References

Translog Factor Demand Systems: The KLEM Model
by

A. Ronald Gallant

Department of Economics
University of North Carolina
Chapel Hill NC 27599-3305 USA
© 2000 by A. Ronald Gallant
Berndt, Ernst R. (1991), The Practice of Econometrics: Classic and Contemporary, Addison-Wesley, Reading MA, Chapter 9.

Berndt, Ernst R., and Mohammed S. Khaled (1979), "Parametric Productivity Measurement and Choice Among Flexible Functional Forms," Journal of Political Economy 87, 1220-1245.

Berndt, Ernst R., and David O. Wood (1975), "Technology, Prices, and the Derived Demand for Energy," Review of Economics and Statistics 57, 259268.

Berndt, Ernst R., and David O. Wood (1979), "Engineering and Econometric Interpretation of EnergyCapital Complementarity," American Economic Review 69, 342-354.

Gallant, A. Ronald (1987), Nonlinear Statistical Models, Wiley, New York.

Rossi, Peter E. (1983), Specification and Analysis of of Econometric Production Models, Ph.D. dissertation, University of Chicago.

Factor Demand Theory in Levels

The producer's cost function $c(p, u)$ gives the minimum cost of producing output u during a given period using inputs $q=\left(q_{1}, \ldots, q_{N}\right)^{\prime}$ at prices $p=\left(p_{1}, \ldots, p_{N}\right)^{\prime}$.

Linear homogeneity: $\lambda c(p, u)=c(\lambda p, u)$

Constant returns: $c(p, u)=u c(p)$

Shepard's lemma: $q=\frac{\partial}{\partial p} c(p, u)$
Elasticities of substitution: $\sigma_{i j}=\frac{c(p, u) \frac{\partial^{2}}{\partial p_{i} p_{j}} c(p, u)}{\frac{\partial}{\partial p_{i}} c(p, u) \frac{\partial}{\partial p_{j}} c(p, u)}$

Price elasticities: $\eta_{i j}=\frac{\partial \log q_{i}}{\partial \log p_{i}}=p_{j} \sigma_{i j} \frac{\frac{\partial}{\partial p_{j}} c(p, u)}{c(p, u)}$

Factor Demand Theory in Logarithms

The producer's log cost function $g(l, v)$ gives the minimum cost of producing log output $v=$ $\log u$ during a given period using factor cost shares $s=\left(p_{1} q_{1}, \ldots, p_{N} q_{N}\right)^{\prime} /\left(\sum_{i=1}^{N} p_{i} q_{i}\right)$ at \log prices $\ell=\left(\log p_{1}, \ldots, \log p_{N}\right)^{\prime}$.

Linear homogeneity: $g(\ell+\tau 1, v)=\tau+g(\ell, v)$ where $1=(1, \ldots, 1)^{\prime}$

Constant returns: $g(\ell, v)=v+g(\ell)$
Shepard's lemma: $s=\frac{\partial}{\partial \ell} g(\ell, v)$
Elasticities of subst.: $\Sigma=G^{-1}\left[\frac{\partial^{2} g}{\partial \ell \partial \partial^{\prime}}+\frac{\partial g}{\partial \ell \partial g} \partial t^{\prime \prime}-G\right] G^{-1}$ where $G=\operatorname{diag}\left(\frac{\partial g}{\partial \ell}\right)$

Price elasticities: $\eta=\Sigma G$
Factor cost shares: $s=\left(\begin{array}{c}M_{K} \\ M_{L} \\ M_{E} \\ M_{M}\end{array}\right)$
Log factor prices: $\ell=\left(\begin{array}{c}\log P_{K} \\ \log P_{L} \\ \log P_{E} \\ \log P_{M}\end{array}\right)$
Translog log cost function:

$$
g(\ell, v)=\alpha \ell+\frac{1}{2} \ell^{\prime} B \ell+v
$$

where

$$
\alpha=\left(\begin{array}{c}
\alpha_{K} \\
\alpha_{L} \\
\alpha_{E} \\
\alpha_{M}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\gamma_{K K} & \gamma_{K L} & \gamma_{K E} & \gamma_{K M} \\
\gamma_{L K} & \gamma_{L L} & \gamma_{L E} & \gamma_{L M} \\
\gamma_{E K} & \gamma_{E L} & \gamma_{E E} & \gamma_{E M} \\
\gamma_{M K} & \gamma_{M L} & \gamma_{M E} & \gamma_{M M}
\end{array}\right)
$$

6

Constant Returns KLEM Translog Model (1)
Because

$$
\begin{gathered}
\frac{\partial}{\partial \ell} \ell^{\prime} B \ell=\left(B+B^{\prime}\right) \ell \\
\frac{\partial^{2}}{\partial \ell \partial \ell^{\prime}} \ell^{\prime} B \ell=\left(B+B^{\prime}\right)
\end{gathered}
$$

and $\left(B+B^{\prime}\right)$ is symmetric, we might just as well assume that B is symmetric to start with, which we will.

The Translog factor demand system is

$$
s=\alpha+B \ell
$$

whose coefficients are subject to the following restrictions:

Linear homogeneity : $\alpha^{\prime} 1=1, B 1=0$
Symmetry : $B=B^{\prime}$
Adding up: $\alpha^{\prime} 1=1,1^{\prime} B=0$
some of which are redundant.
KLEM Translog Model, Additive Errors (1)
All one can get out of a deterministic model such as above a specification for some measure of central tendency of some distribution. The simplest assumption is additive measurement error:

$$
s_{t}=\alpha+B \ell_{t}+e_{t}
$$

where

$$
\begin{gathered}
\mathcal{E} e_{t}=0 \\
\mathcal{E} e_{s} e_{t}^{\prime}=\left\{\begin{array}{cc}
\Omega & s=t \\
0 & s \neq t
\end{array}\right. \\
t=1, \ldots, n
\end{gathered}
$$

KLEM Translog Model, Additive Errors

(2)

This specification should remain invariant to linear transformation. That is, we could just as well choose to analyze the model

$$
P s_{t}=P \alpha+P B \ell_{t}+P e_{t}
$$

for some matrix P; indeed, this is how one usually does generalized least squares in practice. Consider

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

We get

$$
\begin{aligned}
s_{K t} & =\alpha_{K}+\gamma_{K K} \ell_{K t}+\gamma_{K L} \ell_{L t}+\gamma_{K E} \ell_{E t}+\gamma_{K M} \ell_{M t}+e_{K t} \\
s_{L t} & =\alpha_{L}+\gamma_{L K} \ell_{K t}+\gamma_{L L} \ell_{L t}+\gamma_{L E} \ell_{E t}+\gamma_{L M} \ell_{M t}+e_{L t} \\
s_{E t} & =\alpha_{E}+\gamma_{E K} \ell_{K t}+\gamma_{E L} \ell_{L t}+\gamma_{E E} \ell_{E t}+\gamma_{E M} \ell_{M t}+e_{E t} \\
1 & =\sum_{i=K}^{M} s_{i}=\sum_{i=K}^{M} \alpha_{i}+\sum_{j=K}^{M}\left(\sum_{i=K}^{M} \gamma_{i j}\right) \ell_{j t}+\sum_{i=K}^{M} e_{i t}
\end{aligned}
$$

KLEM Translog Model, Additive Errors (4)
The KLEM translog factor demand model with additive errors is therefore a three equation linear system

$$
\begin{aligned}
s_{K t} & =\alpha_{K}+\gamma_{K K} \ell_{K t}+\gamma_{K L} \ell_{L t}+\gamma_{K E} \ell_{E t}+\gamma_{K M} \ell_{M t}+e_{K t} \\
s_{L t} & =\alpha_{L}+\gamma_{L K} \ell_{K t}+\gamma_{L L} \ell_{L t}+\gamma_{L E} \ell_{E t}+\gamma_{L M} \ell_{M t}+e_{L t} \\
s_{E t} & =\alpha_{E}+\gamma_{E K} \ell_{K t}+\gamma_{E L} \ell_{L t}+\gamma_{E E} \ell_{E t}+\gamma_{E M} \ell_{M t}+e_{E t}
\end{aligned}
$$

subject to the parametric constraint of adding up

$$
\sum_{i=K}^{M} \alpha_{i}=1 \text { and } \sum_{i=K}^{M} \gamma_{i j}=0 \text { for } j=K, L, E, M,
$$

The parametric constraint is not binding on the parameters of the three equations, which means that one gets $\widehat{\alpha}_{M}$ from estimates of the parameters of the system using the constraint

$$
\hat{\alpha}_{M}=1-\hat{\alpha}_{K}-\widehat{\alpha}_{L}-\widehat{\alpha}_{E} .
$$

Similarly

$$
\hat{\gamma}_{M j}=-\left(\hat{\gamma}_{K j}+\hat{\gamma}_{L j}+\hat{\gamma}_{E j}\right.
$$

for $j=K, L, E, M$.
The errors $u_{t}=\left(e_{K t}, e_{L t}, e_{E t}\right)^{\prime}$ satisfy

$$
\begin{gathered}
\mathcal{E} u_{t}=0 \\
\mathcal{E} u_{s} u_{t}^{\prime}=\left\{\begin{array}{cc}
\sum_{0} & s=t \\
0 & s \neq t
\end{array}\right. \\
t=1, \ldots, n
\end{gathered}
$$

The assumption of additive errors is implausible for a variety of reasons. One of them is that the errors must be heterogeneous due to the restriction that $0<\mathcal{E} s_{i t}+e_{i t}<1$ which implies that

$$
-\mathcal{E} s_{i t}<e_{i t}<1-\mathcal{E} s_{i t}
$$

Thus, the support of the density must depend on ℓ_{t} which makes an assumption that second moments do not implausible. While one could use the methods of Chapter 2 to correct for heteroskedasticity, starting with plausible assumptions seems preferable.

Rossi(1983) in an extensive empirical investigation determined that the logistic normal assumption is more plausible. That assumption implies
$\left(\begin{array}{c}\log \left(s_{K} / s_{M}\right)-\log \left[\left(\mathcal{E} s_{K}\right) /\left(\mathcal{E} s_{M}\right)\right] \\ \log \left(s_{L} / s_{M}\right)-\log \left[\left(\mathcal{E} s_{L}\right) /\left(\mathcal{E} s_{M}\right)\right] \\ \log \left(s_{E} / s_{M}\right)-\log \left[\left(\mathcal{E} s_{E}\right) /\left(\mathcal{E} s_{M}\right)\right]\end{array}\right) \sim N_{3}(0, \Sigma)$

KLEM Model, Logistic Normal Errors (2)
If we put

$$
y_{t}=\left(\begin{array}{l}
\log \left(s_{K t} / s_{M t}\right) \\
\log \left(s_{L t} / s_{M t}\right) \\
\log \left(s_{E t} / s_{M t}\right)
\end{array}\right)
$$

the model becomes

$$
y_{t}=f\left[\ell_{t},(\alpha, B)\right]+e_{t}
$$

where

subject to $1^{\prime} \alpha=1$ and $1^{\prime} B=0$. This is a three equation nonlinear system.

The nonhomogeneous restriction $1^{\prime} \alpha=1$ must be imposed to get identification. Assuming that $\alpha_{M} \neq 0$, one can impose the normalization rule $\alpha_{M}=1$ instead.

One can impose the hypothesis of symmetry and the normalization rule as follows:

α_{K}	$=\theta_{1}$	α_{E}	$=\theta_{10}$
$\gamma_{K K}$	$=\theta_{2}$	$\gamma_{E K}$	$=\theta_{4}$
$\gamma_{K L}$	$=\theta_{3}$	$\gamma_{K L}$	$=\theta_{3}$
$\gamma_{K E}$	$=\theta_{4}$	$\gamma_{K E}$	$=\theta_{4}$
$\gamma_{K M}$	$=\theta_{5}$	$\gamma_{K M}$	$=\theta_{5}$
α_{L}	$=\theta_{6}$	α_{M}	$=1$
$\gamma_{L K}$	$=\theta_{3}$	$\gamma_{M K}$	$=\theta_{5}$
$\gamma_{L L}$	$=\theta_{7}$	$\gamma_{M L}$	$=\theta_{9}$
$\gamma_{L E}$	$=\theta_{8}$	$\gamma_{M E}$	$=\theta_{12}$
$\gamma_{L M}$	$=\theta_{9}$	$\gamma_{M M}$	$=\theta_{13}$

the response function becomes

$$
f(x, \theta)=\left(\begin{array}{c}
\log \frac{\theta_{1}+\theta_{2} x_{1}+\theta_{3} x_{2}+\theta_{4} x_{3}+\theta_{5} x_{4}}{1+\theta_{5} x_{1}+\theta_{9} x_{2}+\theta_{12} x_{3}+\theta_{13} x_{4}} \\
\log \frac{\theta_{6}+\theta_{3} x_{1}+\theta_{7} x_{2}+\theta_{8} x_{3}+\theta_{9} x_{4}}{1+\theta_{5} x_{1}+\theta_{9} x_{2}+\theta_{12} x_{3}+\theta_{13} x_{4}} \\
\log \frac{\theta_{10}+\theta_{4} x_{1}+\theta_{8} x_{2}+\theta_{11} x_{3}+\theta_{12} x_{4}}{1+\theta_{5} x_{1}+\theta_{9} x_{2}+\theta_{12} x_{3}+\theta_{13} x_{4}}
\end{array}\right)
$$

where $x=\ell$.

The KLEM Model

- Translog Factor Demand System
- U.S. Manufacturing, 1957-1971
- Price and quantity data on capital (K), labor (L), energy (E), materials (M), and ten instrumental variables.
- Files klem.doc and klem.dat in pub/arg/data at ftp.econ.duke.edu.

- Features

- A linear multivariate regression if prices exogenous and errors additive.
- A nonlinear multivariate regression if prices exogenous and errors logistic normal.
- A linear simultaneous equations system if prices endogenous and errors additive.
- A nonlinear simultaneous equations system if prices endogenous and errors logistic normal.

