution with mean zero and the identity as its variance-covariance

matrix. Denote the coefficients of P(z) by a, which is a vector whose length depends on Kz

and M . When we wish to call attention to the coefficients, we write P(z|a).

The constant of proportionality is 1/
∫
[P(s)]2φ(s)ds which makes h(z) integrate to one.

As seen from the expression that results, namely

h(z) =
[P(z)]2φ(z)

∫
[P(s)]2φ(s)ds

,

we are effectively expanding the square root of the density in Hermite functions of the form

P(z)
√

φ(z). Because the square root of a density is always square integrable over (−∞,∞),

and because the Hermite functions of the form P(z)
√

φ(z) are dense for the collection of

square integrable functions defined on (−∞,∞), (Fenton and Gallant, 1996) every density

has such an expansion. Because [P(z)]2/
∫
[P(s)]2φ(s)ds is a homogeneous function of the

coefficients of the polynomial P(z), the coefficients can only be determined to within a scalar

multiple. To achieve a unique representation, the constant term of the polynomial part is

put to one.

Customarily the Hermite density is written with its terms orthogonalized, and the code

is written in the orthogonalized form for numerical efficiency. But reflecting that here would

lead to cluttered notation and add nothing to the ideas. The code contains methods that

convert back and forth between orthogonalized and regular forms so the representation de-

scribed in this User’s Guide is actually available.

A change of variables using the location-scale transformation y = Rz + µ, where R is an

upper triangular matrix and µ is an M−vector, gives

f(y|θ) ∝ {P[R−1(y − µ)]}2{φ[R−1(y − µ)]/| det(R)|}

The constant of proportionality is the same as above, 1/
∫
[P(s)]2φ(s)ds. Because {φ[R−1(y−

µ)]/| det(R)|} is the density function of the M−dimensional, multivariate, Gaussian distri-

bution with mean µ and variance-covariance matrix Σ = RR′, and because the leading term

of the polynomial part is one, the leading term of the entire expansion is proportional to the
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multivariate, Gaussian density function. Denote the Gaussian density of dimension M with

mean vector µ and variance-covariance matrix Σ by nM(y|µ, Σ) and write

f(y|θ) ∝ [P(z)]2nM(y|µ, Σ)

where z = R−1(y − µ) for the density above.

When Kz is put to zero, one gets f(y|θ) = nM(y|µ, Σ) exactly. When Kz is positive,

one gets a Gaussian density whose shape is modified due to multiplication by a polynomial

in z = R−1(y − µ). The shape modifications thus achieved are rich enough to accurately

approximate densities from a large class that includes densities with fat, t-like tails, densities

with tails that are thinner than Gaussian, and skewed densities (Gallant and Nychka, 1987).

The parameters θ of f(y|θ) are made up of the coefficients a of the polynomial P(z)

plus µ and R and are estimated by maximum likelihood. Equivalent to maximum likelihood

but more stable numerically is to estimate θ in a sample of size n by minimizing sn(θ) =

(−1/n)
∑n

t=1 log[f(yt|θ)]. As mentioned above, if the number of parameters pθ grows with

the sample size n, the true density and various features of it such as derivatives and moments

are estimated consistently (Gallant and Nychka, 1987).

This basic approach can be adapted to the estimation of the conditional density of a

multiple time series {yt} that has a Markovian structure. Here, the term Markovian structure

is taken to mean that the conditional density of the M−vector yt given the entire past

yt−1, yt−2, ... depends only on L lags from the past. For convenience in this discussion, we

will presume that the data are from a process with a Markovian structure, but one should

be aware that if L is sufficiently large, then non-Markovian data can be well approximated

by an SNP density (Gallant and Long, 1996). For notational convenience, we collect these

lags together in a single vector denoted as xt−1, which is M · L, viz.

xt−1 = (yt−1, yt−2, .., yt−L),

where L exceeds all lags in the following discussion.

To approximate the conditional density of {yt} using the ideas above, begin with a

sequence of innovations {zt}. First consider the case of homogeneous innovations; that is,

the distribution of zt does not depend on xt−1. Then, as above, the density of zt can be
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approximated by h(z) ∝ [P(z)]2φ(z) where P(z) is a polynomial of degree Kz. Follow with

the location-scale transformation yt = Rzt + µx where µx is a linear function that depends

on Lu lags

µx = b0 + Bxt−1.

(If Lu < L, then some elements of B are zero.) The density that results is

f(y|x, θ) ∝ [P(z)]2nM(y|µx, Σ)

where z = R−1(y−µx). The constant of proportionality is as above, 1/
∫
[P(s)]2φ(s)ds. The

leading term of the expansion is nM(y|µx, Σ) which is a Gaussian vector autoregression or

Gaussian VAR.

When Kz is put to zero, one gets nM(y|µx, Σ) exactly. When Kz is positive, one gets a

semiparametric VAR density that can approximate well over a large class of densities whose

first moment depends linearly on x and whose shape is constant with respect to variation in

x.

To approximate conditionally heterogeneous processes, proceed as above but let each

coefficient of the polynomial P(z) be a polynomial of degree Kx in x. A polynomial in z of

degree Kz whose coefficients are polynomials of degree Kx in x is, of course, a polynomial in

(z, x) of degree Kz+Kx (with some of the coefficients put to zero). Denote this polynomial by

P(z, x). Denote the mapping from x to the coefficients a of P(z) such that P(z|ax) = P(z, x)

by ax and the number of lags on which it depends by Lp. The form of the density with this

modification is

f(y|x, θ) ∝ [P(z, x)]2nM(y|µx, Σ)

where z = R−1(y−µx). The constant of proportionality is 1/
∫
[P(s, x)]2φ(s)ds. When Kx is

zero, the density reverts to the density above. When Kx is positive, the shape of the density

will depend upon x. Thus, all moments can depend upon x and the density can, in principal,

approximate any form of conditional heterogeneity. (Gallant and Tauchen, 1989; Gallant,

Hsieh, and Tauchen, 1989).

Large values of M can generate a large number of interactions (cross product terms) for

even modest settings of degree Kz; similarly, for M · Lp and Kx. Accordingly, we introduce

two additional tuning parameters, Iz and Ix, to control these high order interactions. Iz = 0
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or 1 means no interactions, Iz = 2 means interactions of degree 2 are included, etc.; similarly

for Ix. Note that this convention differs from the early SNP literature where Ix denotes

exclusion of interactions rather than inclusion.

Above, all coefficients a = ax of the polynomial P(z|a) are polynomials of degree Kx in

x. For small Kz and Iz this is reasonable. When Kz and Iz are large, two additional tuning

parameters maxKz and maxIz can be set to eliminate the dependence on x of coefficients of

degree higher than these values.

In practice, especially in applications to data from financial markets, the second moment

can exhibit marked dependence upon x. In an attempt to track the second moment, Kx can

get quite large. To keep Kx small when data are markedly conditionally heteroskedastic, the

leading term nM(y|µx, Σ) of the expansion can be put to a Gaussian GARCH rather than

a Gaussian VAR. We use a modified BEKK expression as described in Engle and Kroner

(1995); the modifications are to add leverage and level effects. This is the most important

difference between the earlier Fortran implementations of SNP, which used R-GARCH, and

the C++ version. The form is

Σxt−1
= R0R

′

0

+
Lg∑

i=1

QiΣxt−1−i
Q′

i

+
Lr∑

i=1

Pi(yt−i − µxt−1−i
)(yt−i − µxt−1−i

)′P ′

i

+
Lv∑

i=1

max[0, Vi(yt−i − µxt−1−i
)] max[0, Vi(yt−i − µxt−1−i

)]′

+
Lw∑

i=1

Wi x(1),t−ix
′

(1),t−iW
′

i .

Above, R0 is an upper triangular matrix. The matrices Pi, Qi, Vi, and Wi can be scalar,

diagonal, or full M by M matrices. Which is controlled by setting switches Ptype, Qtype,

Vtype, and Wtype to one of the characters ’s’, ’d’, or ’f’. The notation x(1),t−i indicates

that only the first column of xt−i enters the computation. The max(0, x) function is applied

elementwise. Because Σxt−1
must be differentiable with respect to the parameters of µxt−2−i

,

the max(0, x) function actually applied is a twice continuously differentiable cubic spline

approximation that agrees with the max(0, x) function except over the interval (0, 0.1)
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over which it lies slightly above the max(0, x) function. It is defined in header smooth.h.

Often Σxt−1
in factored form is required, i.e. Σxt−1

= Rxt−1
R ′

xt−1
. The factorization and its

derivative are computed by the function factor. To reduce clutter, we shall usually write Σx

and Rx for Σxt−1
and Rxt−1

.

GARCH models are often difficult to fit, and the SNP version of GARCH is no exception.

Our suggestion is to restrict attention to models with Lg = 1 and Lr = 1 or Lg = 2

and Lr = 1, as is done in most of the applied GARCH literature. With multivariate fits

(M > 1), restricting P to diagonal and Q to scalar enhances stability. When both of these

restrictions are imposed, SNP-GARCH is more stable than most GARCH routines. Even if

an unrestricted multivariate fit is sought, it is a still good idea to fit first with the restrictions

imposed and to relax them later to get an unconstrained fit rather than trying to compute

an unconstrained fit directly. Similar considerations apply to V and W .

Note that when Lg > 0, the SNP model is not Markovian and that one must know both

xt−1 and Rxt−2
through Rxt−2−Lg

to move forward to the value for yt. Thus, xt−1 and Rxt−2

through Rxt−2−Lg
represent the state of the system at time t − 1 and must be retained or

recomputed in order to evaluate the SNP conditional density of yt or to iterate the SNP

model forward by simulation. If one wants to compute the derivatives of the SNP density

with respect to model parameters, one must retain or recompute the derivatives of Rxt−2

through Rxt−2−Lg
with respect to model parameters as well. Previous versions of SNP used

a retention strategy. Version 9.0 uses a recomputation strategy and the code has switches to

facilitate this for the purpose of computing conditional means, conditional variances, plots,

and simulations.

In the log likelihood computation, the state is initialized at R0 and iterated for-

ward the number of steps specified by the control parameter drop before the summands

log f(yt|xt−1, θ) are accumulated. Similarly for computations described in the paragraph

above.

With Rx specified as either an ARCH or a GARCH as above, the form of the conditional

density becomes

f(y|x, θ) ∝ [P(z, x)]2nM(y|µx, Σx)

where z = R−1
x (y−µx). The constant of proportionality is 1/

∫
[P(s, x)]2φ(s)ds. The leading
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term nM(y|µx, Σx) is Gaussian ARCH if Lg = 0 and Lr > 0 and Gaussian GARCH if both

Lg > 0 and Lr > 0 (leaving aside the implications of Lv and Lw).

As described above each of the functions ax, µx, and Rx is permitted its own lag spec-

ification. Let us review the conventions. The number of lags in the function ax for which

P(z, x) = P(z|ax) is Lp. The number of lags in the location function µx is Lu, and the

number of lags in the scale function Rx is controlled by the upper indexes of summation Lg,

Lr, Lv, and Lw in the equation defining Σx above. The number of lags actually required to

compute Rx is max(Lr + Lu, Lv + Lu, Lw) due to the dependence of the variance function

on the mean function. The vector x has conceptual length (as an array in memory) M · L,

where L = max(Lr + Lu, Lv + Lu, Lw, Lp). However, in the code, each object handles its

own recursions using whatever data structure is convenient so an x of this length does not

actually appear anywhere.

The length of a in P(z|a) depends on Kz and Iz. (The length of a also depends implicitly

on M as do all vectors and matrices in the remainder of this paragraph.) In the code, the

object (i.e. class) snpden defines a. The function ax has parameters [a0|A] whose length (as

an array in memory) is controlled by maxKz, maxIz, Ix, and Kx; a0 is the subset of a that

is does not depend on x (when Kz < maxKz or Iz < maxIz) and A controls the mapping

from x to the subset of a that does depend on x. In the code, the object afunc defines

the mapping ax from x to a and hence [a0|A]. The parameters of the location function

are [b0|B] whose length is controlled by Lu and a switch iecpt that controls whether an

the intercept b0 is present or not. In the code, ufunc defines the mapping µx from x to

µ and hence [b0|B]. The parameters of the variance function Rx that maps x to R are

[R0|Q1 · · ·Qq|P1 · · ·Pp|V1 · · ·Vq|W1 · · ·Wq]. The total length is controlled by Lg, Lr, Lv, and

Lw and the switches Qtype, Ptype, Vtype, and Wtype that determine whether Q, P, V, and

W are scalars, diagonal matrices, or full matrices, respectively. In the code rfunc defines

the mapping Rx from x to R and hence [R0|Q1 · · ·Qq|P1 · · ·Pp|V1 · · ·Vq|W1 · · ·Wq]. With the

exception of A, which for technical reasons contains the coefficient of the constant term of

P(z) as its first element, and R0, all vectors and matrices above can be null.

These are arranged in the order

θ = vec
[
a0|A|b0|B|R0|P1 · · ·Pp|Q1 · · ·Qq|V1 · · ·Vq|W1 · · ·Wq

]
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Parameter setting Characterization of {yt}

Lu = 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz = 0, Kx = 0 iid Gaussian

Lu > 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz = 0, Kx = 0 Gaussian VAR

Lu > 0, Lg = 0, Lr = 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametric VAR

Lu ≥ 0, Lg = 0, Lr > 0, Lp ≥ 0, Kz = 0, Kx = 0 Gaussian ARCH

Lu ≥ 0, Lg = 0, Lr > 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametric ARCH

Lu ≥ 0, Lg > 0, Lr > 0, Lp ≥ 0, Kz = 0, Kx = 0 Gaussian GARCH

Lu ≥ 0, Lg > 0, Lr > 0, Lp ≥ 0, Kz > 0, Kx = 0 semiparametric GARCH

Lu ≥ 0, Lg ≥ 0, Lr ≥ 0, Lp > 0, Kz > 0, Kx > 0 nonlinear nonparametric

Table 1. Restrictions Implied by Settings of the Tuning Parameters. The param-

eters Lv and Lw are set to zero. The parameters Iz, maxIz, and Ix have no effect when

M = 1. The parameter maxKz = Kz in each instance that Kx > 0.

internally to the program. The code permits some of them to be fixed in the optimization

and some to be active. The subset that is active is denoted by ρ and the number that are

active (length of ρ) by pρ. Because the constant term is always fixed, ρ will always have

dimension at least one less than θ. Below, we do not carefully distinguish between θ and ρ

and usually use θ to mean either. When the distinction is important we shall note it.

The parameters are estimated by minimizing the active elements of θ in

sn(θ) = −(1/n)
n∑

t=1

log[f(yt|xt−1, θ)].

Putting certain of the tuning parameters to zero implies sharp restrictions on the process

{yt}, the more interesting of which are displayed in Table 1. We call particular attention to

the case Lu, Lr, Kz > 0 and Lg, Kx = 0 because it generates the semiparametric ARCH class

of densities proposed by Engle and Gonzales-Rivera (1991).

To improve the stability of computations, the observations {yt}n
t=1 are centered and scaled

to have mean zero and identity variance-covariance matrix. The centering and scaling is

accomplished by (1) computing estimates of the unconditional mean and variance

ȳ = (1/n)
n∑

t=1

ỹt

S = (1/n)
n∑

t=1

(ỹt − ȳ)(ỹt − ȳ)′

12



where ỹt denotes the raw data, and (2) applying the methods above to

yt = S−1/2(ỹt − ȳ)

where S−1/2 denotes the factored inverse of S. That is, just replace the raw data {ỹt} by

the centered and scaled data {yt} throughout. Because of the location-scale transformation

y = Rz + µ, the consistency results cited above are not affected by the transformation from

ỹt to yt. These centering and scaling transformations are internal to the program and are

transparent to the user.

To aid interpretation of results with multivariate data, one may want to make S−1/2 above

diagonal by setting the off-diagonal elements of S to zero before factorization by setting the

switch diag to 1.

On the other hand, because the factorization is done using the singular value decom-

position, the variables yt computed with diag = 0 actually are interpretable: they are the

normalized principal componants. That is, of all variables of the form a′(ỹt − ȳ), y1t had

the largest sample variance prior to being rescaled to have variance one; of all such variables

that are orthogonal to y1t, y2t had the largest variance; of all such variables orthogonal to

both y1t and y2t, y3t had the largest; and so on.

Time series data often contain extreme or outlying observations, particularly data from

financial markets. This is not a particular problem when the extreme value is considered as

a yt because it just fattens the tails of the estimated conditional density. However, once it

becomes a lag and passes into xt−1, the optimization algorithm can use an extreme value in

xt−1 to fit an element of yt nearly exactly thereby reducing the corresponding conditional

variance to near zero and inflating the likelihood. This problem is endemic to procedures

that adjust variance on the basis of observed explanatory variables.

One can compensate for this effect by an additional transformation

x̂i =





1
2

{
xi + 4

π
arctan

[
π
4
(xi + σtr)

]
− σtr

}
−∞ < xi < −σtr

xi −σtr < xi < σtr

1
2

{
xi + 4

π
arctan

[
π
4
(xi − σtr)

]
+ σtr

}
σtr < xi < ∞.

where xi denotes an element of xt−1. This is a trigonometric spline transformation that has

a no effect on values of xi between −σtr and σtr but progressively compresses values that
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−inflec inflec

Figure 1. The squashers. The dashed line shows the trigonometric spline

transformation. The dotted line shows the logistic transformation. The solid line

is a 45 degree line, which represents no transformation. The two vertical lines are

at x = −σtr and x = σtr.

exceed ±σtr; see Figure 1. A more extreme squasher is the logistic transformation

x̂i = (4σtr)
exp(xi/σtr)

1 + exp(xi/σtr)
− 2σtr

It has negligible effect on values of xi between −σtr and σtr but progressively compresses

values that exceed ±σtr so they are bounded by ±2σtr; see Figure 1.

A switch, squash, allows a user to choose no transformation, the spline transformation, or

the logistic transformation; σtr is user selectable. We recommend σtr = 2 and think that the

spline is the better choice when squashing is necessary. Squashing is roughly equivalent to

using a variable bandwidth in kernel density estimation. Because it affects only yt−1, . . . , yt−L

and not yt, the asymptotic properties of SNP estimators discussed above are unaltered.
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These transforms are applied to the xt−1 that enter P(z, x), µx, and Σx. In addition,

the residuals yt−1−i − µxt−2−i
that enter the ARCH terms and leverage effect terms in the

expression for Σx are transformed. The dictum that the sum of the coefficients (sum of

squares actually because we use the BEKK form) must be less than one no longer holds under

transformation. For the logistic, only the autoregressive coefficients enter the sum because

the forcing variables in the moving average part have bounded expectation. Although we have

not verified the mathematics, it seems obvious from the expression for the spline transform

that it would suffice that the sum of squares of the coefficients be less than 2 for the spline.

For data from financial markets, experience suggests that a long simulation from a fitted

model will have unconditional variance and kurtosis much larger than the variance and

kurtosis of the sample. When the spline transform is imposed, this anomaly is attenuated.

Estimated coefficients and the value of sn are not much affected. Thus, it seems that if

simulation from the fitted SNP model is an important component of the statistical analysis,

then the spline transform should definitely be imposed.

Note the order in which the transformations are applied

ỹt → yt → xt−1 → x̂t−1 → µx, Rx

raw → centered, → lagged → spline → location and
data scaled data data data scale transformation

The code is written so that these transformations are transparent to the user. All input and

output is in the units of the raw data ỹt.

The SNP score is often used in connection with the EMM estimation method (Gallant

and Tauchen, 1996), which is a simulation estimator that involves simulating from a model

and averaging the SNP score over that simulation. Some of the simulated values fed to

SNP by EMM can be much different than the data from which the SNP parameters were

estimated which gives rise to a nuisance: The SNP density evaluated at some of these values

can be smaller than the smallest value that the log function can evaluate which tends to

destabilize EMM optimizations. The fix is to replace the SNP density by

f ∗(y|x, θ) =
{P2 [ R−1

x (y − µx), x ] + ǫ0}nM(y|µx, Σx)∫
[P(s, x)]2φ(s) ds + ǫ0

where the user sets the value ǫ0 > 0; effectively, P2(z, x) + ǫ0 replaces P2(z, x) throughout

the code and all computations are affected: estimation, moments, plots, and simulations.
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Lu Lg Lr Lp Kz Iz Kx Ix pρ sn BIC HQ AIC

1 0 0 1 0 0 0 0 3 1.39760 1.40969 1.40445 1.40119
2 0 0 1 0 0 0 0 4 1.39699 1.41312 1.40613 1.40179
3 0 0 1 0 0 0 0 5 1.39689 1.41705 1.40832 1.40289
4 0 0 1 0 0 0 0 6 1.39392 1.42214 1.40991 1.40231

1 0 1 1 0 0 0 0 4 1.36600 1.38213 1.37514 1.37080
1 0 2 1 0 0 0 0 5 1.35263 1.37280 1.36406 1.35863
1 0 3 1 0 0 0 0 6 1.33329 1.35748 1.34700 1.34048
1 0 4 1 0 0 0 0 7 1.33050 1.35872 1.34649 1.33889

1 0 3 1 4 0 0 0 10 1.30107 1.34139 1.32392 1.31306
1 0 3 1 5 0 0 0 11 1.30107 1.34542 1.32621 1.31426
1 0 3 1 6 0 0 0 12 1.29634 1.34473 1.32377 1.31073

1 0 3 1 4 0 1 0 15 1.29407 1.35456 1.32835 1.31205
1 0 3 1 4 0 2 0 20 1.28966 1.37031 1.33537 1.31364

1 1 1 1 0 0 0 0 5 1.32781 1.34797 1.33923 1.33380

1 1 1 1 4 0 0 0 9 1.29425 1.33054 1.31482 1.30504

1 1 1 1 4 0 1 0 14 1.29109 1.33475 1.32309 1.30788

Table 2. Optimized Likelihood and Model Selection Criteria.

We have found ǫ0 = 0.001 to be a reasonable value.

3.2 Model Selection

Some conventional model selection criteria are the Schwarz criterion, the Hannan-Quinn

criterion, and the Akaike information criterion. The Schwarz Bayes information criterion

(Schwarz, 1978) is computed as

BIC = sn(θ̂) + (1/2)(pρ/n) log(n)

with small values of the criterion preferred. The criterion rewards good fits as represented

by small sn(θ̂) but uses the term (1/2)(pρ/n) log(n) to penalize good fits gotten by means

of excessively rich parameterizations. The criterion is conservative in that it selects sparser

parameterizations than the Akaike AIC information criterion (Akaike, 1969), which uses the

penalty term pρ/n in place of (1/2)(pρ/n) log(n). Schwarz is also conservative in the sense

that it is at the high end of the permissible range of penalty terms in certain model selection

settings (Potscher, 1989). Between these two extremes is the Hannan and Quinn (Hannan,

1987) criterion

HQ = sn(θ̂) + (pρ/n) log[log(n)].
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Figure 2. Changes in Weekly $/DM Spot Exchange Rates, SNP-ARCH. The first panel

is a plot of the data, which are each Friday’s quote over the years 1975 to 1990 expressed as per-

centage change from the previous week. The second panel is a simulation from an SNP fit with

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 0, 0, 1, 0, 0, 0, 0); the third with (1,0,3,1,0,0,0,0), the fourth with

(1,0,3,1,4,0,0,0), and the fifth with (1,0,3,1,4,0,1,0). The parameters Lv and Lw are set to zero. The

parameters Iz, maxIz, and Ix have no effect when M = 1. The parameter maxKz = Kz in each

instance that Kx > 0.

Our suggestion is to use the Schwarz BIC criterion to move along an upward expansion path

until an adequate model is determined. BIC seems to do a good job of finding abrupt drops

in integrated squared error which is the point at which one would like to truncate in EMM

applications (Gallant and Tauchen, 1999; Coppejans and Gallant, 2002).

We can illustrate using data on the week to week percentage change in the US dollar to

German mark exchange rate for the years 1975 through 1990 from Bansal, Gallant, Hussey,

and Tauchen (1995), which are plotted in the upper panel of Figure 2. Computed BIC,

AIC, and HQ criteria for several SNP specifications are shown in Table 2. Using the first

block of the table, one first increases Lu to determine the Schwarz preferred VAR fit, which
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Figure 3. Changes in Weekly $/DM Spot Exchange Rates, SNP-GARCH. The first panel

is a plot of the data, which are each Friday’s quote over the years 1975 to 1990 expressed as per-

centage change from the previous week. The second panel is a simulation from an SNP fit with

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 0, 0, 1, 0, 0, 0, 0); the third with (1,1,1,1,0,0,0,0), the fourth with

(1,1,1,1,4,0,0,0), and the fifth with (1,1,1,1,4,0,1,0). The parameters Lv and Lw are set to zero. The

parameters Iz, maxIz, and Ix have no effect when M = 1. The parameter maxKz = Kz in each

instance that Kx > 0.

corresponds to Lu = 1. The value Lp = 1 shown in the table is inoperative because Kx = 0.

The convention that Lp > 0 regardless of the value of Kx was adopted for programming

convenience. Next one increases Lr to determine the Schwarz preferred ARCH fit, which

corresponds to Lu = 1 and Lr = 3. Then Kz is increased to determine the Schwarz preferred

semiparametric ARCH, which is Lu = 1, Lr = 3, and Kz = 4. Experience has taught us

never to consider a value of Kz < 4. Lastly, increase Kx to determine if a fully nonlinear

specification is called for. In this case BIC suggests that the answer is no.

The last lines of Table 2 are computations for GARCH specifications using Lg = 1 and

Lr = 1 . The specification preferable to Lg = 0 and Lr = 3, which was the Schwarz preferred
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Gaussian ARCH model. Trying, as above, Kz = 4, we find that Lu = 1, Lg = 1, Lr = 1,

and Kz = 4 is the Schwarz preferred semiparametric GARCH model. Again as above, we

increase Kx to determine if a fully nonlinear specification is called for; BIC suggests that the

answer is no. We terminate with the Schwarz preferred model

(Lu, Lg, Lr, Lp, Kz, Iz, Kx, Ix) = (1, 1, 1, 1, 4, 0, 0, 0)

with pρ = 9 (and pθ = 10) at a saturation ratio of (820)/9=91 observations per parameter.

The parameters Lv and Lw have been set to zero. The parameters Iz, maxIz, and Ix have

no effect when M = 1. The parameter maxKz = Kz in each instance that Kx > 0.

This model selection strategy has the advantage of generating an expanding sequence

of interesting models, each of which is Schwarz preferred within its class. This is a con-

siderable aid to interpreting results in applications. However, the strategy does not nec-

essarily produce the overall Schwarz preferred model. One would have to examine fits for

(Lu, Lg, Lr, Lp, Kz, Iz, Kx, Ix) taking all values over a large grid to to find the overall Schwarz

preferred model. In our work we explore sub branches of the upward selection tree as a pre-

caution against missing a substantially better model. We also recompute the final fit from

several nearby nodes of the selection tree to be sure that we are not stuck on a local mini-

mum. The ability use start values from any specification, subsetted or not, is a new feature

in Version 9.0. The only restriction is that one cannot change the dimension of the time

series M when moving from one specification to another.

Simulations from each of the Schwarz preferred ARCH class of models along the expansion

path are shown in the lower panels of Figure 2. Simulations from each of the Schwarz

preferred GARCH class of models along the expansion path are shown in the lower panels

of Figure 3. As seen from the figures, there are readily apparent qualitative differences in

these models.

In this illustration, the values of Iz and Ix are irrelevant because the data is univariate.

For multivariate applications, put Iz and Ix to zero (to eliminate all interactions initially),

and determine Kz and Kx as above. Then use the Schwarz criterion to see if interactions need

to be included; that is, if Iz and Ix need to be increased. Be mindful of maxKz and maxIz in

multivariate applications. Initially one should set maxKz = maxIz = Kz. One should only
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try specifications with maxKz < Kz and maxIz = Kz < Kz late in the specification search

or at least not before Kz = 6 is reached.

This model selection strategy is not completely satisfactory because the Schwarz criterion

seems to be both too conservative along some dimensions and too agressive along others

(Fenton and Gallant,1996). It has a tendency to prefer models with Kx = 0 when there

is good evidence that Kx > 0 might be more reasonable. On the other hand, it has a

tendency to drive Kz unreasonably large in some time series applications. For data from

financial markets, one might be well advised to scrutinize models with Kz > 6 carefully.

See, in this connection, the following applied papers: Gallant and Tauchen (1989); Hussey

(1989), Tauchen and Hussey (1991); Gallant, Hsieh, and Tauchen (1991, 1996); Gallant,

Hansen, and Tauchen (1990), Gallant, Rossi and Tauchen (1992, 1993). These papers recount

experience with number of alternative model selection procedures that did not work well,

notably Akaike’s (1969) criterion, the Brock, Dechert, and Scheinkman (1987) statistic, and

upward likelihood ratio testing. The tentative recommendation is to consider a battery of

specification tests based on model residuals when Kx = 0 seems unreasonable. Gallant,

Rossi and Tauchen (1992) is the most complete discussion of this method.

As mentioned earlier, without the spline transformation, simulations for data from finan-

cial markets seem to be too volatile. For this example, the statistics from the data, from the

preferred 11114000 fit, and from the 11114000 fit estimated with the spline transformation

at σtr = 2 and σtr = 1 are shown in Table 3. As seen in the table, simulations from the fit

with the spline imposed are closer to the values for the data.
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Spline

Statistic Data No Spline σtr = 2 σtr = 1

a0[1] -0.05161 -0.05815 -0.06017

a0[2] 0.04295 0.04841 0.04348

a0[3] 0.04028 0.04061 0.04224

a0[4] 0.11637 0.11561 0.11425

A(1,1) 1.00000 1.00000 1.00000

b0[1] 0.07282 0.08320 0.08783

B(1,1) 0.05833 0.05522 0.05643

R0[1] 0.15943 0.12217 0.10538

P(1,1) -0.37897 -0.34999 -0.35784

Q(1,1) -0.89804 -0.91796 -0.92280

sn 1.29426 1.29183 1.29064

bic 1.33055 1.32812 1.32693

mean 0.0551579 0.0279452 0.042668 0.0497616

std dev 1.49642 2.39219 1.74122 1.64478

variance 2.23926 5.72258 3.03184 2.70531

skewness 0.336136 -0.0104977 0.195555 0.221971

kurtosis 3.15683 107.77 6.69258 5.17968

no. obs. 834 100834 100834 100834

minimum -7.46218 -95.1443 -20.7219 -16.8238

5th percentile -2.23933 -2.84253 -2.58987 -2.47018

25th percentile -0.70021 -0.787851 -0.759155 -0.741107

50th percentile 0.0126643 0.025511 0.0314289 0.0345291

75th percentile 0.817671 0.815992 0.795872 0.790886

95th percentile 2.5071 2.97132 2.76759 2.66638

maximum 8.22484 77.851 19.4012 15.1295

Table 3. Effect of the Spline Transformation. Estimates and statistics from

simulations for the 11114000 model estimated with and without a spline transformation.
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The plots and specification search discussed thus far do not impose the spline transform

nor does the walk through example in the next section. When this Guide is revised, we shall

most likely impose it.

4 Fitting SNP Models: A Walk Through Example

The C++ code that implements the SNP methodology, in addition to facilitating model

estimation, makes it easy to retrieve residuals, predicted conditional means, and predicted

conditional variances. These statistics are useful for diagnostic testing, model evaluation,

forecasting, and related purposes. In addition, the code provides the ordinates of the SNP

conditional density over a rectangular grid of points, which is useful for plotting purposes

and for performing numerical integration against the SNP conditional density. Finally, it

can generate Monte Carlo simulated realizations of arbitrary length from the SNP density,

a capability with a variety of applications.

4.1 Fitting Strategy

As discussed in Section 3, the model selection strategy entails moving upward along an

expansion path. The fitted SNP models becomes more richly parameterized at each level

along the path. The expansion tentatively stops when the best model under the Schwarz

criterion is obtained. One might then subject the Schwarz preferred model to a battery

of specification tests on the conditional first and second moments. Often, but not always,

further expansion of the model is needed in order to achieve satisfactory performance on the

diagnostics.

Experience suggests that care is needed in fitting the SNP model at any particular level

along the expansion path. Estimates at one level provide start values for the next, so the

user should be cautious of hitting a local optimum at any level. Among other things, a false

optimum could adversely affect computations at all subsequent levels in the path.

The software is thus designed to facilitate the process of checking for a local optimum, so

that the user can have reasonable confidence in the computations before proceeding to the

next level. On a single run, the program is capable of performing a wave of optimizations at

start values read in from various files. At each optimization, the program randomly perturbs
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the start values in proportion to user selected scale factors and passes them to the optimizer

which performs a few iterations to obtain a preliminary fit. This is repeated a number of

times that the user selects. The best of these preliminary fits is retained and passed to the

optimizer for iteration to a minimum.

In typical practice, between ten and twenty waves of runs, with twenty or so optimizations

within each wave, might be performed to compute the SNP model at a particular level before

proceeding to the next. The distributed code contains a file control.tpl that defines a set

of runs that has worked well for us. In making the decision as to whether to accept the

computations at one level and proceed to the next, the user should look for convergence

to the same overall optimum from several start values. This agreement can sometimes be

difficult to obtain for large models, and near the end of the expansion path the user might

simply have to accept the best computed objective function value out of a wave of fits. In

numerical experiments, we have found that, near the end of the path, this probably does

little harm as the various optima differ only in their implications for extreme tail behavior.

Table 2 provides an example of a computed expansion path. Each level, that is, row

in the table, was computed using the software in the above-described manner. In the next

subsection we lead the reader through the steps of computing a similar table.

4.2 Using the Program

The purpose of this subsection is to walk the user through an application. The time series

that we use for illustration is the weekly US dollar to German mark exchange rate series

described in Subsection 3.2 and plotted in the upper panel of Figure 2. Data, code, and

output for this application come with the distribution.

Program control is through a parameter file, for which we shall use naming conventions

that describe the model specification within it, and another text file, control.dat.

The program loops through each line of control.dat and uses what it finds there to control

its operation. The format is five blank separated fields. They are two strings specifying (1)

the input parmfile filename and (2) the output filename, two floats denoted (3) fnew and (4)

fold, and two integers denoted (5) nstart and (6) jseed. An example is

control.dat
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10010000.in0 10010000.fit 0.0e+0 0.0e+0 0 454589

For this example, the input parmfile is 10010000.in0 and the output parmfile is 10010000.fit.

The fields fnew and fold give the magnitudes by which the parameter values in the parmfile

are to be randomly perturbed to generate starting values; nstart states how many times this

is to be done, and jseed specifies the initial seed so that results can be replicated. By coding

0 in every numeric and integer field except jseed, we have specified that no perturbation

is to be done (because, as explained below, parmfile 1001000.in0 specifies a VAR and the

negative of a VAR likelihood is convex). We describe the perturbation parameters in more

detail after we have described the contents of the parmfiles 10010000.in0 and 10010000.fit.

The input parmfile of which 10010000.in0 just below is an example sets all program

parameters and options. When starting a project it is easiest to commence with a VAR,

as we are doing here, because the amount of information required for a VAR is minimal

and finding the optimum is assured. The distribution contains a copy of 10010000.in0 that

can be edited. Similarly, as estimation proceeds, output parmfiles are copied to new input

parmfiles that are edited to specify richer or alternative specifications or to specify tasks

such as simulation. There is no need to ever construct a parmfile from scratch.

10010000.in0

OPTIMIZATION DESCRIPTION (required)
SpotRate Project name, pname, char*

9.0 SNP version, defines format of this file, snpver, float
15 Maximum number of primary iterations, itmax0, int

385 Maximum number of secondary iterations, itmax1, int
1.00e-08 Convergence tolerance, toler, float

1 Write detailed output if print=1, int
0 task, 0 fit, 1 res, 2 mu, 3 sig, 4 plt, 5 sim, 6 usr, int
0 Increase simulation length by extra, int

3.00e+00 Scale factor for plots, sfac, float
457 Seed for simulations, iseed, int
50 Number of plot grid points, ngrid, int
0 Statistics not computed if kilse=1, int

DATA DESCRIPTION (required)
1 Dimension of the time series, M, int

834 Number of observations, n, int
14 Provision for initial lags, must have 3<drop<n, int
0 Condition set for plt is mean if cond=0, it-th obs if it, int
0 Reread, do not use data from prior fit, if reread=1, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 6 5 Read these white space separated fields, fields, intvec
TRANSFORM DESCRIPTION (required)

0 Normalize using start values if useold=1 else compute, int
0 Make variance matrix diagonal if diag=1, int
0 Spline transform x if squash=1, logistic if squash=2, int
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4.00e+00 Inflection point of transform in normalized x, inflec, float
POLYNOMIAL START VALUE DESCRIPTION (required)

0 Degree of the polynomial in z, Kz, int
0 Degree of interactions in z, Iz, int

0.00e+00 Zero or positive to get positive SNP for EMM, eps0, float
1 Lags in polynomial part, Lp, int
0 Max degree of z polynomial that depends on x, maxKz, int
0 Max interaction of z polynomial that depends on x, maxIz, int
0 Degree of the polynomial in x, Kx, int
0 Degree of the interactions x, Ix, int

MEAN FUNCTION START VALUE DESCRIPTION (required)
1 Lags in VAR part, Lu, int
1 Intercept if icept=1, int

VARIANCE FUNCTION START VALUE DESCRIPTION (required)
0 Lags in GARCH (autoregressive) part, may be zero, Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
0 Lags in ARCH (moving average) part, may be zero, Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Lags in leverage effect of GARCH, may be zero, Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Lags in additive level effect, may be zero, Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

How the parmfile parameters and switches correspond to the SNP parameters in Section 3

can be inferred for the most part from their description in the parmfile. The most relevant

are Lu = Lu, Lg = Lg, Lr = Lr, Lp = Lp, Kz = Kz, Iz = Iz, maxKz = maxKz, maxIz

= maxIz, Kx = Kx, and Ix = Ix. We proceed now to the details.

The first concern is to describe the data so that it can be read in. This is done in the

DATA DESCRIPTION block. Setting M and n is straightforward; M is the dimension of yt

and n is the total number of observations to be read in. The value of n can be smaller than

the total number of observations, in which case those left over at the end will not be read.

Drop is the number of observations at the beginning of the series to skip to produce initial

lags; this should be larger than any value of Lu, Lr + Lu, or Lp envisaged in any fit. If drop

is set too small, the missing lags are initialized to zero. If drop is 3 or less, the program

terminates. The parameter n just above refers to the physical data and is not influenced

by drop; obviously drop must be considerably less than n for running the program to be a

sensible activity. The switch cond controls the conditioning information for plotting; one

can condition either on the mean by putting it = 0 or on the t-th observation in the data by

putting it = t. The easiest way to condition on values other than these two options is to

add them as observations to the end of the data set after estimation is finished, increase n,

and set it = n. The switch reread has not been implemented yet; presently the data are read

afresh for each line of control.dat. The string dsn specifies the name of the file containing the
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data. Lastly, one has fields. One must use care here because errors can cause the program

to crash with unhelpful diagnostic messages, if any at all. The presumptions is that the data

are arranged in a table with time t as the row index and the elements of yt in the columns.

The blank separated numbers here specify the fields (columns) of the data in the order in

which they are to be assigned to the elements y1t, y2t, . . . , yMt of yt. It does not hurt to have

too many fields listed as we have done here. The disaster is when there are too few (less

than M) or one of them is larger than the actual number of columns in the data set. A few

of the first and last values of yt read in are printed in detail.dat which should be checked to

make sure the data was read correctly.

If the data are not arranged in the presumed form, or some preprocessing is needed,

the object (i.e. class) that reads the data can be changed. It is class datread presented

in file snpusr.h and coded in file snpusr.cpp. It is polymorphic via inheritance from class

datread base which is presented in file snp base.h. One codes a substitute class that inherits

from datread base, adds its description to snpusr.h and defines it (codes it) in snpusr.cpp,

and swaps names in the typedef that defines datread type in snpusr.h. We shall give related

examples later but it is hard to imagine an application where it would be easier to code an

alternative to datread than to generate a new data set that satisfies the conventions using

R, SAS, or Excel.

In the OPTIMIZATION DESCRIPTION block, SpotRate is a user chosen label. The

version number 9.0 in the second line is obligatory; itmax0 and itmax1 are primary and

secondary iteration limits that control the optimizer; toler is a convergence tolerance that

is passed to the optimizer. If the switch print is set to 1, detailed output reporting the

interpretation of the parmfile and progress of the computations is printed to a file detail.dat.

Task defines what is to be computed and what is to be written to the output file specified

as the second string of the line of control.dat being processed. If task = 0, optimization

is performed and a new parameter file is written to the output file that can be used to

move from a sparse parameterization to a richer one (or conversely) or to use as an input

parmfile for simulation, plotting, or moment computations. The other choices are: task = 1,

residuals used for diagnostics are written to the output file; task = 2, the mean of the one-

step-ahead conditional density is computed at each xt−1 in the sample and written to the
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output file; task = 3, the upper triangle of the variance-covariance matrix of the one-step-

ahead conditional density is computed at each xt−1 in the sample and written to the output

file; task = 4, plot data is written to the output file; and task = 5, a simulation is written to

the output file that consists of the data up to drop, and simulations up to n + extra. The

last, task = 6, points to an optional user written task; this is discussed in Section 5.

The parameter sfac determines the plotting increment; 3.0 is usually about right. The

parameter ngrid is the number of plot points for a graphic. As distributed, coding task = 6

will generate a Gauss-Hermite quadrature rule that can be used for numerical integration over

an SNP conditional density determined by the same conditioning set that the plot feature

(task = 4) uses in which case ngrid determines the order of the Gauss-Hermite quadrature

rule. iseed is the seed for a simulation.

When task = 0 an output parmfile contains descriptive statistics at the end that facilitate

interpretation of results. This entails computation and inversion of the information matrix,

which is not needed for any other purpose and can take considerable time. Setting kilse=1

stops this computation from being performed.

In the TRANSFORM DESCRIPTION block, the switch useold determines the initial

normalization of the data. If useold = 1 and a TRANSFORM START VALUES block is

present, the values for ȳ and S found there are used as the initial location-scale transformation

ỹt → yt. If the block is not there, then no initial transformation is done. Transformation

stabilizes computations without disturbing input and output conventions, so there is little

reason to try to defeat it. Controlling it by means of the TRANSFORM START VALUES

block is mainly only useful in connection with EMM or when the data being fed to SNP

for some similar purpose is not that corresponding to the estimates in the parmfile. Setting

diag = 1 puts the off diagonal elements of S to zero before normalization which can be an aid

in interpreting results. Our example is univariate, so putting S to a diagonal is irrelevant.

Setting spline to 1 selects the spline transformation xt → x̂t, 2 the logistic transformation,

and 0 no transformation. The value inflec is σtr of Section 3. Centered and scaled data yt

within the interval (−σtr, σtr) are not affected by the transformation; refer to Figure 1.

The FUNCTION START VALUE DESCRIPTION blocks provide the information to in

read values for θ if the corresponding FUNCTION START VALUES block is present or to
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set them according to predefined conventions if not. Here FUNCTION stands for one of

POLYNOMIAL (afunc), MEAN FUNCTION (ufunc), or VARIANCE FUNCTION (rfunc).

Other than for the initial VAR fit, these blocks are written to the parmfile by a previous

run of SNP and there is no need to edit them. Doing so anyway will usually cause an error

that terminates the program. What one does edit are the FUNCTION DESCRIPTION

blocks. These complete the description of the model in terms of increments (positive values)

or decrements (negative values) to the starting model. (Also, an intercept can be added or

deleted from the location function ufunc and the type of one of the BEKK matrices in rfunc

can be changed.) Increments and decrements can act to augment or reduce the model. The

program imputes values for θ as specified by the increments and decrements from the values

of θ read in (or imputed) as described above. For increments imputation is straightforward:

old values remain the same and the incremental parameters are set to zero. For decrements,

decisions are reasonable but of necessity arbitrary. Exactly what was done can be determined

by examining the file detail.dat.

The parameter eps0 in the POLYNOMIAL START VALUE DESCRIPTION block can

be set to a small positive value if the SNP fit is to be used in connection with EMM as

discussed at the end of Subsection 3.1; although it does no harm to do so in general for eps0

set to about 1.0e-05 or less.

In the example, 10010000.in0, we set Lu=1 and everything else to zero. There are are no

START VALUES blocks, so all elements of the vector θ are imputed. In fact, they all get

set to zero except for the constant term of P(y, x) which is set to one.

Upon running the program one gets:

10010000.fit

PARMFILE HISTORY (optional)
#
# This parmfile was written by SNP Version 9.0 using the following line from
# control.dat, which was read as char*, char*, float, float, int, int
# ---------------------------------------------------------------------------
# input_file output_file fnew fold nstart jseed
# ------------ ------------ --------- --------- --------- -------------------
# 10010000.in0 10010000.fit 0.00e+000 0.00e+000 0 100542
# ---------------------------------------------------------------------------
# If fnew is negative, only the polynomial part of the model is perturbed.
# Similarly for fold.
#
OPTIMIZATION DESCRIPTION (required)

SpotRate Project name, pname, char*
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9.0 SNP version, defines format of this file, snpver, float
15 Maximum number of primary iterations, itmax0, int

385 Maximum number of secondary iterations, itmax1, int
1.00e-008 Convergence tolerance, toler, float

1 Write detailed output if print=1, int
0 task, 0 fit, 1 res, 2 mu, 3 sig, 4 plt, 5 sim, 6 usr, int
0 Increase simulation length by extra, int

3.00e+000 Scale factor for plots, sfac, float
457 Seed for simulations, iseed, int
50 Number of plot grid points, ngrid, int
0 Statistics not computed if kilse=1, int

DATA DESCRIPTION (required)
1 Dimension of the time series, M, int

834 Number of observations, n, int
14 Provision for initial lags, must have 3<drop<n, int
0 Condition set for plt is mean if cond=0, it-th obs if it, int
0 Reread, do not use data from prior fit, if reread=1, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
TRANSFORM DESCRIPTION (required)

0 Normalize using start values if useold=1 else compute, int
0 Make variance matrix diagonal if diag=1, int
0 Spline transform x if squash=1, logistic if squash=2, int

4.00e+000 Inflection point of transform in normalized x, inflec, float
POLYNOMIAL START VALUE DESCRIPTION (required)

0 Degree of the polynomial in z, Kz, int
0 Degree of interactions in z, Iz, int

0.00e+000 Zero or positive to get positive SNP for EMM, eps0, float
1 Lags in polynomial part, Lp, int
0 Max degree of z polynomial that depends on x, maxKz, int
0 Max interaction of z polynomial that depends on x, maxIz, int
0 Degree of the polynomial in x, Kx, int
0 Degree of the interactions x, Ix, int

MEAN FUNCTION START VALUE DESCRIPTION (required)
1 Lags in VAR part, Lu, int
1 Intercept if icept=1, int

VARIANCE FUNCTION START VALUE DESCRIPTION (required)
0 Lags in GARCH (autoregressive) part, may be zero, Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
0 Lags in ARCH (moving average) part, may be zero, Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Lags in leverage effect of GARCH, may be zero, Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Lags in additive level effect, may be zero, Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL DESCRIPTION (optional)
0 Increment or decrement to Kz, int
0 Increment or decrement to Iz, int

0.00e+00 Increment or decrement to eps0, float
0 Increment or decrement to Lp, int
0 Increment or decrement to maxKz, int
0 Increment or decrement to maxIz, int
0 Increment or decrement to Kx, int
0 Increment or decrement to Ix, int

MEAN FUNCTION DESCRIPTION (optional)
0 Increment or decrement to Lu, int
0 Increment or decrement to icept, int

VARIANCE FUNCTION DESCRIPTION (optional)
0 Increment or decrement to GARCH lag Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
0 RIncrement or decrement to ARCH lag Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
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0 Increment or decrement to leverage effect lag Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Increment or decrement to level effect lag Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL START VALUES FOR A (optional)
1.00000000000000000e+000 0

MEAN FUNCTION START VALUES FOR b0 (optional)
5.08917192881666700e-004 1

MEAN FUNCTION START VALUES FOR B (optional)
2.22361342057764730e-002 1

VARIANCE FUNCTION START VALUES FOR Rparms (optional)
1.00252755384483170e+000 1

TRANSFORM START VALUES FOR mean (optional)
5.51578971010593040e-002

TRANSFORM START VALUES FOR variance (optional)
2.23657818199155180e+000

SUMMARY STATISTICS (optional)
Fit criteria:

Length rho = 3
Length theta = 4
n - drop = 820
-2 ln likelihood = 2331.19914594 2.33119914593695380e+003
sn = 1.39760141 1.39760140643702260e+000
aic = 1.40119853 1.40119852873918080e+000
hq = 1.40445758 1.40445757663208150e+000
bic = 1.40969895 1.40969894852759590e+000

Index theta std error t-statistic descriptor
1 1.00000 0.00000 0.00000 A(1,1) 0 0
2 0.00051 0.03559 0.01430 b0[1]
3 0.02224 0.02697 0.82446 B(1,1)
4 1.00253 0.01584 63.29936 R0[1]

For estimation of this SNP specification by MCMC, restrict the following
elements of theta to be positive: 4

Here we see the one exception to the remark that the FUNCTION START VALUES

blocks should not be edited. Note the 1’s to the right of the parameter values. To fix a value

of the parameter at the value shown in the FUNCTION START VALUES block so that the

optimizer will not change it, change that 1 to a 0. Also change the parameter value to what

is required if necessary. Note also that the constant term of P(z|ax) is fixed at 1.0. in the

block labeled POLYNOMIAL START VALUES for A; don’t ever change that line.

The remark about positivity restrictions at the bottom of the file is irrelevant for our

purposes because the SNP package uses a BFGS hill climber. If simulated annealing or some

other MCMC optimizer is used, these constraints may need to be imposed.

At this point, we have the wherewithal to make some progress. We shall now move

upward to a (Lu, Lg, Lr, Lp, Kz, Iz, Kx, Ix) = (1, 1, 1, 1, 4, 0, 0, 0) parameterization by copying

the file 10010000.fit to the file 11114000.in0 and incrementing Kz by 4 in the POLYNOMIAL

DESCRIPTION block of 11114000.in0 and Lg and Lr by 1 in the VARIANCE FUNCTION

30



DESCRIPTION block, leaving the rest of the parmfile alone, as follows:

11114000.in0

POLYNOMIAL DESCRIPTION (optional)
4 Increment or decrement to Kz, int
0 Increment or decrement to Iz, int

0.00e+00 Increment or decrement to eps0, float
0 Increment or decrement to Lp, int
0 Increment or decrement to maxKz, int
0 Increment or decrement to maxIz, int
0 Increment or decrement to Kx, int
0 Increment or decrement to Ix, int

VARIANCE FUNCTION DESCRIPTION (optional)
1 Increment or decrement to Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
1 Increment or decrement to Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Increment or decrement to Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Increment or decrement to Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

We edit control.dat to read:

control.dat

11114000.in0 11114000.f00 0.0e-0 0.0e-0 00 011677
11114000.in0 11114000.f01 1.0e-5 0.0e-5 25 011677
11114000.in0 11114000.f02 0.0e-5 1.0e-5 25 011677
11114000.in0 11114000.f03 -1.0e-5 1.0e-5 25 011677
11114000.in0 11114000.f04 1.0e-5 -1.0e-5 25 011677
11114000.in0 11114000.f05 1.0e-5 1.0e-5 25 011677
11114000.in0 11114000.f06 1.0e-4 0.0e-4 25 011677
11114000.in0 11114000.f07 0.0e-4 1.0e-4 25 011677
11114000.in0 11114000.f08 -1.0e-4 1.0e-4 25 011677
11114000.in0 11114000.f09 1.0e-4 -1.0e-4 25 011677
11114000.in0 11114000.f10 1.0e-4 1.0e-4 25 011677
11114000.in0 11114000.f11 1.0e-3 0.0e-3 25 011677
11114000.in0 11114000.f12 0.0e-3 1.0e-3 25 011677
11114000.in0 11114000.f13 -1.0e-3 1.0e-3 25 011677
11114000.in0 11114000.f14 1.0e-3 -1.0e-3 25 011677
11114000.in0 11114000.f15 1.0e-3 1.0e-3 25 011677
11114000.in0 11114000.f16 1.0e-2 0.0e-2 25 011677
11114000.in0 11114000.f17 0.0e-2 1.0e-2 25 011677
11114000.in0 11114000.f18 -1.0e-2 1.0e-2 25 011677
11114000.in0 11114000.f19 1.0e-2 -1.0e-2 25 011677
11114000.in0 11114000.f20 1.0e-2 1.0e-2 25 011677
11114000.in0 11114000.f21 1.0e-1 0.0e-1 25 011677
11114000.in0 11114000.f22 0.0e-1 1.0e-1 25 011677
11114000.in0 11114000.f23 -1.0e-1 1.0e-1 25 011677
11114000.in0 11114000.f24 1.0e-1 -1.0e-1 25 011677
11114000.in0 11114000.f25 1.0e-1 1.0e-1 25 011677
11114000.in0 11114000.f26 1.0e+0 0.0e+0 25 011677
11114000.in0 11114000.f27 0.0e+0 1.0e+0 25 011677
11114000.in0 11114000.f28 -1.0e+0 1.0e+0 25 011677
11114000.in0 11114000.f29 1.0e+0 -1.0e+0 25 011677
11114000.in0 11114000.f30 1.0e+0 1.0e+0 25 011677
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We can now describe the file control.dat more completely. The file control.dat determines

which parmfiles are read and how starting values are to be used. For each line in control.dat,

the program reads from the parmfile designated by the filename in the first field of the line.

The filename in the second field of the line determines the file to which results are written.

Starting values of parameters that are zero are replaced by uniform[-1,1] random numbers

times the value in third field, fnew. The starting values of the parameters that are not

zero are multiplied by the quantity one plus a uniform[-1,1] random number times the forth

field, fold. These start values are passed to the optimizer and iterated itmax0 times, unless

iterations are terminated earlier by the tolerance check, toler. If fnew is negative then only

the polynomial part of the model is perturbed. Similarly for fold. The fifth field, nstart, is

the number of times this process is to be repeated for that line. The sixth field, jseed, is the

seed for the random number generator. After nstart repetitions, the best result obtained is

passed to the optimizer and iterated itmax1 times, unless terminated earlier by the tolerance

check. The result of the final optimization is written to the output filename specified in the

second field.

We could have progressed sequentially by first fitting a (Lu, Lg, Lr, Lp, Kz, Iz, Kx, Ix) =

(1, 1, 1, 1, 0, 0, 0, 0) model and then a (Lu, Lg, Lr, Lp, Kz, Iz, Kx, Ix) = (1, 1, 1, 1, 4, 0, 0, 0)

model as was done in constructing Table 2. There are risks to hanging at a local mini-

mum when doing this because the GARCH parameters can hang at the values of the thin

tailed (1,1,1,1,0,0,0,0) model. The problem is that both GARCH and Kz > 0 have the effect

of thickening tails and the parameter values of a can trade off against those of Q and P .

A simultaneous fit provides some measure of protection against this trade-off causing the

optimizer to hang at a local minimum.

As computations progress, a line summarizing them is written to the file summary.dat.

For this run we get

summary.dat

SNP Restart
--------------------------------------------------------------------------------

pname output_file fitted_model p opt iter obj_func bic
--------------------------------------------------------------------------------

SpotRate 11114000.f00 11s1s0s0s1400000 9 0 10 1.34726 1.38355*
SpotRate 11114000.f01 11s1s0s0s1400000 9 0 11 1.34726 1.38355*
SpotRate 11114000.f02 11s1s0s0s1400000 9 0 17 1.32701 1.36330*
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SpotRate 11114000.f03 11s1s0s0s1400000 9 0 17 1.32701 1.36330
SpotRate 11114000.f04 11s1s0s0s1400000 9 0 12 1.34726 1.38355
SpotRate 11114000.f05 11s1s0s0s1400000 9 0 17 1.32701 1.36330*
SpotRate 11114000.f06 11s1s0s0s1400000 9 0 11 1.34726 1.38355
SpotRate 11114000.f07 11s1s0s0s1400000 9 0 20 1.32701 1.36330*
SpotRate 11114000.f08 11s1s0s0s1400000 9 0 20 1.32701 1.36330
SpotRate 11114000.f09 11s1s0s0s1400000 9 0 12 1.34726 1.38355
SpotRate 11114000.f10 11s1s0s0s1400000 9 0 19 1.32701 1.36330
SpotRate 11114000.f11 11s1s0s0s1400000 9 0 12 1.34726 1.38355
SpotRate 11114000.f12 11s1s0s0s1400000 9 0 19 1.32701 1.36330*
SpotRate 11114000.f13 11s1s0s0s1400000 9 0 19 1.32701 1.36330
SpotRate 11114000.f14 11s1s0s0s1400000 9 1 12 1.34726 1.38355
SpotRate 11114000.f15 11s1s0s0s1400000 9 0 40 1.29426 1.33055*
SpotRate 11114000.f16 11s1s0s0s1400000 9 1 12 1.34726 1.38355
SpotRate 11114000.f17 11s1s0s0s1400000 9 0 35 1.29426 1.33055*
SpotRate 11114000.f18 11s1s0s0s1400000 9 0 35 1.29426 1.33055
SpotRate 11114000.f19 11s1s0s0s1400000 9 1 12 1.34726 1.38355
SpotRate 11114000.f20 11s1s0s0s1400000 9 0 36 1.29426 1.33055
SpotRate 11114000.f21 11s1s0s0s1400000 9 1 12 1.34726 1.38355
SpotRate 11114000.f22 11s1s0s0s1400000 9 0 28 1.29426 1.33055
SpotRate 11114000.f23 11s1s0s0s1400000 9 0 28 1.29426 1.33055
SpotRate 11114000.f24 11s1s0s0s1400000 9 0 12 1.34726 1.38355
SpotRate 11114000.f25 11s1s0s0s1400000 9 0 30 1.29426 1.33055
SpotRate 11114000.f26 11s1s0s0s1400000 9 0 14 1.34726 1.38355
SpotRate 11114000.f27 11s1s0s0s1400000 9 0 26 1.29426 1.33055*
SpotRate 11114000.f28 11s1s0s0s1400000 9 0 26 1.29426 1.33055
SpotRate 11114000.f29 11s1s0s0s1400000 9 0 24 1.36566 1.40195
SpotRate 11114000.f30 11s1s0s0s1400000 9 0 24 1.29426 1.33055

The meaning of most fields are adequately conveyed by the header. Those that need some

explanation are the fields fitted model, opt, iter, and the asterisks to the right of entries in

the field BIC. The entry 11s1s0s0s1400000 means that the parameter settings were

(Lu, Lg, Qtype, Lr, Ptype, Lv, Vtype, Lw, Wtype, Lp, Kz, max Kz, Iz, max Iz, Kx, Ix)

= (1, 1, s, 1, s, 0, s, 0, s, 1, 4, 0, 0, 0, 0, 0).

The field labeled opt contains the termination code of the optimizer nlopt presented in

libscl.h if two digits and linesrch in libscl.h if one. A return code of 0 means that the line

search succeeded on a zero derivative condition and that the percentage change in toler

was satisfied. A return code of 1 is similar except that the line search could not find a

point better than the left end of the line. There are something on the order of 15 different

other termination codes for which see linesrch.cpp and nolpt.cpp. Traps for NaN’s and Inf’s

identify the most worrisome things that can go wrong. Termination codes that don’t produce

overly threatening warning messages are probably not a problem.

The iter field gives the sum of the number of the iterations of the best model from the

optimizations of the first round fits (as limited by itmax0) and the iterations from the second
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round polish (as limited by itmax1). What one really wants are the number of function

evaluations and the total over all iterations on random starts plus those of the second round

polish of the best of them. This can be found in detail.dat for both iter and the number of

function evaluations. The optimizer that we are using is new to us and seems to be very

economical of iterations and function evaluations relative to those we have used in the past.

It is beginning to seem that setting itmax0 = 15 is too large. One might be able to get away

with itmax0 = 5 which would shorten run times by about half.

This leaves the asterisk in the BIC field. That’s easy. The last line with an asterisk has

the smallest BIC if all models in a control.dat have the same specification and the smallest

value of obj func if not. Thus we copy 11114000.f27 to 11114000.fit to save it and again to

11114010v.in0 to get a parmfile that we can edit to expand further. Here is the former:

11114000.fit

PARMFILE HISTORY (optional)
#
# This parmfile was written by SNP Version 9.0 using the following line from
# control.dat, which was read as char*, char*, float, float, int, int
# ---------------------------------------------------------------------------
# input_file output_file fnew fold nstart jseed
# ------------ ------------ --------- --------- --------- -------------------
# 11114000.in0 11114000.f27 0.00e+000 1.00e+000 25 454589
# ---------------------------------------------------------------------------
# If fnew is negative, only the polynomial part of the model is perturbed.
# Similarly for fold.
#
OPTIMIZATION DESCRIPTION (required)

SpotRate Project name, pname, char*
9.0 SNP version, defines format of this file, snpver, float
15 Maximum number of primary iterations, itmax0, int

385 Maximum number of secondary iterations, itmax1, int
1.00e-008 Convergence tolerance, toler, float

1 Write detailed output if print=1, int
0 task, 0 fit, 1 res, 2 mu, 3 sig, 4 plt, 5 sim, 6 usr, int
0 Increase simulation length by extra, int

3.00e+000 Scale factor for plots, sfac, float
457 Seed for simulations, iseed, int
50 Number of plot grid points, ngrid, int
0 Statistics not computed if kilse=1, int

DATA DESCRIPTION (required)
1 Dimension of the time series, M, int

834 Number of observations, n, int
14 Provision for initial lags, must have 3<drop<n, int
0 Condition set for plt is mean if cond=0, it-th obs if it, int
0 Reread, do not use data from prior fit, if reread=1, int

dmark.dat File name, any length, no embedded blanks, dsn, string
4 Read these white space separated fields, fields, intvec
TRANSFORM DESCRIPTION (required)

0 Normalize using start values if useold=1 else compute, int
0 Make variance matrix diagonal if diag=1, int
0 Spline transform x if squash=1, logistic if squash=2, int
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4.00e+000 Inflection point of transform in normalized x, inflec, float
POLYNOMIAL START VALUE DESCRIPTION (required)

4 Degree of the polynomial in z, Kz, int
0 Degree of interactions in z, Iz, int

0.00e+000 Zero or positive to get positive SNP for EMM, eps0, float
1 Lags in polynomial part, Lp, int
0 Max degree of z polynomial that depends on x, maxKz, int
0 Max interaction of z polynomial that depends on x, maxIz, int
0 Degree of the polynomial in x, Kx, int
0 Degree of the interactions x, Ix, int

MEAN FUNCTION START VALUE DESCRIPTION (required)
1 Lags in VAR part, Lu, int
1 Intercept if icept=1, int

VARIANCE FUNCTION START VALUE DESCRIPTION (required)
1 Lags in GARCH (autoregressive) part, may be zero, Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
1 Lags in ARCH (moving average) part, may be zero, Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Lags in leverage effect of GARCH, may be zero, Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Lags in additive level effect, may be zero, Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL DESCRIPTION (optional)
0 Increment or decrement to Kz, int
0 Increment or decrement to Iz, int

0.00e+00 Increment or decrement to eps0, float
0 Increment or decrement to Lp, int
0 Increment or decrement to maxKz, int
0 Increment or decrement to maxIz, int
0 Increment or decrement to Kx, int
0 Increment or decrement to Ix, int

MEAN FUNCTION DESCRIPTION (optional)
0 Increment or decrement to Lu, int
0 Increment or decrement to icept, int

VARIANCE FUNCTION DESCRIPTION (optional)
0 Increment or decrement to GARCH lag Lg, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Qtype, char
0 Increment or decrement to ARCH lag Lr, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Ptype, char
0 Increment or decrement to leverage effect lag Lv, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Vtype, char
0 Increment or decrement to level effect lag Lw, int
s Coded ’s’,’d’,’f’ for scalar, diagonal, full, Wtype, char

POLYNOMIAL START VALUES FOR a0 (optional)
-5.16076965515111090e-002 1
4.29554878971911480e-002 1
4.02774315405815190e-002 1
1.16366622989738270e-001 1

POLYNOMIAL START VALUES FOR A (optional)
1.00000000000000000e+000 0

MEAN FUNCTION START VALUES FOR b0 (optional)
7.28194529718470680e-002 1

MEAN FUNCTION START VALUES FOR B (optional)
5.83255326811739850e-002 1

VARIANCE FUNCTION START VALUES FOR Rparms (optional)
1.59426597892471020e-001 1

-3.78958421916034740e-001 1
-8.98044691523147480e-001 1
TRANSFORM START VALUES FOR mean (optional)

5.51578971010593040e-002
TRANSFORM START VALUES FOR variance (optional)

2.23657818199155180e+000
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SUMMARY STATISTICS (optional)
Fit criteria:

Length rho = 9
Length theta = 10
n - drop = 820
-2 ln likelihood = 2158.82095597 2.15882095596669840e+003
sn = 1.29425717 1.29425716784574240e+000
aic = 1.30504853 1.30504853475221720e+000
hq = 1.31482568 1.31482567843091890e+000
bic = 1.33054979 1.33054979411746220e+000

Index theta std error t-statistic descriptor
1 -0.05161 0.03478 -1.48376 a0[1] 1
2 0.04296 0.03224 1.33255 a0[2] 2
3 0.04028 0.01866 2.15792 a0[3] 3
4 0.11637 0.01830 6.35780 a0[4] 4
5 1.00000 0.00000 0.00000 A(1,1) 0 0
6 0.07282 0.05159 1.41142 b0[1]
7 0.05833 0.03542 1.64655 B(1,1)
8 0.15943 0.03705 4.30340 R0[1]
9 -0.37896 0.03683 -10.28892 P(1,1) s
10 -0.89804 0.01891 -47.47874 Q(1,1) s

For estimation of this SNP specification by MCMC, restrict the following
elements of theta to be positive: 8 9 10

One might note above that Q(1,1) and P(1,1) get squared in the BEKK formula so that

their signs are irrelevant. Also note that the sum of their squares is less than one.

To move on further, we edit the POLYNOMIAL DESCRIPTION block of 11114010.in0

as follows:

POLYNOMIAL DESCRIPTION (optional)
0 Increment or decrement to Kz, int
0 Increment or decrement to Iz, int

0.00e+00 Increment or decrement to eps0, float
0 Increment or decrement to Lp, int
4 Increment or decrement to maxKz, int
0 Increment or decrement to maxIz, int
1 Increment or decrement to Kx, int
0 Increment or decrement to Ix, int

Note particularly the increment to maxKz. (We tried a specification as above with Lv=1

but the estimate of V(1,1) was 1.0e-5 with a large standard error.)

Running this specification we have:

SNP Restart
-------------------------------------------------------------------------------

pname output_file fitted_model p opt iter obj_func bic
-------------------------------------------------------------------------------

SpotRate 11114010.f00 11s1s0s0s1440010 14 0 20 1.29277 1.34923*
SpotRate 11114010.f01 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f02 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f03 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f04 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f05 11s1s0s0s1440010 14 0 25 1.29277 1.34923
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SpotRate 11114010.f06 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f07 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f08 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f09 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f10 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f11 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f12 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f13 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f14 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f15 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f16 11s1s0s0s1440010 14 0 24 1.29277 1.34923
SpotRate 11114010.f17 11s1s0s0s1440010 14 0 22 1.29277 1.34923
SpotRate 11114010.f18 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f19 11s1s0s0s1440010 14 0 22 1.29277 1.34923
SpotRate 11114010.f20 11s1s0s0s1440010 14 0 25 1.29277 1.34923
SpotRate 11114010.f21 11s1s0s0s1440010 14 0 23 1.29277 1.34923
SpotRate 11114010.f22 11s1s0s0s1440010 14 0 21 1.29277 1.34923
SpotRate 11114010.f23 11s1s0s0s1440010 14 0 22 1.29277 1.34923
SpotRate 11114010.f24 11s1s0s0s1440010 14 0 26 1.29277 1.34923
SpotRate 11114010.f25 11s1s0s0s1440010 14 0 29 1.29109 1.34755*
SpotRate 11114010.f26 11s1s0s0s1440010 14 0 32 1.29277 1.34923
SpotRate 11114010.f27 11s1s0s0s1440010 14 0 38 1.29283 1.34928
SpotRate 11114010.f28 11s1s0s0s1440010 14 0 34 1.31779 1.37425
SpotRate 11114010.f29 11s1s0s0s1440010 14 0 40 1.29277 1.34923
SpotRate 11114010.f30 11s1s0s0s1440010 14 0 73 1.31399 1.37044

In this instance 11114010.f25 is the best fit. We copy 11114010.f25 to 11114010.fit.

We next edit the Schwarz preferred SNP-GARCH fit (see Subsection 3.2) 11114000.fit by

putting task to 1, 2, 3, 4, 5 successively, saving the result as files 11114000.in1, 11114000.in2,

11114000.in3, 11114000.in4, 11114000.in5 respectively. As an example, here is the OPTI-

MIZATION DESCRIPTION block of 11114000.in4.

11114000.in4

OPTIMIZATION DESCRIPTION (required)
SpotRate Project name, pname, char*

9.0 SNP version, defines format of this file, snpver, float
15 Maximum number of primary iterations, itmax0, int

385 Maximum number of secondary iterations, itmax1, int
1.00e-008 Convergence tolerance, toler, float

1 Write detailed output if print=1, int
4 task, 0 fit, 1 res, 2 mu, 3 sig, 4 plt, 5 sim, 6 usr, int
0 Increase simulation length by extra, int

3.00e+000 Scale factor for plots, sfac, float
457 Seed for simulations, iseed, int
50 Number of plot grid points, ngrid, int
0 Statistics not computed if kilse=1, int

We then edit control.dat to read as follows.

control.dat

11114000.in1 11114000.res 0.0e0 0.0e0 0 454589
11114000.in2 11114000.mu 0.0e0 0.0e0 0 454589
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11114000.in3 11114000.sig 0.0e0 0.0e0 0 454589
11114000.in4 11114000.plt 0.0e0 0.0e0 0 454589
11114000.in5 11114000.sim 0.0e0 0.0e0 0 454589

Running SNP we get

summary.dat

SNP Restart
-------------------------------------------------------------------------------

pname output_file fitted_model p opt iter obj_func bic
-------------------------------------------------------------------------------

SpotRate 11114000.res
SpotRate 11114000.mu
SpotRate 11114000.sig
SpotRate 11114000.plt
SpotRate 11114000.sim

The output file 11114000.sim contains a simulation of length n=834 from the fit using

iseed=457 as the seed and the segment xt−1 of the series from 1 to drop=14 to start the

simulation off. This simulation is plotted in the fourth panel of Figure 2. The units in .sim,

as well as .plt, .sig, and .mu, are in the original units of the data; that is, in the same units

as the raw data {ỹt}n
t=1.

To be more specific, the values in .mu are estimates of the conditional expectations

E(ỹt|ỹt−1, . . . , ỹt−L) stored end-to-end. The values in .sig are vechs of estimates of the con-

ditional variances Var(ỹt|ỹt−1, . . . , ỹt−L) stored end-to-end. The values in .res are estimates

of the residuals [Var(ỹt|ỹt−1, . . . , ỹt−L)]−1/2 [ỹt − E(ỹt|ỹt−1, . . . , ỹt−L)] stored end-to-end. See

the earlier remarks regarding the effect of the spline transformation because the bias in the

values in the .mu, .sig, and .res files can be substantial without it for some specifications.

The output file 10314000.plt contains data with which to plot the one-step-ahead density

fK(ỹt|xt−1, θ̂), conditional on the values for

xt−1 = (ỹt−1, ỹt−2, · · · , ỹt−L)

specified by cond in the DATA DESCRIPTION block of the parmfile. Figure 4 is an example

of such a plot. The density displays the typical shape for data from financial markets: peaked

with fatter tails than the normal with a bit of asymmetry. In this case cond = 0 so the lags

in xt−1 are all set to the unconditional mean of the data. These were the values used for

Figure 4. To plot the density conditioned on a different x, set cond differently as discussed

above.
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Figure 4. Conditional density.The data are weekly $/DM spot exchange rates from 1975 to 1990,

Friday’s quote, expressed as percentage change from the previous week. The solid line labeled SNP-

ARCH is a plot of an SNP fit with (Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 0, 3, 1, 4, 0, 0, 0) and all lags set

to the unconditional mean of the data; the dotted line is a normal with the same mean and variance.

The dashed line labeled SNP-GARCH is a plot of an SNP fit with (Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) =

(1, 1, 1, 1, 4, 0, 0, 0) and all lags set to the unconditional mean of the data.

A .plt file contains: first, Ê(ỹt|xt−1), M values; second, of V̂ar(ỹt|xt−1) stored columnwise,

M*M values; third, the grid increment, M values; thereafter, ỹt and fK(ỹt|xt−1, θ̂) written

end to end, there are (M+1)*(2*ngrd+1)**M of these. Total file length is M+M*M+M+

(M+1)*(2*ngrd+1)**M. The reason for prepending Ê(ỹt|xt−1), V̂ar(ỹt|xt−1), and the grid

increment is that one often wants to compute marginal distributions and compare the plot

with the normal distribution at the same mean and variance as in Figure 4.

A .plt file can also be used for quadrature using a Riemann rule because the value of the

density, the points at which is it is evaluated, and the increments between points are in the

file. However, a Gauss-Hermite quadrature rule is far more efficient. An implementation is
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contained in the distribition and is discussed at the end of Section 5. Briefly its use and

output are the same as for plotting (task=4) except that one codes task=6 and ngrid controls

the order of the Gauss-Hermite quadrature rule. The output for the quadature rule (task=6)

is the same as the plot output except that Ê(ỹt|xt−1), V̂ar(ỹt|xt−1), and the grid increment

are not prepended. File length is (M+1)*ngrid**M.

Comments, which are lines that begin with a #, may be added to the end of the PARM-

FILE HISTORY block. One might, for instance, describe the data here. These comments

are copied to output parmfiles. The first eleven lines that begin with a # are the property

of the program. Don’t touch them.

One last remark: As seen from Table 3, parameter estimates do not change much when

fitting with and without the spline. Therefore, it is usually adequate to use the fit in hand

as the input parameter file and to set the fnew, fold, and nstart parameters of control.dat

to zero when changing the spline parameter or changing stran (= σtr).

4.3 Running on a Parallel Machine

The parallel version of SNP, which is snp_mpi, is similar to the serial version, which is

snp, but with the annoying quirk that path names must be absolute, which is caused by

restrictions imposed by the LAM implementation of MPI for which the code was originally

written. The way the absolute path name requirement is handled is to supply a header

pathname.h that contains the absolute path name and builds it into the code at compile time.

This header is generated automatically by the makefiles named makefile.mpi.version that

are included with the distribution. For instance, makefile.mpi.OpenMPI_1.4 is for a 48

core AMD box running CentOS 5. These makefiles assume that the build occurs in the same

directory in which data, parmfiles, etc. are found. For our example, here is pathname.h

which was generated automatically by the makefile:

#define PATHNAME "/home/arg/r/snp_develop/test_mpi"

The control.dat file is the same as for the serial version but with one caveat due to

the fact that the host node only parcels out to the sub nodes lines of control.dat whose

parmfile requests a fit (task=0), it does all other tasks itself. While the host node is doing

a non-fit task, it cannot parcel out fits to sub nodes nor receive results from sub nodes.
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This means that either the control.dat should only have lines in it whose input parmfiles

request fits or that non-fit task lines should be evenly spaced within control.dat.

Running on a parallel machine requires initiation of MPI prior to execution. This is

handled by shell scripts emm_mpi.version.sh included with the distribution: This is what

emm_mpi.lam_7.0.sh looks like.

#! /bin/sh

# This shell script works for an 8 box cluster with 2 mono core CPUs
# per box running LAM Version 7.0. The host node is named n0 and the
# subnodes are named n1, n2, n3, n4, n5, n6, n7.

echo n0 > lamhosts
echo n1 >> lamhosts
echo n2 >> lamhosts
echo n3 >> lamhosts
echo n4 >> lamhosts
echo n5 >> lamhosts
echo n6 >> lamhosts
echo n7 >> lamhosts

test -f snp_mpi.err && mv -f snp_mpi.err snp_mpi.err.bak
test -f snp_mpi.out && mv -f snp_mpi.out snp_mpi.out.bak

rm -f core core.*

lamboot -v lamhosts

RC=$?

case $RC in
0) ;;
1) exit 1;;
esac

make -f makefile.mpi.lam_7.0 >snp_mpi.out 2>&1 && \
mpirun -v -O -D -s h N N \
${PWD}/snp_mpi >>snp_mpi.out 2>snp_mpi.err

RC=$?

case $RC in
0) exit 0 ;;
esac

exit 1;

Also included with the distribution are shell scripts and makefiles for Version 7.1 of LAM

and for Versions 1.4 and 2.1 of OpenMPI.

The results of a run are a set of files similar to those for the serial version. The two files

that change are summary.dat and detail.dat. The changes are caused by the fact that

results are printed when they are received from the sub nodes. This order is different than

the ordering in control.dat. Also, in detail.dat, parmfiles are printed when read and
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results printed when received: there can be quite some distance between these two events.

Extra labelling is provided to help sort things out.

5 Adapting the SNP Code

The options described in Section 4 do not cover every contingency. The program has been

structured so that it is easy to modify to accomplish tasks that are not covered by the built-

in options. In this section, we discuss how the code is modified to plot a conditional variance

function, print statistics, and to implement Gauss-Hermite quadrature.

5.1 Plots of the Conditional Variance Function

Plots of the estimated conditional variance function

V̂ar(y|x) =
∫

[y − E(y|x)][y − E(y|x)]′fK(y|x, θ̂) dy

Ê(y|x) =
∫

yfK(y|x, θ̂) dy

against the most recent lag yt−1 with all other lags put to their unconditional means are

of interest in studying the “leverage effect” which is the tendency for variance to be higher

subsequent to a down-tick than an up-tick in equities markets.

A difficulty with such plots is that they may be misleading because a history xt−1 =

(yt−1, . . . , yt−L) with each yt−i set to the unconditional mean is not representative of any

point in the data; it is too smooth. The conditional variance function V̂ar(y|x) depends on

the entire vector xt−1 and smoothness may alter the shape of the graph. One solution is

to compute a plot for each point in the data and average them. Such a plot is shown in

Figure 5.

The flexibility to perform such a computation is provided by having a base class, an-

cillary base, which is presented in snp base.h, and letting the classes that compute plots,

simulations, etc. inherit from it. The objects used in snp.cpp for these computations are all

references to classes of type ancillary base. The antecedents of these references are deter-

mined by typedefs in snpusr.h.

The base class ancillary base from snp base.h is

snp base.h
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Figure 5. The conditional variance function. The data are weekly $/DM spot ex-

change rates from 1975 to 1990, Friday’s quote, expressed as percentage change from the previ-

ous week. Shown is the average over all xt−1 = (yt−1 + δ, . . . , yt−L) in the data of the condi-

tional variance V̂ar(yt|yt−1+δ, . . . , yt−L) plotted against δ. The solid line corresponds to an SNP

fit with (Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 0, 3, 1, 4, 0, 0, 0, 0) and the dotted line to a fit with

(Lu, Lg, Lr, Lp,Kz, Iz,Kx, Ix) = (1, 1, 1, 1, 4, 0, 0, 0, 0).

class ancillary_base {
public:

virtual void set_XY(const scl::realmat* x, const scl::realmat* y) = 0;
virtual bool initialize(std::ostream* out_stream) = 0;
virtual bool initialize(std::string out_filename) = 0;
virtual bool calculate() = 0;
virtual bool finalize() = 0;
virtual ~ancillary_base() { }

};

The typedefs from snpusr.h (modified so that putting task = 6 in the input parmfile will

point to the class leverage that we shall write) and the declaration of the class leverage that
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we intend to write are as follows:

snpusr.h

#include "snp_base.h"
#include "libsnp.h"

class datread;
class resmusig;
class plot;
class simulate;
class leverage;
class quadrature;
class rhostats;

typedef datread datread_type;
typedef resmusig residual_type;
typedef resmusig mean_type;
typedef resmusig variance_type;
typedef plot plot_type;
typedef simulate simulate_type;
typedef leverage user_type;

class leverage : public ancillary_base {
private:

optparms opm;
datparms dpm;
tranparms tpm;
libsnp::snpden f;
libsnp::afunc af;
libsnp::ufunc uf;
libsnp::rfunc rf;
std::ostream& detail;
const trnfrm* tr;
const scl::realmat* X;
const scl::realmat* Y;
std::ostream* os;

public:
leverage(optparms op, datparms dp, tranparms tp, libsnp::snpden fn,

libsnp::afunc afn, libsnp::ufunc ufn, libsnp::rfunc rfn,
libsnp::afunc afm, libsnp::ufunc ufm, libsnp::rfunc rfm,
std::ostream& dos, const trnfrm* trn);

void set_XY(const scl::realmat* x, const scl::realmat* y);
bool initialize(std::ostream* out_stream);
bool initialize(std::string out_filename) { return true; }
bool calculate();
bool finalize();

};

All classes in snpusr.h have the same form and the same form of constructor.

What we need to do now is to code the member function calculate to compute the

conditional variance for a sequence of perturbed xt−1, average them, and write them to os.

These are straightforward modifications to the class resmusig in snpusr.cpp.

The only thing that is tricky is that, because the classes afunc, ufunc, and rfunc keep track

of their own lags and recursions, their main member (an overloaded application operator)
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can only be called once per observation in a serial loop over the data. In general usage this

requires that one must take care to retain results from the previous call to ufunc for input to

rfunc. In our special usage, we intend to make multiple calls for delta added to xt−1, which

would wreck havoc with the recursions if not handled properly. The approach adopted in

the code below is to take copies of the objects afunc, ufunc, and afunc, evaluate them at

the perturbed xt−1 to get Σt, and then discard them. This works because taking copies will

not disturb the state of the object copied. It is also a relatively cheap operation because the

only actual work involved in the copy is copying the pieces of the parameter vector θ and xt

that each object contains.

snpusr.cpp

leverage::leverage(optparms op, datparms dp, tranparms tp, snpden fn,
afunc afn, ufunc ufn, rfunc rfn, afunc afm, ufunc ufm, rfunc rfm,
ostream& dos, const trnfrm* trn)

: opm(op), dpm(dp), tpm(tp), f(fn), af(afn), uf(ufn), rf(rfn),
detail(dos), tr(trn)

{ }

void leverage::set_XY(const realmat* x, const realmat* y)
{

if (rows(*x) != rows(*y)) error("Error, leverage, row dim of x & y differ");
if (cols(*x) != cols(*y)) error("Error, leverage, col dim of x & y differ");
X = x; Y = y;

}

bool leverage::initialize(ostream* out_stream)
{

os = out_stream;
return (*os).good();

}

bool leverage::calculate()
{

if (Y==0||X==0) error("Error, leverage, data not initialized");
if (dpm.M != rows(*Y) || dpm.M != rows(*X) || dpm.M != f.get_ly())
error("Error, leverage, this should never happen");

INTEGER ngrid = 50;
realmat delta(1,2*ngrid+1);
realmat average(f.get_lR(),2*ngrid+1,0.0);

realmat dawa0,dawA;
realmat duwb0, duwb0_lag;
kronprd duwB, duwB_lag;
realmat dRwb0,dRwB;
realmat dRwRparms;

realmat y(dpm.M,1);
realmat x(dpm.M,1);
realmat u(dpm.M,1);
realmat y_lag(dpm.M,1);
realmat x_lag(dpm.M,1);
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realmat u_lag(dpm.M,1);

af.initialize_state();
uf.initialize_state();
rf.initialize_state();

for (INTEGER i=1; i<=dpm.M; ++i) {
x[i] = (*X)(i,1);

}

u = uf(x,duwb0,duwB);

for (INTEGER t=3; t<=dpm.drop; ++t) {

for (INTEGER i=1; i<=dpm.M; ++i) {
y[i] = (*Y)(i,t);
x[i] = (*X)(i,t);
y_lag[i] = (*Y)(i,t-1);
x_lag[i] = (*X)(i,t-1);

}

u_lag = u;
duwb0_lag = duwb0;
duwB_lag = duwB;

u = uf(x_lag,duwb0,duwB);

f.set_R(rf(x_lag,u_lag,x_lag,duwb0_lag,duwB_lag,dRwb0,dRwB,dRwRparms));
f.set_a(af(x_lag,dawa0,dawA));
f.set_u(u);

}

for (INTEGER t=dpm.drop+1; t<=dpm.n; ++t) {

for (INTEGER i=1; i<=dpm.M; ++i) {
y_lag[i] = y[i];
x_lag[i] = x[i];
y[i] = (*Y)(i,t);
x[i] = (*X)(i,t);

}

u_lag = u;
duwb0_lag = duwb0;
duwB_lag = duwB;

for (INTEGER grid=-ngrid; grid<=ngrid; ++grid) {

snpden fd = f;
afunc afd = af;
ufunc ufd = uf;
rfunc rfd = rf;

INTEGER idx = grid + ngrid + 1;
delta[idx] = 5.0*REAL(grid)/REAL(ngrid);

realmat yd = y_lag;
yd[1] += delta[idx];

realmat xd = yd;

if (tpm.squash == 1) {
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tr->spline(xd);
} else if (tpm.squash == 2) {

tr->logistic(xd);
}

fd.set_R(rfd(xd,u_lag,xd,duwb0_lag,duwB_lag,dRwb0,dRwB,dRwRparms));
fd.set_a(afd(xd,dawa0,dawA));
fd.set_u(ufd(xd,duwb0,duwB));

realmat mu, sig;
fd.musig(mu,sig);

tr->unscale(sig);

for (INTEGER j=1; j<=sig.get_cols(); ++j) {
for (INTEGER i=1; i<=j; ++i) {

INTEGER ij = (j*(j-1))/2 + i;
average(ij,idx) += sig(i,j)/REAL(dpm.n-dpm.drop);

}
}

}

u = uf(x_lag,duwb0,duwB);

f.set_R(rf(x_lag,u_lag,x_lag,duwb0_lag,duwB_lag,dRwb0,dRwB,dRwRparms));
f.set_a(af(x_lag,dawa0,dawA));
f.set_u(u);

}

for (INTEGER grid=-ngrid; grid<=ngrid; ++grid) {
INTEGER idx = grid + ngrid + 1;
(*os) << delta[idx] << ’ ’;
for (INTEGER i=1; i<=f.get_lR(); ++i) (*os) << average(i,idx) << ’ ’;
(*os) << ’\n’;

}

return (*os).good();
}

bool leverage::finalize()
{

return (*os).good();
}

Note that in the constructor afm, ufm, rfm are unused. This will usually be the case.

In the distributed code, they are only used by class rhostats, presented in snpusr.h and

defined in snpusr.cpp. Also, bool initialize(std::string out_filename) is usually

unused. It is available to provide a stem if files with various extensions need to be cre-

ated; class rhostats uses this feature. As with class leverage, just described, and class

quadrature, described below, rhostats is invoked by setting type=6 and modifying the

user_type line in snpusr.h as follows.

typedef rhostats user_type;
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What rhostats does is write ρ̂, nÎ, nĴ (the Hessian), nsn etc. to files with extension rho,

infm, etc. The format is appropriat for vecread in libscl; i.e. first line the number of rows,

second line the number of columns, and the remaining lines the vec of the matrix.

The distribution also includes code to implement Gauss-Hermite quadrature. The use of

the code is exaclty the same as producing a .plt file with type=4. The changes one makes

relative to the foregoing description of user modifications are to change

typedef leverage user_type;

to

typedef quadrature user_type;

in snpusr.h, and recompile. Then set type=6 and ngrid=9 in the parmfile and run. Some

experimentation will be required to get the correct order of the quadrature rule, which is

determined by ngrid. In the file detail.dat are shown the relative errors in the computations

of the integal of the density, of the mean, and of the variance. One can experiment with

various values of ngrid until these relative errors are as small as possible.

The determination of the conditioning set is exactly the same as for .plt files. In the

output file are first the abcissae and then the weight for each quadrature point, stored

end-to-end. This is exactly the same as abcissae and density are stored in a .plt file. An

expectation E [g(y)] with respect to the SNP density is approximated as

E [g(y)] =
npts∑

j=1

g(abcissa[j]) ∗ weight[j]

R code illustrating the reading and use of both the plot output file bivar.plt file and the

Gauss-Hermite quadrature output file bivar.usr follows:

M <- 2

tmp <- scan("bivar.plt")
lplt <- length(tmp) - (M+M*M+M)
npts <- lplt/(M+1)

mu <- tmp[seq(from=1,to=M)]
sig <- matrix(tmp[seq(from=M+1,to=M+M*M)],ncol=M,nrow=M,byrow=F)
yinc <- tmp[seq(from=M+M*M+1,to=M+M*M+M)]
plt <- tmp[seq(from=M+M*M+M+1,to=M+M*M+M+lplt)]
plt <- matrix(plt,nrow=M+1,ncol=npts,byrow=F)
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sum <- 0
for (j in 1:npts) sum = sum + plt[3,j]*yinc[1]*yinc[2]
print(sum)

sum <- 0
for (j in 1:npts) {

sum = sum + plt[3,j]*yinc[1]*yinc[2]*(exp(plt[1,j])+cos(plt[2,j]))
}
print(sum)

quad <- scan("bivar.usr")
npts <- length(quad)/(M+1)

quad <- matrix(quad,nrow=M+1,ncol=npts,byrow=F)

sum <- 0
for (j in 1:npts) sum = sum + quad[3,j]
print(sum)

sum <- 0
for (j in 1:npts) {

sum = sum + quad[3,j]*(exp(quad[1,j])+cos(quad[2,j]))
}
print(sum)

In each instance the first sum should agree with the computation in detail.dat if the .plt and

.usr files have been read correctly.
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