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The KLEM Model

� Translog Factor Demand System

{ U.S. Manufacturing, 1957{1971

{ Price and quantity data on capital (K), labor
(L), energy (E), materials (M), and ten instru-
mental variables.

{ Files klem.doc and klem.dat in pub/arg/data at
ftp.econ.duke.edu.

� Features

{ A linear multivariate regression if prices exoge-
nous and errors additive.

{ A nonlinear multivariate regression if prices ex-
ogenous and errors logistic normal.

{ A linear simultaneous equations system if prices
endogenous and errors additive.

{ A nonlinear simultaneous equations system if
prices endogenous and errors logistic normal.
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Factor Demand Theory in Levels

The producer's cost function c(p; u) gives the

minimum cost of producing output u during a

given period using inputs q = (q1; : : : ; qN)
0 at

prices p = (p1; : : : ; pN)
0.

Linear homogeneity: �c(p; u) = c(�p; u)

Constant returns: c(p; u) = uc(p)

Shepard's lemma: q = @
@p
c(p; u)

Elasticities of substitution: �ij =
c(p;u) @2

@pi@pj
c(p;u)

@
@pi

c(p;u) @
@pj

c(p;u)

Price elasticities: �ij =
@ log qi
@ log pi

= pj�ij

@
@pj

c(p;u)

c(p;u)
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Factor Demand Theory in Logarithms

The producer's log cost function g(l; v) gives

the minimum cost of producing log output v =

logu during a given period using factor cost

shares s = (p1q1; : : : ; pNqN)
0=(
PN
i=1 piqi) at log

prices ` = (log p1; : : : ; log pN)
0.

Linear homogeneity: g(`+ �1 ; v) = � + g(`; v)

where 1 = (1; : : : ;1)0

Constant returns: g(`; v) = v+ g(`)

Shepard's lemma: s = @
@`
g(`; v)

Elasticities of subst.: � = G�1

h
@2g

@`@`0
+ @g

@`

@g

@`0
�G

i
G�1

where G= diag(@g
@`
)

Price elasticities: � = �G
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Constant Returns KLEM Translog Model (1)

Factor cost shares: s =

0
BBB@

MK

ML

ME

MM

1
CCCA

Log factor prices: ` =

0
BBB@
logPK
logPL
logPE
logPM

1
CCCA

Translog log cost function:

g(`; v) = �`+
1

2
`0B`+ v

where

� =

0
B@

�K
�L
�E
�M

1
CA B =

0
B@

KK KL KE KM

LK LL LE LM
EK EL EE EM
MK ML ME MM

1
CA
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Constant Returns KLEM Translog Model (1)

Because
@

@`
`0B` = (B+B0)`

@2

@`@`0
`0B` = (B+B0)

and (B + B0) is symmetric, we might just as

well assume that B is symmetric to start with,

which we will.

The Translog factor demand system is

s = �+B`

whose coeÆcients are subject to the following

restrictions:

Linear homogeneity : �01 = 1; B1 = 0

Symmetry : B = B0

Adding up: �01 = 1; 1 0B = 0

some of which are redundant.
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KLEM Translog Model, Additive Errors (1)

All one can get out of a deterministic model

such as above a speci�cation for some measure

of central tendency of some distribution. The

simplest assumption is additive measurement

error:

st = �+B`t+ et

where

Eet = 0

Eese
0
t =

(

 s = t
0 s 6= t

t = 1; : : : ; n
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KLEM Translog Model, Additive Errors (2)

This speci�cation should remain invariant to linear trans-
formation. That is, we could just as well choose to
analyze the model

Pst = P�+ PB`t+ Pet

for some matrix P ; indeed, this is how one usually does
generalized least squares in practice. Consider

P =

0
B@

1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

1
CA

We get

sKt = �K + KK`Kt+ KL`Lt+ KE`Et+ KM`Mt+ eKt

sLt = �L+ LK`Kt+ LL`Lt+ LE`Et+ LM`Mt+ eLt

sEt = �E + EK`Kt+ EL`Lt+ EE`Et+ EM`Mt+ eEt

1 =

MX
i=K

si =

MX
i=K

�i+

MX
j=K

 
MX
i=K

ij

!
`jt+

MX
i=K

eit
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KLEM Translog Model, Additive Errors (3)

Consider the implications of

1 =

MX
i=K

�i+

MX
j=K

 
MX
i=K

ij

!
`jt+

MX
i=K

eit

Because the LHS is non-random, we have

Var

 
MX
i=K

eit

!
= 0

The mean and variance of
PM

i=K eit are therefore both

zero, which implies
PM

i=K eit is identically zero for all t.
We have now that

1 =

MX
i=K

�i+

MX
j=K

 
MX
i=K

ij

!
`jt

Because this must hold for all t; we conclude that

MX
i=K

�i = 1 and

MX
i=K

ij = 0 for j = K;L;E;M;

which is the adding up restriction.
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KLEM Translog Model, Additive Errors (4)

The KLEM translog factor demand model with additive
errors is therefore a three equation linear system

sKt = �K + KK`Kt+ KL`Lt+ KE`Et+ KM`Mt+ eKt

sLt = �L+ LK`Kt+ LL`Lt+ LE`Et+ LM`Mt+ eLt
sEt = �E + EK`Kt+ EL`Lt+ EE`Et+ EM`Mt+ eEt

subject to the parametric constraint of adding up

MX
i=K

�i = 1 and

MX
i=K

ij = 0 for j = K;L;E;M;

The parametric constraint is not binding on the param-
eters of the three equations, which means that one gets
�̂M from estimates of the parameters of the system us-
ing the constraint

�̂M = 1� �̂K � �̂L � �̂E:

Similarly

̂Mj = �(̂Kj + ̂Lj + ̂Ej

for j = K;L;E;M .

The errors ut = (eKt; eLt; eEt)
0 satisfy

Eut = 0

Eusu
0

t =

�
� s = t
0 s 6= t

t= 1; : : : ; n
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KLEM Model, Logistic Normal Errors (1)

The assumption of additive errors is implausi-

ble for a variety of reasons. One of them is

that the errors must be heterogeneous due to

the restriction that 0 < Esit + eit < 1 which

implies that

�Esit < eit < 1� Esit

Thus, the support of the density must depend

on `t which makes an assumption that second

moments do not implausible. While one could

use the methods of Chapter 2 to correct for

heteroskedasticity, starting with plausible as-

sumptions seems preferable.

Rossi(1983) in an extensive empirical investi-

gation determined that the logistic normal as-

sumption is more plausible. That assumption

implies0
B@ log(sK=sM)� log[(EsK)=(EsM)]

log(sL=sM)� log[(EsL)=(EsM)]
log(sE=sM)� log[(EsE)=(EsM)]

1
CA � N3(0;�)
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KLEM Model, Logistic Normal Errors (2)

If we put

yt =

0
B@ log(sKt=sMt)
log(sLt=sMt)
log(sEt=sMt)

1
CA

the model becomes

yt = f [`t; (�;B)] + et

where

f [`;(�;B)]=

0
BBBBB@
log

�K+KK`K+KL`L+KM`M+KE`E
�M+MK`K+ML`L+MM`M+ME`E

log
�L+LK`K+LL`L+LM`M+LE`E

�M+MK`K+ML`L+MM`M+ME`E

log
�E+EK`K+EL`L+EM`M+EE`E

�M+MK`K+ML`L+MM`M+ME`E

1
CCCCCA

subject to 1
0� = 1 and 1

0B = 0. This is a

three equation nonlinear system.

The nonhomogeneous restriction 1
0�= 1 must

be imposed to get identi�cation. Assuming

that �M 6= 0; one can impose the normalization

rule �M = 1 instead.
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KLEM Model, Logistic Normal Errors (3)

One can impose the hypothesis of symmetry

and the normalization rule as follows:

�K = �1 �E = �10
KK = �2 EK = �4
KL = �3 KL = �3
KE = �4 KE = �4
KM = �5 KM = �5

�L = �6 �M = 1
LK = �3 MK = �5
LL = �7 ML = �9
LE = �8 ME = �12
LM = �9 MM = �13

the response function becomes

f(x; �) =

0
BBBBBB@

log �1+�2x1+�3x2+�4x3+�5x4
1+�5x1+�9x2+�12x3+�13x4

log �6+�3x1+�7x2+�8x3+�9x4
1+�5x1+�9x2+�12x3+�13x4

log �10+�4x1+�8x2+�11x3+�12x4
1+�5x1+�9x2+�12x3+�13x4

1
CCCCCCA

where x= `.
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The KLEM Model

� Translog Factor Demand System

{ U.S. Manufacturing, 1957{1971

{ Price and quantity data on capital (K), labor
(L), energy (E), materials (M), and ten instru-
mental variables.

{ Files klem.doc and klem.dat in pub/arg/data at
ftp.econ.duke.edu.

� Features

{ A linear multivariate regression if prices exoge-
nous and errors additive.

{ A nonlinear multivariate regression if prices ex-
ogenous and errors logistic normal.

{ A linear simultaneous equations system if prices
endogenous and errors additive.

{ A nonlinear simultaneous equations system if
prices endogenous and errors logistic normal.
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