
Topic 4. Neural Networks

Case 3: Donor Recapture

using Transaction, Overlay, and Census Data

Reading Assignment

Berry and Linoff (2000)

• Pages 112–128. Neural networks (reviews).

The Plan

1. Review and augment the previous discussion of neural nets.

2. Use boosting to combine tools.

3. Fit nets to the donor data.

4. Analyze results.

5. Compare to regression results.

Neural Nets

Let’s have another look at their diagrammatic and mathematical

representations . . .

Fig 56. Single Hidden Layer Neural Net, Five Hidden Units

y

HU #1 HU #2 HU #3 HU #4 HU #5

x1 x2

β01
- β02

- β03
- β04

- β05
-

β11 β21 β12 β22 β13 β23 β14 β24 β15 β25

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ}

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J] 6

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��>

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ}

J
J

J
J

J
J

J
J

J
J

J
J

J
J

J
J] 6

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��>

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

6J
J

J
J
J

J
J

J
J

J
J

J
J
J

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ

γ1 γ2 γ3 γ4 γ5

γ0- SUM

SUM &
SQUASH

What the Diagram Represents

Boxes are neurons and lines are dendrites.

The two boxes at the lowest level represent sensory neurons. They send
signals of varying strength to the neurons above them. Signal strength is
represented by the βij.

Each of these second level neurons additively combine the weighted signals,
adding to them a bias represented by the β0j . If the sum exceeds a threshold,
it is passed on to the next higher level with varying strengths represented by
the γj.

The top neuron additively combines these weighted signals, adding a bias γ0.
This sum may or may not be thresholded.

Shown is a single hidden layer feed forward neural net. One can have more
hidden layers, feedback, etc. But for data analysis it can be proved that a
single hidden layer feed forward net is adequate.

Single Hidden Layer Neural Net, Five Hidden Units

Mathematical Representation:

y = γ0 +
5

∑

j=1

γj S
(

β0j + β1jx1j + β2jx2j

)

Weights:

γ0, γ1, β01, β11, β21, . . . , γ5, β05, β15, β25

Squasher:

S(x) =
exp(x)

1 + exp(x)

−40 −20 0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

What the Mathematics Represents

The mathematical representation shows the summation and

thresholding.

The threshold function is called a squasher in the neural net

literature and is usually chosen to be a differentiable function as

shown in the slide.

From a statistical perspective, a neural net can be viewed as a

nonlinear regression that can fit by least squares using standard

optimization algorithms.

They are very difficult to fit!

What the Mathematics Reveals

The squasher expects numeric inputs, not categorical inputs.

This defeats many implementations of neural nets and most

menu driven software.

But it shall not defeat us!

Table 9. Features Available to Net

Dummies

File Feature Type Required

464 LASTGIFT num

75 PEPSTRFL chr 1

4 STATE chr 31

11 RECP3 chr 1

8 DOB num

6 MAILCODE chr 1

359 MHUC2 num

465 LASTDATE num

460 MINRAMNT num

The Categorical Features Problem

Table 9 contains categorical features whereas, as the math re-

veals, neural networks expect numerical variables.

One can convert the categorical variables to dummy variables,

which are numerical, and then apply a neural net.

This doesn’t work well unless weights are hand coded to make

the squasher effectively pass the dummy through untouched.

In our case hand coding is not a pleasant prospect because it is

tedious and error prone, especially with as many dummies as we

have.

The Solution to the

Categorical Features Problem

Fit a dictionary model that is the sum of a linear regression in

the dummies and a neural net in the quantitative variables.

I.e. fit a dictionary model of the following form

y = Dummies(MAILCODE, PEPSTRFL, STATE, RECP3)

+ Net(LASTGIFT, DOB, MHUC2, LASTDATE, MINRAMNT)

Implementation

Although a few implementations allow the model to be fit as

posed —

y = Dummies(MAILCODE, PEPSTRFL, STATE, RECP3)

+ Net(LASTGIFT, DOB, MHUC2, LASTDATE, MINRAMNT)

— we shall fit it using a boosting technique that is a useful idea

in general for two reasons:

• It allows dictionary models to be built from different tools.

• It allows one to trade computer time for computer memory.

Boosting Strategy: The Idea

Initialize by putting the predictions to zero and the residuals to

the target.

Fit a model to the residuals to get new predictions and new

residuals. Add the new predictions to the previous predictions.

Replace the previous residuals with the new residuals.

Repeat until MSE quits changing.

The tools do not need to be the same at each step, which allows

tools to be combined.

Boosting Strategy: The Algorithm

Step 0 Set ŷ = 0

Step 1 Fit

y − ŷ = Net(LASTGIFT, DOB, MHUC2, LASTDATE, MINRAMNT)

to get predicted values ŷ(1) and replace ŷ with ŷnew = ŷ + ŷ(1)

Step 2 Fit

y − ŷ = Dummies(MAILCODE, PEPSTRFL, STATE, RECP3)

to get predicted values ŷ(2) and replace ŷ with ŷnew = ŷ + ŷ(2)

Step n Repeat Steps 1 and 2 until the validation MSE stabi-

lizes.

Notice That

The fitting is done in the learning sample.

The MSE is computed in the validation sample.

Net Fitting Strategy

The most popular fitting strategy for nets is back propaga-

tion, which is a sequential steepest descent algorithm known

as Robbins-Monroe in the statistical literature.

In my experience, back propagation does not work well.

Much better is to use a standard nonlinear optimization algorithm

such as BFGS (Broyden-Fletcher-Goldfarb-Shanno)

with

numerous (hundreds or thousands) of random starts over balls

of increasing radius.

The Implementation

Implementing boosting with random starts over concentric balls

for the nonlinear optimization requires the looping and control

structures of a scripting language like R — this strategy is beyond

the reach of menu driven software.

Neural Net Fit: Results

charity/nnet/cty net 05.r.Rout

iter = 1.1

mse.lrn = 20.0726176720395

mse.val = 18.7985310354253

mse.tst = 17.8527745362471

iter = 1.2

mse.lrn = 20.026999125388

mse.val = 18.7681067564899

mse.tst = 17.8314805001506

.

.

.

iter = 6.1

mse.lrn = 19.9773126090124

mse.val = 18.7259439837969

mse.tst = 17.8525822478034

iter = 6.2

mse.lrn = 19.9773084292726

mse.val = 18.7259454732097

mse.tst = 17.8527514363572

Analysis of Results

As with linear regression, we shall summarize results with lift

charts and mean squared error performance measures.

Nets with 2 and 10 hidden units were also tried. But they did not

do as well as the 5 hidden unit nets and are therefore dismissed

from consideration.

Fig 57. Lift Charts

0 20 40 60 80 100

0
50

10
0

15
0

percent

pe
rc

en
t

The green curve shows net revenue if persons in the learning sample

were mailed solicitations in random order. The red curve shows

net revenue in the learning sample if persons are sorted by their

predicted gift and mailed solicitations in sorted order, highest first;

blue is the same for the validation sample. The plots are normalized

so endpoints plot at (100,100). Net revenue is the gift less a mailing

cost of $0.68.

Fig 58. Lift Charts

0 20 40 60 80 100

0
50

10
0

15
0

percent

pe
rc

en
t

Same as Fig 57 except that the orange line is the blue line from

Fig 54, which shows the lift of the regression model in the validation

sample.

Fig 59. Conventional Lift Charts

0 20 40 60 80 100

0
20

40
60

80
10

0

percent

pe
rc

en
t

Same as Fig 57 but gross revenue instead of net revenue.

Fig 60. Conventional Lift Charts

0 20 40 60 80 100

0
20

40
60

80
10

0

percent

pe
rc

en
t

Same as Fig 59 except that the orange line is the blue line from

Fig 55, which shows the lift from the regression model in the vali-

dation sample.

Comments on Lift Charts

The regression model and the neural net model certainly are

different.

The regression model is predicting well in the validation sample

up to about 40%.

The neural net model is making some horrid mistakes prior to

40%.

The neural net model is doing better than the regression model

from 40% onward.

How do they compare on MSE? Next slide.

Table 10. Performance Measures

Mean Squared Error

Model Specification Learning Validation Test

Mean learning sample 20.09922 18.82322 17.86605

Regr selected model 19.96083 18.67709 17.80003

Nnet Iter 1.1 20.07262 18.79853 17.85277

Nnet Iter 1.2 20.02700 18.76811 17.83148

Nnet Iter 6.1 19.97731 18.72594 17.85258

Note in Passing

Also, a purist would insist that we not be allowed to look at

results in the test sample at this point in the analysis.

To the purest, that should be done only once at the end of the

analysis as the final comparison of all models fitted.

My response is that I’m not going waste your time and mine to

go over these tables now with one column less and then later

with that column replaced to satisfy some picky purest.

Neural Networks Main Points

1. Neural nets as typically implemented cannot handle categor-

ical features.

2. Boosting can be used to resolve this difficulty and, indeed,

make a dictionary method out of any combination of tools.

3. Nets did not beat regression in this application, but might

with more tinkering.

4. Balancing MSE in learning, validation, and test samples is a

bad idea.

