

Shown are continuously compounded yields. The return for TIPS is computed by adding the coupon rate to the continuously compounded return on the principal.

Strips marked with a triangle are principal strips; strips marked with a circle are coupon interest strips. There is no conceptual difference between them. Lines merely connect points.

Consumption Based Asset Pricing (1)

Given random income $\left\{w_{t}\right\}$, price level $\left\{p_{t}\right\}$, and securities that sell at price $\left\{S_{j t}\right\}$ at time t, have payoff $\left\{S_{j, t+m_{j}}\right\}$ at time $t+m_{j}$, and cannot be sold in the interim, the consumer's problem is to choose consumption $\left\{c_{t}\right\}$ and portfolio $\left\{q_{j t}\right\}$ to maximize

$$
\mathcal{E}_{0}\left(\sum_{t=0}^{\infty} \delta^{s} \frac{c_{t}^{1-\gamma}}{1-\gamma}\right)
$$

subject to

$$
p_{t} c_{t}+\sum_{j=1}^{J} q_{j t} S_{j t} \leq w_{t}+\sum_{j=1}^{J} q_{j, t-m_{j}} S_{j t}
$$

where $0<\delta<1$ and $0 \leq \gamma$. The solution to this problem must satisfy the Euler equation

$$
S_{t}=\mathcal{E}_{t}\left\{\left[\delta^{m_{j}}\left(\frac{c_{t+m_{j}}}{c_{t}}\right)^{-\gamma} \frac{p_{t}}{p_{t+m_{j}}}\right] S_{t+m_{j}}\right\}
$$

Reference: Soderlind, Paul, and Lars Svensson (1999) "New Techniques to Extract Market Expectations from Financial Instruments," Journal of Monetary Economics 40, 383-429.

Consumption Based Asset Pricing (2)

Putting $T=t+m$, the term

$$
D(t, T)=\delta^{T-t}\left(\frac{c_{T}}{c_{t}}\right)^{-\gamma} \frac{p_{t}}{p_{T}}
$$

is called, variously, the stochastic discount factor, the pricing kernel, or state price density. In logs,
$\log D(t, T)=m \log \delta-\gamma\left(\log c_{T}-\log c_{t}\right)-\left(\log p_{T}-\log p_{t}\right)$
Assume that log consumption follows a drifting random walk with normally distributed increments

$$
\log c_{s+1}-\log c_{s} \sim N\left(\mu_{c}, \sigma_{c}^{2}\right)
$$

that the price level follows a trending autoregression with normal errors

$$
\log p_{s+1}-g(s+1) \sim N\left\{\rho\left[\log p_{s}-g(s)\right], \sigma_{p}^{2}\right\}
$$

and that consumption and inflation are independent. Then, conditional on c_{t} and p_{t},

$$
\log c_{T} \sim N\left(m \mu_{c}+\log c_{t}, m \sigma_{c}^{2}\right)
$$

$\log p_{T}-\log p_{t} \sim N\left\{g(t+m)-g(t)+\left(\rho^{m}-1\right)\left[\log p_{t}-g(t)\right], \sigma_{p}^{2} \sum_{j=0}^{m-1} \rho^{2 j}\right\}$

Choice of $g(s)$

We shall choose $g(s)$ in
$\log p_{T}-\log p_{t} \sim N\left\{g(t+m)-g(t)+\left(\rho^{m}-1\right)\left[\log p_{t}-g(t)\right], \sigma_{p}^{2} \sum_{j=0}^{m-1} \rho^{2 j}\right\}$
to satisfy the differential equation

$$
d g(t)=\left\{t \rho^{t-1}[g(t)-a-b t]+\rho^{t} b-b\right\} d t
$$

which integrates to

$$
g(t+m)-g(t)-\left(\rho^{m}-1\right) g(t)=-\left(\rho^{m}-1\right)(a+b m)
$$

to give
$\log p_{T}-\log p_{t} \sim N\left\{\left(\rho^{m}-1\right)\left[\log p_{t}-a-b m\right], \sigma_{p}^{2}\left(\frac{1-\rho^{2 m}}{2-2 \rho^{2}}\right)\right\}$.
There is no particular merit to this choice other than it fits the data much better than many other more obvious choices.

U.S. Treasury Strips

A discount bond that pays

$$
S_{T}=\$ 1
$$

at time $T=t+m$ will have price

$$
S_{t}=\mathcal{E}_{t} D(t, T)=\mathcal{E}_{t} \exp [\log D(t, T)]
$$

which, from the formula for the moment generating function of the normal, is

$$
S_{t}=\delta^{m} \exp \left[-m\left(\gamma \mu_{c}-\frac{\gamma^{2} \sigma_{c}^{2}}{2}\right)+\left(1-\rho^{m}\right)\left(\log p_{t}-a-b m\right)+\sigma_{p}^{2}\left(\frac{1-\rho^{2 m}}{2-2 \rho^{2}}\right)\right]
$$

This derivation has assumed that the time increment is one year and that m is an integer. Although we could derive the formula on a daily basis, keep an exact count of days within a month, and account for leap years, we shall not. Rather, we shall merely apply this formula with fractional m.
U.S. Treasury Inflation Protected Bonds (1)

The value of the principal payment

$$
B_{T}=\$\left(\frac{p_{T}}{p_{t}}\right) P_{t}
$$

of an inflation indexed bond that has accrued principal P_{t} at time t and matures at time $T=t+m$ is

$$
B_{t}=P_{t} \delta^{m} \exp \left[-m\left(\gamma \mu_{c}-\frac{\gamma^{2} \sigma_{c}^{2}}{2}\right)\right]
$$

The value of the stream of semi-annual coupon payments

$$
C_{T_{j}}=\$ \frac{r}{2} P_{t}\left(\frac{p_{T_{j}}}{p_{t}}\right) \quad j=1, \ldots, J
$$

is

$$
C_{t}=\frac{r}{2} P_{t} \sum_{t=1}^{J} \delta^{m_{j}} \exp \left[-m_{j}\left(\gamma \mu_{c}-\frac{\gamma^{2} \sigma_{c}}{2}\right)\right]
$$

where $J=\lceil 2 m\rceil$, and

$$
T_{j}=T-\frac{1}{2}(j-1) \quad m_{j}=m-\frac{1}{2}(j-1)
$$

The bond price at time t is the sum

$$
S_{t}=B_{t}+C_{t}
$$

U.S. Treasury Inflation Protected Bonds (2)

For TIPS, we shall compute the payoff as

$$
R_{T}=P_{t} \exp (r m)
$$

With this assumptions, a continuously compounded yield on a TIPS is

$$
\begin{aligned}
y & =\frac{\log R_{T}-\log (\text { Asked })}{m} \\
& =r+\frac{\log P_{t}-\log (\text { Asked })}{m}
\end{aligned}
$$

The only reason for making this assumption is allow us to display a yield for TIPS on graphics. It does not affect any computations.

Bond Prices

To simplify notation, rewrite
$S_{t}=\delta^{m} \exp \left[-m\left(\gamma \mu_{c}-\frac{\gamma^{2} \sigma_{c}^{2}}{2}\right)+\left(1-\rho^{m}\right)\left(\log p_{t}-a-b m\right)+\sigma_{p}^{2}\left(\frac{1-\rho^{2 m}}{2-2 \rho^{2}}\right)\right]$
$B_{t}=P_{t} \delta^{m} \exp \left[-m\left(\gamma \mu_{c}-\frac{\gamma^{2} \sigma_{c}^{2}}{2}\right)\right]$
$C_{t}=\frac{r}{2} P_{t} \sum_{t=1}^{J} \delta^{m_{j}} \exp \left[-m_{j}\left(\mu_{c}-\frac{\gamma^{2} \sigma_{c}}{2}\right)\right]$.
as

$$
\begin{aligned}
S_{t} & =\theta_{1}^{m} \exp \left[\left(1-\theta_{2}^{m}\right)\left(\theta_{3}+\theta_{4} m\right)+\theta_{5}\left(1-\theta_{2}^{2 m}\right)\right] \\
B_{t} & =P_{t} \theta_{1}^{m} \\
C_{t} & =\frac{r P_{t}}{2} \sum_{t=1}^{J} \theta_{1}^{m_{j}}
\end{aligned}
$$

where

$$
\begin{aligned}
\theta_{1} & =\delta \exp \left[-\gamma \mu_{c}+\frac{\gamma^{2} \sigma_{c}^{2}}{2}\right] \\
\theta_{2} & =\rho \\
\theta_{3} & =\log p_{t}-a \\
\theta_{4} & =-b \\
\theta_{5} & =\frac{\sigma_{p}^{2}}{2-2 \rho^{2}}
\end{aligned}
$$

Nonlinear Regression Model

$$
\begin{gathered}
y_{i}= \begin{cases}-\frac{1}{m} \log (\text { Asked }) & \text { strip } \\
\frac{1}{m}\left[\log R_{T}-\log (\text { Asked })\right] & \text { tip }\end{cases} \\
f\left(x_{i}, \theta\right)= \begin{cases}-\log \theta_{1}-\left(1-\theta_{2}^{m}\right)\left(\frac{\theta_{3}}{m}+\theta_{4}\right)-\frac{\theta_{s}}{m}\left(1-\theta_{2}^{2 m}\right) & \text { strip } \\
\frac{1}{m}\left[\log R_{T}-\log \left(P_{t} \theta_{1}^{m}+\frac{r P_{i}}{2} \sum_{t=1}^{J} \theta_{1}^{m_{s}}\right)\right] & \text { tip }\end{cases} \\
x_{i}= \begin{cases}(m, 1,0,0) & \operatorname{strip}\left(x_{i 3}=0\right) \\
\left(m, P_{t}, \frac{r P_{t}}{2}, 1\right) & \text { tip }\left(x_{i 3}=0\right)\end{cases} \\
i=1, \ldots, n=179
\end{gathered}
$$

SAS code (data preparation)
data strips;
infile 'strips99.dat';
input mm yy src \$ bidO bid1 ask0 ask1 chg yld;
if (yy = 99) then yy=-1;
type $=0$;
/* June 1 trade date, June 3 settlement date */
mat $=1.0+\mathrm{yy}+(\mathrm{mm}-6.0) / 12.0+13.0 / 365.25$;
prn $=1.0 ; \mathrm{cpn}=0.0$;
ask $=($ ask0 + ask1/32)/100.0;
$\mathrm{J}=$ ceil(2.0*mat);
$\mathrm{J}=\operatorname{ceil}(2.0 * \mathrm{mat}) ;$
$\mathrm{y}=-\log ($ ask $) / \mathrm{mat} ;$
$\mathrm{y}=-\log$
$\mathrm{pmt}=1 ;$
keep mat ask prn pmt cpn J y type;
data tips;
infile 'tips99.dat';
input r mm yy bidO bid1 ask1 chg yld prn;
if (yy = 99) then $y y=-1$;
r = r/100.0;
type $=1$;
/* June 1 trade date, June 3 settlement date */
mat $=1.0+\mathrm{yy}+(\mathrm{mm}-6.0) / 12.0+13.0 / 365.25$;
prn $=$ prn/1000.0;
ask $=$ prn*(bid0 + ask1/32)/100.0;
$\mathrm{J}=$ ceil(2.0*mat);
$\mathrm{cpn}=(\mathrm{r} / 2.0) * \mathrm{prn}$;
$\mathrm{y}=\log (\mathrm{pmt}) / \mathrm{mat}-\log ($ ask $) / \mathrm{mat}$;
keep mat ask prn pmt cpn J y type;
data bonds;
set strips tips;

SAS code (nonlinear regression)
proc nlin data=bonds method=gauss iter=400 convergence $=1.0 \mathrm{e}-5$; parms t1 $=0.96$ t2 $=0.9 \mathrm{t} 3=0.01 \mathrm{t} 4=0.01 \mathrm{t} 5=0.01$;
if (type = 1) then
do
$B=\operatorname{prn} *(t 1 * *$ mat $) ; \mathrm{dBwt} 1=$ mat $* \mathrm{~B} / \mathrm{t} 1$;
$\mathrm{C}=0.0 ; \quad$ dCwt1 $=0.0$;
do $j j=1$ to J ;
matj $=$ mat $-(j j-1.0) / 2.0$;
matj $=$ mat-(jj-1.0)/2
$C_{j}=\operatorname{cpn} *(t 1 * * m a t j) ;$
$\mathrm{Cj}=\mathrm{cpn} *(\mathrm{t}$
$\mathrm{C}=\mathrm{C}+\mathrm{Cj} ;$
dCwt1 $=$ dCwt1 + matj*Cj/t1;
end;
$\mathrm{f}=\log (\mathrm{pmt}) / \mathrm{mat}-\log (\mathrm{B}+\mathrm{C}) / \mathrm{mat}$;
dfwt1 $=-(d B w t 1+d C w t 1) /((B+C) *$ mat $)$;
dfwt2 $=0 ; \operatorname{dfwt3}=0 ; \operatorname{dfwt} 4=0 ; \operatorname{dfwt5}=0 ;$
end;
else
do
tmp1 $=$ t2**mat; tmp2 = tmp1**2;
$\mathrm{f}=-\log (\mathrm{t} 1)-(1.0-\mathrm{tmp} 1) *(\mathrm{t} 3 / \mathrm{mat}+\mathrm{t} 4)-(\mathrm{t} 5 / \mathrm{mat}) *(1.0-\mathrm{tmp} 2)$;
dfwt1 = - (1.0/t1);
dfwt2 $=($ mat*tmp1/t2 $) *(\mathrm{t} 3 /$ mat+t4) $)+(\mathrm{t} 5 /$ mat $) *(2.0 *$ mat $* \mathrm{tmp} 2) / \mathrm{t} 2$;
dfwt3 $=-(1.0-$ tmp1 $) *(1.0 / \mathrm{mat})$;
dfwt4 $=-(1.0-t m p 1)$;
dfwt5 $=-(1.0 / \mathrm{mat}) *(1.0-\mathrm{tmp} 2)$;
end;
model $y=f$;
der.t1=dfwt1; der.t2=dfwt2; der.t3=dfwt3;
der.t4=dfwt4; der.t5=dfwt5;
output out $=$ fit $p=$ yhat;
data _null_;
set fit;
file "fit.dat";
put mat 10.5 y 10.5 yhat 10.5 type 4.0 ;

SAS output

Non-Linear Least Squares Summary Statistics Dependent Variable Y

Source	DF Sum of Squares	Mean Square	
Regression	5	0.62926865067	0.12585373013
Residual	174	0.00006009685	0.00000034538
Uncorrected Total	179	0.62932874752	
(Corrected Total)	178	0.00397610036	

Parameter	Estimate	Asymptotic Std. Error	Asymptotic 95 \% Confidence Interval	
			Lower	Upper

The implied real rate is

$$
-100 \log \hat{\theta}_{1}=4.04 \%
$$

Matlab code (predicted inflation)
T1 $=0.960443236 ; ~ \mathrm{~T} 2=0.955169625 ;$ T3 $=-2.940159096$
$\mathrm{T} 4=0.015765485 ; \mathrm{T}=1.358617510 ;$
mat $=0.05: .5: 29.55 ; n=$ length(mat);
$\%$ logEd is the logarithm of expected deflator, given p_t. If p_t $=1$, $\%$ logEd is the logarithm of expected $1 /$ P_T $_{-}$given p_t, which is
logEd $=\left(1.0-T 2 .{ }^{\text {mat })} . *(\mathrm{~T} 3+\mathrm{T} 4 . *\right.$ mat $)+\mathrm{T} 5 . *(1.0-\mathrm{T} 2 . `(2.0 * \mathrm{mat})) ;$
\%inflation is defined as the change in -log((EP_t/p_t));
inflat $=-100.0 *(\operatorname{logEd}(2: n)-\operatorname{logEd}(1: n-1)) . /(\operatorname{mat}(2: n)-\operatorname{mat}(1: n-1))$;
left $=\min ($ mat $)-1.0$;
rite $=\max ($ mat $)+1.0$;
bot $=\min ($ inflat $)-.5$;
top $=\max ($ inflat $)+.5$;
figure(1);
plot(mat(1:n-1),inflat,'-','LineWidth',1.0);
axis([left rite bot top]);
title('\fontsize\{16\} Predicted Inflation, June 1, 1999'); xlabel('Years into future').
ylabel('Percent');
print -r300 -deps2 bonds03.ps;

Inflation is defined here in terms of the price deflator. Plotted is the change in the conditional expectation of the deflator given past prices expressed as a percentage, which is

$$
-100\left(\frac{d}{d \tau}\right) \log \left[\mathcal{E}\left(\left.\frac{p_{t}}{p_{t+\tau}} \right\rvert\, p_{t}\right)\right]
$$

against years into the future τ.

Vector Notation(1)

The nonlinear regression equations

$$
y_{t}=f\left(x_{t}, \theta^{o}\right)+e_{t} \quad t=1,2, \ldots, n
$$

may be written in a convenient vector form

$$
y=f\left(\theta^{o}\right)+e
$$

by adopting conventions analogous to those employed in linear regression; namely

$$
\begin{aligned}
y & =\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \\
f(\theta) & =\left(\begin{array}{c}
f\left(x_{1}, \theta\right) \\
f\left(x_{2}, \theta\right) \\
\vdots \\
f\left(x_{n}, \theta\right)
\end{array}\right) \\
e & =\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)
\end{aligned}
$$

Vector Notation(2)

The sum of squared deviations

$$
\operatorname{SSE}(\theta)=\sum_{t=1}^{n}\left[y_{t}-f\left(x_{t}, \theta\right)\right]^{2}
$$

of the observed y_{t} from the predicted value $f\left(x_{t}, \theta\right)$ corresponding to a trial value of the parameter θ becomes

$$
\operatorname{SSE}(\theta)=[y-f(\theta)]^{\prime}[y-f(\theta)]=\|y-f(\theta)\|^{2}
$$

in this vector notation.

For Example 1,

$$
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t} \quad t=1, \ldots, 30
$$

these vectors are

$$
\begin{gathered}
y=\left(\begin{array}{c}
0.98610 \\
1.03848 \\
\vdots \\
0.50811 \\
0.91840
\end{array}\right) \\
f(\theta)=\left(\begin{array}{c}
\theta_{1}+\theta_{2}+\theta_{4} e^{\theta_{3} 6.20} \\
\theta_{2}+\theta_{4} e^{\theta_{3} 9.86} \\
\vdots \\
\theta_{1}+\theta_{2}+\theta_{4} e^{\theta_{3} 0.08} \\
\theta_{2}+\theta_{4} e^{\theta_{3} 6.11}
\end{array}\right) \\
e=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{29} \\
e_{30}
\end{array}\right)
\end{gathered}
$$

Linear Pseudo-Model

The estimators employed in nonlinear regression can be characterized as linear and quadratic forms in the vector e which are similar to those that appear in linear regression. Let

$$
F(\theta)=\frac{\partial}{\partial \theta^{\prime}} f(\theta) \text {; }
$$

i.e., $F(\theta)$ is the matrix with typical element $\left(\partial / \partial \theta_{j}\right) f\left(x_{t}, \theta\right)$, where t is the row index and j is the column index. The matrix $F\left(\theta^{\circ}\right)$ plays the same role as the design matrix X in the linear regression

$$
" y "=X \beta+e .
$$

The appropriate analogy is obtained by setting

$$
" y^{\prime \prime}=y-f\left(\theta^{o}\right)+F\left(\theta^{o}\right) \theta^{o}
$$

and

$$
X=F\left(\theta^{o}\right)
$$

We shall write F for the matrix $F(\theta)$ when it is evaluated at $\theta=\theta^{\circ}$, i.e.,

$$
F=F\left(\theta^{o}\right)
$$

For Example 1,

$$
\begin{gathered}
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t} \quad t=1, \ldots, 30 \\
F(\theta)=\left(\begin{array}{cccc}
1 & 1 & 6.28 \theta_{4} e^{6.28 \theta_{3}} & e^{6.28 \theta_{3}} \\
0 & 1 & 9.86 \theta_{4} e^{9.86 \theta_{3}} & e^{9.86 \theta_{3}} \\
1 & 1 & 9.11 \theta_{4} e^{9.11 \theta_{3}} & e^{9.11 \theta_{3}} \\
0 & 1 & 8.43 \theta_{4} e^{8.43 \theta_{3}} & e^{8.43 \theta_{3}} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 1 & 0.08 \theta_{4} e^{0.08 \theta_{3}} & e^{0.08 \theta_{3}} \\
0 & 1 & 6.11 \theta_{4} e^{6.11 \theta_{3}} & e^{6.11 \theta_{3}}
\end{array}\right)
\end{gathered}
$$

which is of order 30×4.

Gradients, Jacobians, and Hessians(1)
Suppose that $s(\theta)$ is a real valued function of a p-dimensional argument θ. The notation $(\partial / \partial \theta) s(\theta)$ denotes the gradient of $s(\theta)$:

$$
\frac{\partial}{\partial \theta} s(\theta)=\left(\begin{array}{c}
\frac{\partial}{\partial \theta_{1}} s(\theta) \\
\frac{\partial}{\partial \theta_{2}} s(\theta) \\
\vdots \\
\frac{\partial}{\partial \theta_{p}} s(\theta)
\end{array}\right)
$$

a p by 1 (column) vector with typical element $\left(\partial / \partial \theta_{i}\right) s(\theta)$. Its transpose is denoted by

$$
\frac{\partial}{\partial \theta^{\prime}} s(\theta)=\left(\frac{\partial}{\partial \theta_{1}} s(\theta), \frac{\partial}{\partial \theta_{2}} s(\theta), \ldots, \frac{\partial}{\partial \theta_{p}} s(\theta)\right)
$$

Gradients, Jacobians, and Hessians(2)
Suppose that all second order derivatives of $s(\theta)$ exist. They can be arranged in a p by p matrix, known as the Hessian matrix of the function $s(\theta)$,

$$
\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} s(\theta)=\left(\begin{array}{cccc}
\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{1}} s(\theta) & \frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{2}} s(\theta) & \cdots & \frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{p}} s(\theta) \\
\frac{\partial^{2}}{\partial \theta_{2} \partial \theta_{1}} s(\theta) & \frac{\partial^{2}}{\partial \theta_{2} \partial \theta_{2}} s(\theta) & \cdots & \frac{\partial^{2}}{\partial \theta_{2} \partial \theta_{p}} s(\theta) \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2}}{\partial \theta_{p} \partial \theta_{1}} s(\theta) & \frac{\partial^{2}}{\partial \theta_{p} \partial \theta_{2}} s(\theta) & \cdots & \frac{\partial^{2}}{\partial \theta_{p} \partial \theta_{p}} s(\theta)
\end{array}\right)
$$

If the second order derivatives of $s(\theta)$ are continuous in θ, then the Hessian matrix is symmetric (Young's Theorem).

Gradients, Jacobians, and Hessians(3)
Let $f(\theta)$ be an n by 1 (column) vector valued function of a p-dimensional argument θ. The Jacobian of

$$
f(\theta)=\left(\begin{array}{c}
f_{1}(\theta) \\
f_{2}(\theta) \\
\vdots \\
f_{n}(\theta)
\end{array}\right)
$$

is the n by p matrix
$\frac{\partial}{\partial \theta^{\prime}} f(\theta)=\left(\begin{array}{cccc}\frac{\partial}{\partial \theta_{1}} f_{1}(\theta) & \frac{\partial}{\partial \theta_{2}} f_{1}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} f_{1}(\theta) \\ \frac{\partial}{\partial \theta_{1}} f_{2}(\theta) & \frac{\partial}{\partial \theta_{2}} f_{2}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} f_{2}(\theta) \\ \vdots & \vdots & & \vdots \\ \frac{\partial}{\partial \theta_{1}} f_{n}(\theta) & \frac{\partial}{\partial \theta_{2}} f_{n}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} f_{n}(\theta)\end{array}\right)$.

Gradients, Jacobians, and Hessians(4)
Let $h^{\prime}(\theta)$ be a 1 by n (row) vector valued function

$$
h^{\prime}(\theta)=\left(h_{1}(\theta), \quad h_{2}(\theta), \ldots, \quad h_{n}(\theta)\right) .
$$

Then its "gradient" is
$\frac{\partial}{\partial \theta} h^{\prime}(\theta)=\left(\begin{array}{cccc}\frac{\partial}{\partial \theta_{1}} h_{1}(\theta) & \frac{\partial}{\partial \theta_{1}} h_{2}(\theta) & \ldots & \frac{\partial}{\partial \theta_{1}} h_{n}(\theta) \\ \frac{\partial}{\partial \theta_{2}} h_{1}(\theta) & \frac{\partial}{\partial \theta_{2}} h_{2}(\theta) & \ldots & \frac{\partial}{\partial \theta_{2}} h_{n}(\theta) \\ \vdots & \vdots & & \vdots \\ \frac{\partial}{\partial \theta_{p}} h_{1}(\theta) & \frac{\partial}{\partial \theta_{p}} h_{2}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} h_{n}(\theta)\end{array}\right)$.
The following rule governs transposition

$$
\left(\frac{\partial}{\partial \theta^{\prime}} f(\theta)\right)^{\prime}=\frac{\partial}{\partial \theta} f^{\prime}(\theta)
$$

Gradients, Jacobians, and Hessians(5)
The Hessian matrix of $s(\theta)$ can be obtained by successive differentiation variously as

$$
\begin{array}{rlr}
\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} s(\theta) & =\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta^{\prime}} s(\theta)\right) \\
& =\frac{\partial}{\partial \theta}\left(\frac{\partial}{\partial \theta} s(\theta)\right)^{\prime} \\
& =\frac{\partial}{\partial \theta^{\prime}}\left(\frac{\partial}{\partial \theta} s(\theta)\right) \quad \text { (if symmetric) } \\
& =\frac{\partial}{\partial \theta^{\prime}}\left(\frac{\partial}{\partial \theta^{\prime}} s(\theta)\right)^{\prime} \quad \text { (if symmetric). }
\end{array}
$$

Gradients, Jacobians, and Hessians(6)
Product Rule: If $f(\theta)$ and $h^{\prime}(\theta)$ are as above, then

$$
\frac{\partial}{\partial \theta^{\prime}} h^{\prime}(\theta) f(\theta)=h^{\prime}(\theta) \frac{\partial}{\partial \theta^{\prime}} f(\theta)+f^{\prime}(\theta) \frac{\partial}{\partial \theta^{\prime}} h(\theta)
$$

Application

$$
\begin{gathered}
F(\theta)=\frac{\partial}{\partial \theta^{\prime}} f(\theta) \\
\operatorname{SSE}(\theta)=[y-f(\theta)]^{\prime}[y-f(\theta)] \\
\frac{\partial}{\partial \theta^{\prime}} \operatorname{SSE}(\theta)=[y-f(\theta)]^{\prime}[-F(\theta)] \quad \text { product rule } \\
\\
+[y-f(\theta)]^{\prime}[-F(\theta)] \\
= \\
\\
\frac{\partial}{\partial \theta} \operatorname{SSE}(\theta)=-2[y-f(\theta)]^{\prime} F(\theta) \\
\end{gathered}
$$

First Order Conditions

If $\hat{\theta}$ minimizes $\operatorname{SSE}(\theta)$, then

$$
\frac{\partial}{\partial \theta} \operatorname{SSE}(\widehat{\theta})=0
$$

so that

$$
\frac{\partial}{\partial \theta} \operatorname{SSE}(\widehat{\theta})=-2 F^{\prime}(\theta)[y-f(\widehat{\theta})=0
$$

or

$$
\hat{F}^{\prime} \hat{e}=0
$$

Residuals are orthogonal to the columns of \hat{F}.

Topics

- Examples \& Least Squares Estimates
- Notation \& Taylor's Theorem
- Statistical Properties
- Computations
- Hypothesis Tests
- Confidence Intervals

Important Example

If attention is restricted to continuous functions $s(\theta)$ that are defined on a closed and bounded set Θ, then the argmin function is continuous with respect to uniform convergence. Therefore,

$$
\lim _{n \rightarrow \infty} \max _{\theta \in \Theta}\left|s_{n}(\theta)-s^{*}(\theta)\right|=0
$$

implies that

$$
\lim _{n \rightarrow \infty}^{\operatorname{argmin}} s_{\theta \in \Theta}(\theta)=\underset{\theta \in \Theta}{\operatorname{argmin}} s^{*}(\theta)
$$

An assumption such as $s^{*}(\theta)$ has a unique minimum is necessary in addition to make sure that the argmin function is well defined when applied to $s^{*}(\theta)$. It is possible to get by with less, but for our applications, a unique minimum is a reasonable assumption.

Proof

Let

$$
\begin{aligned}
& \theta^{o}=\underset{\theta \in \Theta}{\operatorname{argmin}} s^{*}(\theta) \\
& \hat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} s_{n}(\theta)
\end{aligned}
$$

If Θ is closed and bounded then every subsequence $\left\{\hat{\theta}_{n_{m}}\right\}$ of $\left\{\hat{\theta}_{n}\right\}$ has a convergent subsubsequence $\left\{\hat{\theta}_{n_{m_{j}}}\right\}$ with limit point

$$
\lim _{j \rightarrow \infty} \hat{\theta}_{n_{m_{j}}}=\theta^{\#}
$$

Now

$$
s_{n_{m_{j}}}\left(\widehat{\theta}_{n_{m_{j}}}\right) \leq s_{n_{m_{j}}}\left(\theta^{o}\right)
$$

and uniform convergence taken together imply

$$
s^{*}\left(\theta^{\#}\right) \leq s^{*}\left(\theta^{o}\right)
$$

Uniqueness of θ^{o} implies $\theta^{\#}=\theta^{o}$. Thus, every limit point of $\left\{\hat{\theta}_{n}\right\}$ is θ^{o}.

Consequence

Applying these ideas to the least squares estimator

$$
\hat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} s_{n}(\theta)
$$

where

$$
s_{n}(\theta)=\frac{1}{n} \sum_{t=1}^{n}\left[y_{t}-f\left(x_{t}, \theta\right)\right]^{2}
$$

We now know that to prove consistency of the nonlinear least squares estimator we must (1) show that the residual sum of squares function has a uniform limit, (2) show that the limit function has a unique minimum, and (3) compute this minimum.

Strong Law of Large Numbers for $\left\{e_{t}\right\}$
"Sample averages converge to population averages."

That is,

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \sum_{t=1}^{n} g\left(e_{t}\right)-\int g(e) d P(e)\right|=0
$$

for any $g(e)$ for which $\int|g(e)| d P(e)<\infty$.

Stability Condition on $\left\{x_{t}\right\}$

For some fixed sequences the statement
"Sample averages converge to population averages."
can also be true. Chaotic data, data obtained by replicating a fixed set of points, and a sequence obtained by sampling a distribution exhibit this behavior:

For some μ, called the design measure,

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \sum_{t=1}^{n} g\left(x_{t}\right)-\int g(x) d \mu(x)\right|=0
$$

for any $g(x)$ for which $\int|g(x)| d \mu P(x)<\infty$.

This stability condition is referred to as " $\left\{x_{t}\right\}$ is a Cesaro sum generator" in the text.

Uniform SLLN for the Joint Process $\left\{\left(x_{t}, e_{t}\right)\right\}$
If $\left\{e_{t}\right\}$ is iid and $\left\{x_{t}\right\}$ is a Cesaro sum generator, then
$\lim _{n \rightarrow \infty} \max _{\theta \in \Theta}\left|\frac{1}{n} \sum_{t=1}^{n} g\left(e_{t}, x_{t}, \theta\right)-\iint g(e, x, \theta) d P(e) d \mu(x)\right|=0$
for continuous functions $g(e, x, \theta)$ for which

$$
\iint \max _{\theta \in \Theta}|g(e, x, \theta)| d P(e) d \mu(x)<\infty
$$

Consistency (1)

We can now establish consistency.
We now know that if $\left\{e_{t}\right\}$ is iid, $\left\{x_{t}\right\}$ is a Cesaro sum generator, and

$$
s_{n}(\theta)=\frac{1}{n} \sum_{t=1}^{n}\left[y_{t}-f\left(x_{t}, \theta\right)\right]^{2}
$$

then
$\lim _{n \rightarrow \infty} \max _{\theta \in \Theta}\left|s_{n}(\theta)-\iint\left[e+f\left(x, \theta^{0}\right)-f(x, \theta)\right]^{2} d P(e) d \mu(x)\right|=0$

This is the uniform convergence we need. The consequence is that the least square estimator

$$
\widehat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} s_{n}(\theta)
$$

will converge to whatever minimizes

$$
s^{*}(\theta)=\iint\left[e+f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d P(e) d \mu(x)
$$

Consistency (2)

$$
\begin{aligned}
s^{*}(\theta)= & \iint\left[e+f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d P(e) d \mu(x) \\
= & \iint e^{2} d P(e) d \mu(x) \\
& +2 \iint e\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right] d P(e) d \mu(x) \\
& +\iint\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d P(e) d \mu(x) \\
= & \int e^{2} d P(e) \\
& +2 \int e d P(e) \int\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right] d \mu(x) \\
& +\int\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d \mu(x) \\
= & \sigma^{2}+\int\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d \mu(x)
\end{aligned}
$$

Consistency (3)

The least square estimator

$$
\hat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} s_{n}(\theta)
$$

will converge to whatever minimizes

$$
s^{*}(\theta)=\sigma^{2}+\int\left[f\left(x, \theta^{o}\right)-f(x, \theta)\right]^{2} d \mu(x)
$$

The true value of the parameter θ° is certainly a minimum. If it is also a unique minimum then

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta^{o} .
$$

The condition that $s^{*}(\theta)$ have a unique minimum is the identification condition for nonlinear least squares.

Consistency (4)
Consider Example 1

$$
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t},
$$

with data

t	y	x_{1}	x_{2}	x_{3}
1	0.98610	1	1	6.28
2	1.03848	0	1	9.86
3	0.95482	1	1	9.11
4	1.04184	0	1	8.43
5	1.02324	1	1	8.11
6	0.90475	0	1	1.82
\vdots				
29	0.50811	1	1	0.08
30	0.91840	0	1	6.11

On pages $19-24$ of the text, the design measure $\mu(x)$ is derived, $s^{*}(\theta)$ is computed, and the conclusion is that

$$
s^{*}(\theta)=0, \theta_{3}^{o} \neq 0, \theta_{4}^{o} \neq 0 \Rightarrow \theta=\theta^{o}
$$

As you will see, this is a lot of trouble to work out. Few would bother to do so. Most just rely on a common sense inspection of the model and on the optimization algorithm used to compute $\widehat{\theta}_{n}$ to detect problems.

For instance, it is easy to see that if $\theta_{4}^{o}=0$, then it will be impossible to determine what θ_{3}^{o} is. Similarly, if $\theta_{3}^{o}=0$, then it is easy to see that one can estimate the sum $\theta_{2}^{o}+\theta_{4}^{o}$ but not θ_{2}^{o} and θ_{4}^{o} individually.

Asymptotics of RHS
$-\sqrt{n} \frac{\partial}{\partial \theta} s_{n}\left(\theta^{o}\right)=\frac{2}{\sqrt{ } n} \sum_{t=1}^{n} \frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right) e_{t}$
Mean: $\mathcal{E}\left[-\sqrt{n} \frac{\partial}{\partial \theta} s_{n}\left(\theta^{\circ}\right)\right]=0$
Variance:

$$
\begin{aligned}
\mathcal{I}_{n} & =\operatorname{Var}\left[-\sqrt{n} \frac{\partial}{\partial \theta} s_{n}\left(\theta^{o}\right)\right] \\
& =\frac{4 \sigma^{2}}{n} \sum_{t=1}^{n}\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]^{\prime} \\
& =\frac{4 \sigma^{2}}{n} F^{\prime} F
\end{aligned}
$$

Limiting Variance:

$$
\begin{aligned}
\mathcal{I} & =\lim _{n \rightarrow \infty} \mathcal{I}_{n} \\
& =4 \sigma^{2} \int\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]^{\prime} d \mu(x) \\
& =4 \sigma^{2} Q
\end{aligned}
$$

Central Limit Theorem:

$$
-\sqrt{n} \frac{\partial}{\partial \theta} s_{n}\left(\theta^{o}\right) \xrightarrow{\mathcal{L}} N_{p}(0, \mathcal{I})
$$

Asymptotics of LHS

$$
\begin{aligned}
\mathcal{J}_{n}= & {\left[\frac{\partial^{2}}{\partial \theta \partial^{\theta}} s_{n}\left(\bar{\theta}_{n}\right)\right] } \\
= & \frac{2}{n} \sum_{t=1}^{n}\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \bar{\theta}_{n}\right)\right]\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \bar{\theta}_{n}\right)\right]^{\prime} \\
& +\frac{2}{n} \sum_{t=1}^{n} e_{t}\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} f\left(x_{t}, \bar{\theta}_{n}\right)\right]
\end{aligned}
$$

A consequence of the uniform strong law of large numbers is that a joint limit can be computed as an iterated limit; i.e.
$\lim _{n \rightarrow \infty} \max _{\theta \in \Theta}\left|g_{n}(\theta)-g(\theta)\right|=0 \& \lim _{n \rightarrow \infty} \bar{\theta}_{n}=\theta^{o} \Rightarrow \lim _{n \rightarrow \infty} g_{n}\left(\bar{\theta}_{n}\right)=g\left(\theta^{o}\right)$
Therefore:

$$
\begin{aligned}
\mathcal{J}= & \lim _{n \rightarrow \infty} \mathcal{J}_{n} \\
= & 2 \int\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]\left[\frac{\partial}{\partial \theta} f\left(x_{t}, \theta^{o}\right)\right]^{\prime} d \mu(x) \\
& +2 \int e d P(e) \int \frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} f\left(x_{t}, \theta^{o}\right) d \mu(x) \\
= & 2 Q
\end{aligned}
$$

LHS \& RHS Combined

Slutsky's Theorem:

$$
\begin{gathered}
\mathcal{J}_{n} \sqrt{n}\left(\hat{\theta}_{n}-\theta^{o}\right)=-\sqrt{n} \frac{\partial}{\partial \theta} s_{n}\left(\theta^{o}\right) \\
-\sqrt{n} s_{n}\left(\theta^{o}\right) \xrightarrow{\mathcal{L}} N_{p}(0, \mathcal{I}) \\
\mathcal{J}=\lim _{n \rightarrow \infty} \mathcal{J}_{n}
\end{gathered}
$$

imply

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta^{o}\right) \xrightarrow{\mathcal{L}} N_{p}\left(0, \mathcal{J}^{-1} \mathcal{I}^{-1}\right)
$$

Because $\mathcal{J}^{-1} \mathcal{I} \mathcal{J}^{-1}=(2 Q)^{-1}\left(4 \sigma^{2} Q\right)(2 Q)^{-1}=$ $\sigma^{2} Q^{-1}$, we have

$$
\sqrt{n}\left(\widehat{\theta}_{n}-\theta^{o}\right) \stackrel{\mathcal{L}}{\rightarrow} N_{p}\left(0, \sigma^{2} Q^{-1}\right)
$$

Further, $\sigma^{2} Q^{-1}$ can be estimated consistently by $\widehat{V}=\operatorname{SSE}\left(\hat{\theta}_{n}\right)\left(\hat{F}^{\prime} \widehat{F}\right)^{-1}$. Why?

Topics

- Examples \& Least Squares Estimates
- Notation \& Taylor's Theorem
- Statistical Properties
- Computations
- Hypothesis Tests
- Confidence Intervals

Computations

The best reference for nonlinear optimization is

Fletcher, R. (1987) Practical Methods of Optimization, Second Edition, Wiley, New York
an honorable mention is

Gill, Philip E., Walter Murray, and Margaret H. Wright (1981) Practical Optimization, Academic Press, New York

The best routine available is NPSOL by Murray, Gill, and Wright which is available from the Office of Technology Licensing, Stanford University, and is in the NaG Library.

Computations (an inadequate approximation)

Sometimes the minimum $\theta_{M_{i}}$ of the approximating quadratic overshoots $\bar{\theta}$, as shown above. But also as shown, all points on the line joining $\theta_{M_{i}}$ and $\theta_{T_{i}}$

$$
\theta=\theta_{T_{i}}+\lambda\left(\theta_{M_{i}}-\theta_{T_{i}}\right) \quad 0<\lambda \leq \lambda^{*}
$$

for λ^{*} small enough will lead to an improvement. The idea is to try to find a λ_{i} with

$$
\operatorname{SSE}\left[\theta_{T_{i}}+\lambda_{i}\left(\theta_{M_{i}}-\theta_{T_{i}}\right)\right]<\operatorname{SSE}\left(\theta_{T_{i}}\right)
$$

and put $\theta_{T_{i+1}}=\theta_{T_{i}}+\lambda_{i}\left(\theta_{M_{i}}-\theta_{T_{i}}\right)$.

Quadratic Approximations (Newton)

$$
\begin{aligned}
\operatorname{SSE}_{T}(\theta)= & \operatorname{SSE}\left(\theta_{T}\right)+\left[\frac{\partial}{\partial \theta^{\prime}} \operatorname{SSE}\left(\theta_{T}\right)\right]\left(\theta-\theta_{T}\right) \\
& +\frac{1}{2}\left(\theta-\theta_{T}\right)^{\prime}\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} \operatorname{SSE}\left(\theta_{T}\right)\right]\left(\theta-\theta_{T}\right)
\end{aligned}
$$

The minimum is

$$
\theta_{M}=\theta_{T}+D_{T}
$$

where

$$
\begin{aligned}
D_{T} & =-\left[\frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} \operatorname{SSE}\left(\theta_{T}\right)\right]^{-1} \frac{\partial}{\partial \theta^{\prime}} \operatorname{SSE}\left(\theta_{T}\right) \\
& =\left[F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)-\sum_{t=1}^{n} \tilde{e}_{t} \frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} f\left(x_{t}, \theta_{T}\right)\right]^{-1} F^{\prime}\left(\theta_{T}\right) \tilde{e}
\end{aligned}
$$

where

$$
\tilde{e}=y-f\left(\theta_{T}\right)
$$

which is actually the Gauss-Newton downhill direction with a correction term added to the matrix that gets inverted.

Quadratic Approximations (Steepest Descent)

$$
D_{T}=F^{\prime}\left(\theta_{T}\right)\left[y-f\left(\theta_{T}\right)\right],
$$

Quadratic Approximations (Marquardt)
$D_{T}=\left[F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)+\delta S\right]^{-1} F^{\prime}\left(\theta_{T}\right)\left[y-f\left(\theta_{T}\right)\right]$,
where S is $F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)$ with all off diagonal elements put to zero.

Which is Better?

Gauss-Newton

$$
D_{T}=\left[F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)\right]^{-1} F^{\prime}\left(\theta_{T}\right)\left[y-f\left(\theta_{T}\right)\right],
$$

or Newton
$D_{T}=\left[F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)-\sum_{t=1}^{n} \tilde{e}_{t} \frac{\partial^{2}}{\partial \theta \partial \theta^{\prime}} f\left(x_{t}, \theta_{T}\right)\right]^{-1} F^{\prime}\left(\theta_{T}\right) \tilde{e}$ or steepest descent, or Marquardt, or something else?

In my opinion, one should just use GaussNewton because the matrix $F^{\prime}\left(\theta_{T}\right) F\left(\theta_{T}\right)$ is always positive semi-definite and one only has to compute first derivatives.

Numerical analysts argue that something that is fast far from the solution like Gauss-Newton or steepest descent should be used initially and then one should switch over to the Newton method to speed convergence towards the end.

Line Search

There are numerous suggestions in the literature. The two most commonly used are chopping and quadratic interpolation.

Chopping: Accept the first λ in a decreasing sequence such as $1, \frac{1}{2}, \frac{1}{4}, \ldots$ for which

$$
\operatorname{SSE}\left[\theta_{T}+\lambda\left(\theta_{M}-\theta_{T}\right)\right]<\operatorname{SSE}\left(\theta_{T}\right)
$$

Quadratic Interpolation: Fit a quadratic in λ to the three points

$$
\begin{array}{ll}
x \text {-axis } & y \text {-axis } \\
\lambda=0 & \operatorname{SSE}\left(\theta_{T}\right) \\
\lambda=\frac{1}{2} & \operatorname{SSE}\left[\theta_{T}+\frac{1}{2}\left(\theta_{M}-\theta_{T}\right)\right] \\
\lambda=1 & \operatorname{SSE}\left(\theta_{M}\right)
\end{array}
$$

Put λ to the minimum of the quadratic.

The Modified Gauss-Newton Algorithm
0 . Choose a starting value θ_{0}. Compute

$$
D_{0}=\left[F^{\prime}\left(\theta_{0}\right) F\left(\theta_{0}\right)\right]^{-1} F^{\prime}\left(\theta_{0}\right)\left[y-f\left(\theta_{0}\right)\right]
$$

Find λ_{0} between 0 and 1 such that

$$
\operatorname{SSE}\left[\theta_{0}+\lambda_{0} D_{0}\right]<\operatorname{SSE}\left(\theta_{0}\right)
$$

1. Put $\theta_{1}=\theta_{0}+\lambda_{0} D_{0}$. Compute

$$
D_{1}=\left[F^{\prime}\left(\theta_{1}\right) F\left(\theta_{1}\right)\right]^{-1} F^{\prime}\left(\theta_{1}\right)\left[y-f\left(\theta_{1}\right)\right]
$$

Find λ_{1} between 0 and 1 such that

$$
\operatorname{SSE}\left[\theta_{1}+\lambda_{1} D_{1}\right]<\operatorname{SSE}\left(\theta_{1}\right)
$$

2. Put $\theta_{2}=\theta_{1}+\lambda_{1} D_{1}$.

-

\bullet
-

Some Comments

The modified Gauss-Newton method is due to H. O. Hartley (1961), "The modified GaussNewton method for the fitting of nonlinear regression functions by least squares," Technometrics 3, 269-280.

Modified means line searched.
Algorithms like this that use an approximation to the Hessian are called quasi Newton by numerical analysts. The most popular general quasi Newton algorithm (not just for least squares problems) uses rank one numerically updated Hessians and is called Broyden-Fletcher-Goldfarb-Shanno (BFGS).

The Newton algorithm with line search is the same as above but with the Newton downhill direction D_{i} substituted.

Marquardt requires that δ decrease to zero as iterations continue.

Stopping Rules

Stop when

$$
\left\|\theta_{i}-\theta_{i+1}\right\|<\epsilon\left(\left\|\theta_{i}\right\|+\tau\right) \quad \text { for } i=1, \ldots, p
$$

and, simultaneously,

$$
\left\|\operatorname{SSE}\left(\theta_{i}\right)-\operatorname{SSE}\left(\theta_{i+1}\right)\right\|<\epsilon\left(\left\|\operatorname{SSE}\left(\theta_{i}\right)\right\|+\tau\right)
$$

where $\tau>0$ and $\epsilon>0$ are preset tolerances. A standard choice is $\epsilon=10^{-3}$ and $\epsilon=10^{-5}$.

Some authors would also check whether

$$
\left\|D_{i}\right\|<\epsilon
$$

simultaneously with the above before stopping.

Starting Values

Homily:

A plot of $f\left(x_{t}, \theta_{0}\right)$ against t must resemble a plot of y_{t} against t.

One Method:

A perfect fit to representative values.

Consider Example 1

$$
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t}
$$

with data

t	y	x_{1}	x_{2}	x_{3}
1	0.98610	1	1	6.28
2	1.03848	0	1	9.86
3	0.95482	1	1	9.11
4	1.04184	0	1	8.43
5	1.02324	1	1	8.11
6	0.90475	0	1	1.82
7	0.96263	1	1	6.58
8	1.05026	0	1	5.02
9	0.98861	1	1	6.52
10	1.03437	0	1	3.75
11	0.98982	1	1	9.86
12	1.01214	0	1	7.31
13	0.66768	1	1	0.47
14	0.55107	0	1	0.07
\vdots				

Solve

$$
\begin{aligned}
t=14: & 0.55107=\theta_{2}+\theta_{4} e^{\theta_{3} 0.07} \\
t=6: & 0.90475=\theta_{2}+\theta_{4} e^{\theta_{3} 1.82} \\
t=2: & 1.03848=\theta_{2}+\theta_{4} e^{\theta_{3} 9.86} \\
t=11: & 0.98982=\theta_{1}+\theta_{2}+\theta_{4} e^{\theta_{3} 9.86}
\end{aligned}
$$

to get starting values.

Plotted is

$$
y=\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{4} e^{\theta_{3} x_{3}}
$$

against x_{3} with

$$
\theta=(-0.048660,1.0038835,-0.737919,-0.513623)
$$

which is a perfect fit to the data marked with a star.

Fit to Representative Values (SAS output)

Non-Linear Least Squares Iterative Phase			
Dependent Variable		Method: G	Gauss-Newton
Iter	T1	T2	Sum of Squares
	T3	T4	
0	0	0	5.397072
	-1.000000	-1.000000	
1	-0.048660	1.038596	0.000447
	-0.826742	-0.510747	
2	-0.048660	1.038769	0.0000039585
	-0.729756	-0.513288	
3	-0.048660	1.038834	1.8362822E-10
	-0.737864	-0.513620	
4	-0.048660	1.038835	$3.3698672 \mathrm{E}-19$
	-0.737919	-0.513623	
5	-0.048660	1.038835	$8.6281662 \mathrm{E}-32$
	-0.737919	-0.513623	

NOTE: Convergence criterion met.

Tests of Hypotheses

$$
\begin{gathered}
y_{t}=f\left(x_{t}, \theta^{o}\right)+e_{t} \quad t=1, \ldots, n \\
h: \Theta \rightarrow \Re^{q}
\end{gathered}
$$

$$
\mathrm{H}: h\left(\theta^{\circ}\right)=0 \text { against } \mathrm{A}: h\left(\theta^{o}\right) \neq 0
$$

Notation:

$$
H(\theta)=\frac{\partial}{\partial \theta^{\prime}} h(\theta)=\left(\begin{array}{ccc}
\frac{\partial}{\partial \theta_{1}} h_{1}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} h_{1}(\theta) \\
\vdots & & \vdots \\
\frac{\partial}{\partial \theta_{1}} h_{q}(\theta) & \ldots & \frac{\partial}{\partial \theta_{p}} h_{q}(\theta)
\end{array}\right)
$$

Example:

$$
\begin{gathered}
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t} \\
\mathrm{H}: \theta_{3} \theta_{4} e^{\theta_{3}}-\frac{1}{5}=0 \\
H(\theta)=\left(0,0, \theta_{4}\left(1+\theta_{3}\right) e^{\theta_{3}}, e^{\theta_{3}}\right) \\
p=4, q=1
\end{gathered}
$$

Wald Test(1)

Recall:

$$
\begin{gathered}
\sqrt{n}\left(\hat{\theta}_{n}-\theta^{o}\right) \stackrel{\mathcal{L}}{\rightarrow} N_{p}\left(0, \sigma^{2} Q^{-1}\right) \\
\frac{1}{n} \widehat{F} \widehat{F} \rightarrow Q \\
\frac{1}{n} \operatorname{SSE}(\hat{\theta}) \rightarrow \sigma^{2}
\end{gathered}
$$

Taylor's Theorem:

$$
\sqrt{n}\left[h\left(\hat{\theta}_{n}\right)-h\left(\theta^{o}\right)\right]=H\left(\bar{\theta}_{n}\right) \sqrt{n}\left(\hat{\theta}_{n}-\theta^{o}\right)
$$

Slutsky's Theorem implies

$$
\sqrt{n}\left[h\left(\hat{\theta}_{n}\right)-h\left(\theta^{o}\right)\right] \stackrel{\mathcal{L}}{\rightarrow} N_{q}\left(0, \sigma^{2} H Q^{-1} H^{\prime}\right)
$$

Therefore: If $\mathrm{H}: h\left(\theta^{\circ}\right)=0$ is true, then

$$
W=\frac{n h^{\prime}\left(\hat{\theta}_{n}\right)\left[H\left(\frac{1}{n} \widehat{F} \hat{F}\right)^{-1} H^{\prime}\right]^{-1} h\left(\hat{\theta}_{n}\right)}{\frac{1}{n} \operatorname{SSE}(\hat{\theta})} \stackrel{\mathcal{L}}{\rightarrow} \mathcal{X}_{q}
$$

Wald Test(2)

The statistic

$$
W=\frac{n h^{\prime}\left(\hat{\theta}_{n}\right)\left[H(\hat{F} \hat{F})^{-1} H^{\prime}\right]^{-1} h\left(\hat{\theta}_{n}\right)}{\operatorname{SSE}\left(\hat{\theta}_{n}\right)}
$$

is called the Wald test statistic, after Abraham Wald. It is to be compared to the quantiles of the chi squared distribution on q degrees of freedom. One rejects for large W.

Often one computes

$$
W=\frac{h^{\prime}\left(\hat{\theta}_{n}\right)\left[H(\hat{F} \hat{F})^{-1} H^{\prime}\right]^{-1} h\left(\hat{\theta}_{n}\right)}{q s^{2}}
$$

instead and compares to the quantiles of the F distribution with q numerator degrees of freedom and $n-p$ denominator degrees of freedom because this agrees with the formulas used in linear models and gives more accurate answers in small samples.

Consider Example 1:

$$
\begin{gathered}
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t} \\
\mathrm{H}: \theta_{3} \theta_{4} e^{\theta_{3}}-\frac{1}{5}=0 \\
H(\theta)=\left(0,0, \theta_{4}\left(1+\theta_{3}\right) e^{\theta_{3}}, e^{\theta_{3}}\right)
\end{gathered}
$$

Computations:

$$
\begin{gathered}
\widehat{h}=h\left(\widehat{\theta}_{n}\right)=(-1.1157)(-0.50490) e^{-1.1157}-\frac{1}{5}=-0.0154 \\
\hat{H}=H\left(\hat{\theta}_{n}\right)=(0,0,0.019142,-0.365599) \\
\hat{H}(\hat{F} \hat{F})^{-1} \hat{H}^{\prime}=0.055256 \\
s^{2}=0.00117291 \\
W=\frac{(-0.0154)(0.055256)^{-1}(-0.0154)}{(1)(0.00117291)}=3.66 \\
F(0.95,1,26)=4.22
\end{gathered}
$$

Wald Test (SAS code)

```
data amstat;
    infile "amstat.dat";
    input t y x1 x2 x3;
```

proc model data=amstat;
$\mathrm{y}=\mathrm{t} 1 * \mathrm{x} 1+\mathrm{t} 2 * \mathrm{x} 2+\mathrm{t} 4 * \exp (\mathrm{t} 3 * \mathrm{x} 3)$;
parms $\mathrm{t} 1=-0.048660 \mathrm{t} 2=1.038835 \mathrm{t} 3=-0.737919 \mathrm{t} 4=-0.513623$;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss covb;
fit $y ~ / ~ o l s ~ c o n v e r g e=1.0 e-8 ~ m a x i t e r=~$

Wald Test (SAS output)

Test Type	Statistic	Prob.	Label	
Test0 Wald				
T3*T4*EXP (T3) $-0.20=$	3.66	0.0556		

Constrained and Unconstrained Estimates

$$
y_{t}=f\left(x_{t}, \theta^{o}\right)+e_{t} \quad t=1, \ldots, n
$$

$\mathrm{H}: h\left(\theta^{o}\right)=0$ against $\mathrm{A}: h\left(\theta^{o}\right) \neq 0$

Unconstrained Estimate:

$$
\hat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} \operatorname{SSE}(\theta)
$$

Constrained Estimate:

$$
\tilde{\theta}_{n}=\underset{h(\theta)=0}{\operatorname{argmin}} \operatorname{SSE}(\theta)
$$

Likelihood Ratio Test(1)

The statistic

$$
L=\frac{n\left[\operatorname{SSE}\left(\tilde{\theta}_{n}\right)-\operatorname{SSE}\left(\hat{\theta}_{n}\right)\right]}{\operatorname{SSE}\left(\hat{\theta}_{n}\right)}
$$

is, after some algebra, the likelihood ratio test statistic for $\mathrm{H}: h\left(\theta^{\circ}\right)=0$ against $A: h\left(\theta^{\circ}\right) \neq$ 0 under the assumption that the errors $\left\{e_{t}\right\}$ are normally distributed. It is to be compared to the quantiles of the chi squared distribution on q degrees of freedom. One rejects for large L.

Often one computes

$$
L=\frac{\left[\operatorname{SSE}\left(\tilde{\theta}_{n}\right)-\operatorname{SSE}\left(\hat{\theta}_{n}\right)\right] / q}{\operatorname{SSE}\left(\hat{\theta}_{n}\right) /(n-p)}
$$

instead and compares to the quantiles of the F distribution with q numerator degrees of freedom and $n-p$ denominator degrees of freedom because this agrees with the formulas used in linear models and gives more accurate answers in small samples.

Likelihood Ratio Test(2)

The derivation of the asymptotic distribution of the likelihood ratio test is not difficult but it is time consuming and therefore will be omitted.

What takes time is in getting the asymptotic distribution of the constrained estimator $\tilde{\theta}_{n}$. The rest of the derivation is a straightforward application of Taylor's Theorem.

Each of the following references contains the derivation. The second is recommended and can be downloaded from the course web page.

Gallant, A. Ronald (1987) Nonlinear Statistical Models, Wiley, New York.

Gallant, A. Ronald (1992) Nonlinear Regression Asymptotics, Manuscript, Department of Economics, University of North Carolina.

Gallant, A. Ronald (1997) Introduction to Econometric Theory, Princeton University Press, Princeton NJ.

Computing $\tilde{\theta}_{n}(1)$
$\tilde{\theta}$ minimizes $\operatorname{SSE}(\theta)$
subject to $h(\theta)=0$

Direct Approach:

Use software such as NPSOL from the Office of Technical Licensing, Stanford University.

Indirect Approach:

Rewrite the hypothesis as a functional dependence

$$
\begin{aligned}
& \quad \mathrm{H}: h\left(\theta^{o}\right)=0 \text { against } \mathrm{A}: h\left(\theta^{o}\right) \neq 0 \\
& \Leftrightarrow \\
& \mathrm{H}: \theta^{o}=g(\rho) \text { for some } \rho \text { against } \mathrm{A}: \theta^{o} \neq g(\rho) \text { for any } \rho
\end{aligned}
$$ $h(\theta) \in \Re^{q}, \Theta \in \Re^{p}, \rho \in \Re^{r}, p=r+q$

Example:

$$
\begin{gathered}
y_{t}=\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+\theta_{4} e^{\theta_{3} x_{3 t}}+e_{t} \\
\mathrm{H}: \theta_{3} \theta_{4} e^{\theta_{3}}-\frac{1}{5}=0 \\
\Leftrightarrow \\
\mathrm{H}: \theta_{4}=5\left(\theta_{3} e^{\theta_{3}}\right)^{-1}
\end{gathered}
$$

That is, θ_{1}, θ_{2}, and θ_{3} are free parameters and the value of θ_{4} is implied by the parametric restriction $h(\theta)=0$. This can be expressed as the functional dependence

$$
\left(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}\right)=g\left(\rho_{1}, \rho_{2}, \rho_{3}\right)
$$

where

$$
\begin{aligned}
& \theta_{1}=\rho_{1} \\
& \theta_{2}=\rho_{2} \\
& \theta_{3}=\rho_{3} \\
& \theta_{4}=5\left(\rho_{3} e^{\rho_{3}}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
R & =\frac{n \tilde{D}^{\prime}\left(\tilde{F}^{\prime} \tilde{F}\right) \tilde{D}}{\operatorname{SSE}(\tilde{\theta})} \\
& =\frac{(n / 4) \tilde{\lambda}^{\prime} \tilde{H}\left(\tilde{F}^{\prime} \tilde{F}\right)^{-1} \tilde{H}^{\prime} \tilde{\lambda}}{\operatorname{SSE}(\tilde{\theta})}
\end{aligned}
$$

The Lagrangian for the constrained optimization problem is

$$
\mathcal{L}(\theta, \lambda)=\operatorname{SSE}(\theta)+\lambda^{\prime} h(\theta)
$$

with first order condition

$$
0=-2 \tilde{e}^{\prime} \tilde{F}+\tilde{\lambda}^{\prime} \tilde{H}
$$

so that

$$
\tilde{D}=\left(\tilde{F}^{\prime} \tilde{F}\right)^{-1} \tilde{F}^{\prime} \tilde{e}=(1 / 2) \tilde{H}^{\prime} \tilde{\lambda}
$$

The shadow price of the constraint $h(\theta)=0$ in SSE units is λ. When the constraint is severely binding, one expects that λ and hence R will be large.

Lagrange Multiplier Test (3)

The statistic

$$
R=\frac{n \tilde{D}^{\prime}\left(\tilde{F}^{\prime} \tilde{F}\right) \tilde{D}}{\operatorname{SSE}(\tilde{\theta})}
$$

is to be compared to the quantiles of the chi squared distribution on q degrees of freedom. One rejects for large R. To make degrees of freedom corrections, compare to

$$
d=\frac{n F}{(n-p) / q+F}
$$

where F is the quantile of the F-distribution with q numerator degrees of freedom and $n-p$ denominator degrees of freedom.

A difficulty with the Lagrange multiplier test is the division by $\operatorname{SSE}(\tilde{\theta})$ instead of $\operatorname{SSE}(\hat{\theta})$; if the hypothesis is false then the former is larger than the latter, which reduces power.

Lagrange Multiplier Test (4)

$$
R=\frac{n \tilde{D}^{\prime}\left(\tilde{F}^{\prime} \tilde{F}\right) \tilde{D}}{\operatorname{SSE}(\tilde{\theta})}
$$

where

$$
\tilde{D}=\left(\tilde{F}^{\prime} \tilde{F}\right)^{-1} \tilde{F}^{\prime} \tilde{e}
$$

Computation:
Regress $\tilde{e}=y-f(\tilde{\theta})$ on $\tilde{F}=\frac{\partial}{\partial \theta} f(\tilde{\theta})$ with no intercept term in the regression. Then
$\operatorname{SSE}(\tilde{\theta})=$ uncorrected sum of squares
$\tilde{D}^{\prime}\left(\tilde{F}^{\prime} \tilde{F}\right) \tilde{D}=$ regression sum of squares
$R=n \times$ uncorrected R^{2} statistic

Lagrange Multiplier Computations (SAS code)
data amstat;
infile "amstat.dat";
input t y x1 x2 x3;
data work;
set amstat;
$r 1=-0.023019 ; r 2=1.019656 ; r 3=-1.160403$;
$\mathrm{t} 1=\mathrm{r} 1$; $\mathrm{t} 2=\mathrm{r} 2 ; \mathrm{t} 3=\mathrm{r} 3 ; \mathrm{t} 4=1.0 /(5.0 * \mathrm{r} 3 * \exp (\mathrm{r} 3))$;
$\mathrm{e}=\mathrm{y}-\mathrm{t} 1 * \mathrm{x} 1-\mathrm{t} 2 * \mathrm{x} 2-\mathrm{t} 4 * \exp (\mathrm{t} 3 * \mathrm{x} 3)$;
$\mathrm{f} 1=\mathrm{x} 1 ; \mathrm{f} 2=\mathrm{x} 2 ; \mathrm{f} 3=\mathrm{t} 4 * \mathrm{x} 3 * \exp (\mathrm{t} 3 * \mathrm{x} 3) ; \mathrm{f} 4=\exp (\mathrm{t} 3 * \mathrm{x} 3)$;
proc reg data=work;
model $e=f 1 f 2 f 3 f 4 /$ noint;

Lack of Invariance of the Wald Test (1)

Me: I want to test the hypothesis that the half life in the following exponential model is 2 hours. My parameters are $C l$ and V, which is the standard parameterization in pharmacokinetic applications. The value of D_{0} is known.
$y_{t}=\frac{D_{0}}{V} e^{-\frac{c l}{v} t}+e_{t}$
Half life: $\frac{V}{C l} \log 2$
$\mathrm{H}: \frac{V}{C l}=\frac{2}{\log 2}$
You: You use the standard parameterization of the model in the statistical literature:
$y_{t}=D_{0} \theta_{1} e^{-\theta_{2} t}+e_{t}$
Half life: $\frac{\log 2}{\theta_{2}}$
$\mathrm{H}: \theta_{2}=\frac{\log 2}{2}$
Both of us are using the same model and testing the same hypothesis. With the same data, one would expect that we should both get the same result. But if we use the Wald test, one of us might accept and the other reject.
The relation between the models has the form $\theta=g(\rho)$; that is,

$$
\theta=\left(\theta_{1}, \theta_{2}\right)=\left(\frac{1}{V}, \frac{C l}{V}\right)=g(C l, V)=g(\rho)
$$

- Wald Test
- Advantages: Can be computed from $\hat{\theta}$ only, which is useful if $f(x, \theta)$ is linear and $h(\theta)$ is not.
- Disadvantages: Asymptotics are inaccurate. Not invariant to reparametrization.
- Likelihood Ratio Test
- Advantages: Asymptotics are very accurate. Invariant to reparametrization. Better power than the Lagrange multiplier test.
- Disadvantages: Requires two optimizations.
- Lagrange Multiplier Test
- Advantages: Asymptotics are accurate. Invariant to reparametrization. Can be computed from $\tilde{\theta}$ only, which is useful if $f[x, g(\rho)]$ is linear.
- Disadvantages: Spurious acceptance because $\tilde{D}=0$ at every local minimum, local maximum, and saddle point. Power is not as good as the likelihood ratio test.

Lack of Invariance of the Wald Test (2)

Here is why this happens:

Me: $y=f(\theta)+e$
$\mathrm{H}: \theta=\theta^{*}$
$W=\left(\widehat{\theta}-\theta^{*}\right)^{\prime}\left(\widehat{F}^{\prime} \widehat{F}\right)\left(\hat{\theta}-\theta^{*}\right) /\left(p s^{2}\right)$

You: $y=f[g(\rho)]+e$
$\mathrm{H}: \rho=\rho^{*}$ where $g\left(\rho^{*}\right)=\theta^{*}$
$W=\left(\hat{\rho}-\rho^{*}\right)^{\prime}\left(\widehat{G}^{\prime} \widehat{F}^{\prime} \widehat{F} \widehat{G}\right)\left(\hat{\rho}-\rho^{*}\right) /\left(p s^{2}\right)$

The two statistics would be the same if

$$
\widehat{\theta}-\theta^{*}=\widehat{G}\left(\hat{\rho}-\rho^{*}\right)
$$

but this is not the case in general. The difference is the second order term in a Taylor's expansion:
$\left(\widehat{\theta}-\theta^{*}\right)-\widehat{G}\left(\hat{\rho}-\rho^{*}\right)=\frac{1}{2}\left(\widehat{\rho}-\rho^{*}\right)^{\prime} \frac{\partial^{2}}{\partial \rho \partial \rho^{\prime}} g(\bar{\rho})\left(\hat{\rho}-\rho^{*}\right)$

Topics

- Examples \& Least Squares Estimates
- Notation \& Taylor's Theorem
- Statistical Properties
- Computations
- Hypothesis Tests
- Confidence Intervals

Lagrange Multiplier Test (Matlab code)
$\mathrm{y}=[4.60 ; 4.23 ; 3.85]$;
$\mathrm{b}=\operatorname{inv}(\mathrm{A}) * \mathrm{y}$;
root_1 $=\left(-\mathrm{b}(2)-\operatorname{sqrt}\left(\mathrm{b}(2){ }^{\wedge} 2-4 * \mathrm{~b}(3) *(\mathrm{~b}(1)-4.19)\right)\right) /(2 * b(3))$
$A=\left[10.2000 .200^{\wedge} 2 ; 10.2010 .201^{\wedge} 2\right.$; $\left.10.2020 .202^{\wedge} 2\right]$;
$\mathrm{y}=[3.81$; 4.25 ; 4.71];
$b=\operatorname{inv}(A) * y$.
root_r $=(-b(2)+\operatorname{sqrt}(b(2) \wedge 2-4 * b(3) *(b(1)-4.19))) /(2 * b(3))$
Lagrange Multiplier Test (Matlab output)
root_1 =
0.1671
root_r =
0.2009

Confidence Interval:

[0.167, 0.201]

Confidence Interval Problems

Neither the likelihood ratio test statistic nor the Lagrange multiplier test statistic are guaranteed to plot above their critical values. This can result in open ended confidence intervals as shown above. Models with exponential terms in them sometimes exhibit this behavior. Also, the test statistic can oscillate about its critical value resulting in confidence sets that are a union of disjoint intervals This can happen with spline models where the join point is estimated. The Wald test does not have these problems and always produces a confidence interval that is symmetric about the estimate of the parametric function.

- Examples \& Least Squares Estimates
- Notation \& Taylor's Theorem
- Statistical Properties
- Computations
- Hypothesis Tests
- Confidence Intervals

