
Nonlinear Statistical Models, Chapter 1,

Univariate Nonlinear Regression

by

A. Ronald Gallant

Department of Economics

University of North Carolina

Chapel Hill NC 27599-3305 USA

c 2000 by A. Ronald Gallant

1

References

Gallant, A. Ronald (1987) Nonlinear Statistical Mod-

els, Wiley, New York.

Gallant, A. Ronald (1992) Nonlinear Regression Asymp-

totics, Manuscript, Department of Economics, U-
niversity of North Carolina.

Gallant, A. Ronald (1997) Introduction to Econometric

Theory, Princeton University Press, Princeton NJ.

Fletcher, R. (1987) Practical Methods of Optimiza-

tion, Second Edition, Wiley, New York

2

Topics

� Examples & Least Squares Estimates

� Notation & Taylor's Theorem

� Statistical Properties

� Computations

� Hypothesis Tests

� Con�dence Intervals

3

Bond Prices

Source: Wall Street Journal, June 2, 1999

Files: strips99.dat, tips99.dat

4



0 5 10 15 20 25

3.5

4

4.5

5

5.5

6

6.5

 Yield Curve, June 1, 1999

Maturity

P
er

ce
nt

STRIPS

TIPS

Shown are continuously compounded yields. The return for
TIPS is computed by adding the coupon rate to the continu-
ously compounded return on the principal.

Strips marked with a triangle are principal strips; strips marked
with a circle are coupon interest strips. There is no conceptual
di�erence between them. Lines merely connect points.
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Consumption Based Asset Pricing (1)

Given random income fwtg; price level fptg; and
securities that sell at price fSjtg at time t; have

payo� fSj;t+mj
g at time t+mj; and cannot be

sold in the interim, the consumer's problem is

to choose consumption fctg and portfolio fqjtg
to maximize

E0
0
@ 1X
t=0

Æs
c
1�
t

1� 

1
A

subject to

ptct+
JX

j=1

qjtSjt � wt+
JX

j=1

qj;t�mj
Sjt

where 0 < Æ < 1 and 0 � . The solution to

this problem must satisfy the Euler equation

St = Et
8<
:
2
4Æmj

 
ct+mj

ct

!�
pt

pt+mj

3
5St+mj

9=
; :

Reference: Soderlind, Paul, and Lars Svensson (1999) "New
Techniques to Extract Market Expectations from Financial Instru-
ments," Journal of Monetary Economics 40, 383{429.
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Consumption Based Asset Pricing (2)

Putting T = t+m; the term

D(t; T) = ÆT�t
�
cT

ct

��
pt

pT

is called, variously, the stochastic discount factor, the
pricing kernel, or state price density. In logs,

logD(t; T) = m log Æ � (log cT � log ct)� (log pT � log pt)

Assume that log consumption follows a drifting random
walk with normally distributed increments

log cs+1 � log cs � N(�c; �
2
c );

that the price level follows a trending autoregression
with normal errors

log ps+1 � g(s+1) � N
�
� [log ps � g(s)] ; �2p

	
;

and that consumption and ination are independent.
Then, conditional on ct and pt;

log cT � N
�
m�c + log ct; m�2c

�

log pT�log pt � N

(
g(t+m)� g(t) + (�m � 1) [log pt � g(t)] ; �2p

m�1X
j=0

�2j

)
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Choice of g(s)

We shall choose g(s) in

log pT�log pt � N

(
g(t+m)� g(t) + (�m � 1) [log pt � g(t)] ; �2p

m�1X
j=0

�2j

)

to satisfy the di�erential equation

dg(t) =
�
t�t�1[g(t)� a� bt] + �tb� b

	
dt

which integrates to

g(t+m)� g(t)� (�m � 1) g(t) = � (�m � 1) (a+ bm)

to give

log pT�log pt � N

�
(�m � 1) [log pt � a� bm] ; �2p

�
1��2m
2�2�2

��
:

There is no particular merit to this choice other than it
�ts the data much better than many other more obvious
choices.
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U.S. Treasury Strips

A discount bond that pays

ST = $1

at time T = t+m will have price

St = EtD(t; T) = Et exp[logD(t; T)];
which, from the formula for the moment gen-
erating function of the normal, is

St=Æmexp

�
�m

�
�c�

2�2c

2

�
+(1��m)(log pt�a�bm)+�2p

�
1��2m

2�2�2

��

This derivation has assumed that the time increment is
one year and that m is an integer. Although we could
derive the formula on a daily basis, keep an exact count
of days within a month, and account for leap years, we
shall not. Rather, we shall merely apply this formula
with fractional m.
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U.S. Treasury Ination Protected Bonds (1)

The value of the principal payment

BT = $

�
pT

pt

�
Pt

of an ination indexed bond that has accrued principal
Pt at time t and matures at time T = t+m is

Bt = Pt Æ
m exp

�
�m

�
�c � 2�2c

2

��
The value of the stream of semi-annual coupon pay-
ments

CTj
= $

r

2
Pt

�
pTj

pt

�
j = 1; : : : ; J

is

Ct =
r

2
Pt

JX
t=1

Æmj exp

�
�mj

�
�c � 2�c

2

��
:

where J = d2me ; and

Tj = T � 1

2
(j � 1) mj = m� 1

2
(j � 1)

The bond price at time t is the sum

St = Bt + Ct:
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U.S. Treasury Ination Protected Bonds (2)

For TIPS, we shall compute the payo� as

RT = Pt exp(rm):

With this assumptions, a continuously com-

pounded yield on a TIPS is

y =
logRT � log(Asked)

m

= r+
logPt � log(Asked)

m
:

The only reason for making this assumption is

allow us to display a yield for TIPS on graphics.

It does not a�ect any computations.
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Bond Prices

To simplify notation, rewrite

St = Æmexp

�
�m

�
�c�

2�2c

2

�
+(1��m)(log pt�a�bm)+�2p

�
1��2m

2�2�2

��

Bt = Pt Æ
m exp

�
�m

�
�c �

2�2c

2

��

Ct =
r

2
Pt

JX
t=1

Æmj exp

�
�mj

�
�c �

2�c

2

��
:

as

St = �m1 exp
�
(1� �m2 )(�3+ �4m) + �5(1� �2m2 )

�
Bt = Pt �

m
1

Ct =
rPt

2

JX
t=1

�
mj

1 :

where

�1 = Æ exp

�
��c + 2�2c

2

�
�2 = �

�3 = log pt � a

�4 = �b
�5 =

�2p

2� 2�2
:
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Nonlinear Regression Model

yi =

8<
:
� 1
m log(Asked) strip

1
m[logRT � log(Asked)] tip

f(xi; �) =

8><
>:
� log �1 � (1��m2 )

�
�3
m
+ �4

�� �5
m

�
1��2m2

�
strip

1

m

h
logRT � log

�
Pt �m1 + rPt

2

PJ
t=1 �

mj

1

�i
tip

xi =

8<
:
(m;1;0;0) strip (xi3 = 0)

(m;Pt;
rPt
2 ;1) tip (xi3 = 0)

i= 1; : : : ; n = 179
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SAS code (data preparation)

data strips;
infile 'strips99.dat';
input mm yy src $ bid0 bid1 ask0 ask1 chg yld;
if (yy = 99) then yy=-1;
type = 0;
/* June 1 trade date, June 3 settlement date */
mat = 1.0 + yy + (mm-6.0)/12.0 + 13.0/365.25;
prn = 1.0; cpn = 0.0;
ask = (ask0 + ask1/32)/100.0;
J = ceil(2.0*mat);
y = -log(ask)/mat;
pmt = 1;
keep mat ask prn pmt cpn J y type;

data tips;
infile 'tips99.dat';
input r mm yy bid0 bid1 ask1 chg yld prn;
if (yy = 99) then yy=-1;
r = r/100.0;
type = 1;
/* June 1 trade date, June 3 settlement date */
mat = 1.0 + yy + (mm-6.0)/12.0 + 13.0/365.25;
prn = prn/1000.0;
ask = prn*(bid0 + ask1/32)/100.0;
J = ceil(2.0*mat);
cpn = (r/2.0)*prn;
pmt = prn*exp(r*mat);
y = log(pmt)/mat - log(ask)/mat;
keep mat ask prn pmt cpn J y type;

data bonds;
set strips tips;
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SAS code (nonlinear regression)

proc nlin data=bonds method=gauss iter=400 convergence=1.0e-5;
parms t1=0.96 t2=0.9 t3=0.01 t4=0.01 t5=0.01;
if (type = 1 ) then
do

B = prn*(t1**mat); dBwt1 = mat*B/t1;
C = 0.0; dCwt1 = 0.0;
do jj=1 to J;

matj = mat-(jj-1.0)/2.0;
Cj = cpn*(t1**matj);
C = C + Cj;
dCwt1 = dCwt1 + matj*Cj/t1;

end;
f = log(pmt)/mat - log(B+C)/mat;
dfwt1 = -(dBwt1+dCwt1)/((B+C)*mat);
dfwt2 = 0; dfwt3 = 0; dfwt4 = 0; dfwt5 = 0;

end;
else
do

tmp1 = t2**mat; tmp2 = tmp1**2;
f = - log(t1) - (1.0-tmp1)*(t3/mat+t4) - (t5/mat)*(1.0-tmp2);
dfwt1 = - (1.0/t1);
dfwt2 = (mat*tmp1/t2)*(t3/mat+t4)+(t5/mat)*(2.0*mat*tmp2)/t2;
dfwt3 = - (1.0-tmp1)*(1.0/mat);
dfwt4 = - (1.0-tmp1);
dfwt5 = - (1.0/mat)*(1.0-tmp2);

end;
model y = f;
der.t1=dfwt1; der.t2=dfwt2; der.t3=dfwt3;
der.t4=dfwt4; der.t5=dfwt5;
output out = fit p = yhat;

data _null_;
set fit;
file "fit.dat";
put mat 10.5 y 10.5 yhat 10.5 type 4.0;
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SAS output

Non-Linear Least Squares Summary Statistics Dependent Variable Y

Source DF Sum of Squares Mean Square

Regression 5 0.62926865067 0.12585373013
Residual 174 0.00006009685 0.00000034538
Uncorrected Total 179 0.62932874752

(Corrected Total) 178 0.00397610036

Parameter Estimate Asymptotic Asymptotic 95 %
Std. Error Confidence Interval

Lower Upper
T1 0.960443236 0.00030435051 0.9598425357 0.9610439365
T2 0.955169625 0.00492005543 0.9454588504 0.9648804005
T3 -2.940159096 0.80538700259 -4.5297615176 -1.3505566750
T4 0.015765485 0.00772758056 0.0005134622 0.0310175074
T5 1.358617510 0.38900892850 0.5908257119 2.1264093075

The implied real rate is

�100 log �̂1 = 4:04%
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Solid line is the nonlinear least squares �t. Yields are contin-
uously compounded yields. The return for TIPS is computed
by adding the coupon rate to the continuously compounded
return on the principal.
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Matlab code (predicted ination)

T1 = 0.960443236; T2 = 0.955169625; T3 = -2.940159096;
T4 = 0.015765485; T5 = 1.358617510;

mat = 0.05:.5:29.55; n = length(mat);

%logEd is the logarithm of expected deflator, given p_t. If p_t = 1,
%logEd is the logarithm of expected 1/P_T given p_t, which is

logEd = (1.0 - T2.^mat).*(T3 + T4.*mat) + T5.*(1.0 - T2.^(2.0*mat));

%inflation is defined as the change in -log((EP_t/p_t));

inflat = -100.0*(logEd(2:n) - logEd(1:n-1))./(mat(2:n) - mat(1:n-1));

left = min(mat) - 1.0;
rite = max(mat) + 1.0;
bot = min(inflat) - .5;
top = max(inflat) + .5;

figure(1);
plot(mat(1:n-1),inflat,'-','LineWidth',1.0);
axis([left rite bot top]);
title( '\fontsize{16} Predicted Inflation, June 1, 1999');
xlabel('Years into future');
ylabel('Percent');

print -r300 -deps2 bonds03.ps;
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Matlab code (local quadratic regression)

.

.

.

n = length(y);
X = [ones(n,1),m,m.^2];
h = 2;

for i=1:n
w = normpdf(m(i),m,h);
WX = [w.*X(:,1),w.*X(:,2),w.*X(:,3)];
beta = inv(WX'*X)*WX'*y;
yhat(i) = beta(1) + beta(2)*m(i) + beta(3)*m(i)*m(i);

end

.

.

.
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Statistical Model

yt = f(xt; �) + et t = 1;2; : : : ; n

yt the dependent variable, univariate,
observed

xt the explanatory variables, k-variate,
observed

� model parameters, p-variate,
unknown (to be estimated)

et the error, univariate,

unobserved (because � is unknown)

E(et) = 0; Var(et) = �2; iid

Least Squares Estimator

�̂n =
�2�

argmin SSE(�)

SSE(�) =
nX

t=1

[yt � f(xt; �)]
2
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Example 1, Chapt. 1, NLSM

f(x; �) = �1x1+ �2x2+ �4e
�3x3

x =

0
B@ x1
x2
x3

1
CA k = 3

� =

0
BBB@
�1
�2
�3
�4

1
CCCA p = 4

23

Table 1. Data Values for Example 1.

t y x1 x2 x3

1 0.98610 1 1 6.28
2 1.03848 0 1 9.86
3 0.95482 1 1 9.11
4 1.04184 0 1 8.43
5 1.02324 1 1 8.11
6 0.90475 0 1 1.82
7 0.96263 1 1 6.58
8 1.05026 0 1 5.02
9 0.98861 1 1 6.52
10 1.03437 0 1 3.75
11 0.98982 1 1 9.86
12 1.01214 0 1 7.31
13 0.66768 1 1 0.47
14 0.55107 0 1 0.07
15 0.96822 1 1 4.07
16 0.98823 0 1 4.61
17 0.59759 1 1 0.17
18 0.99418 0 1 6.99
19 1.01962 1 1 4.39
20 0.69163 0 1 0.39
21 1.04255 1 1 4.73
22 1.04343 0 1 9.42
23 0.97526 1 1 8.90
24 1.04969 0 1 3.02
25 0.80219 1 1 0.77
26 1.01046 0 1 3.31
27 0.95196 1 1 4.51
28 0.97658 0 1 2.65
29 0.50811 1 1 0.08
30 0.91840 0 1 6.11

Source: Gallant (1976)
File: amstat.dat
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SAS code (nonlinear regression)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc nlin data=amstat method=gauss iter=50 convergence=1.0e-5;
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
model y=t1*x1+t2*x2+t4*exp(t3*x3);
der.t1=x1; der.t2=x2; der.t3=t4*x3*exp(t3*x3);
der.t4=exp(t3*x3);
output out = fit p = yhat;

data _null_;
set fit;
file "fit.dat";
put t 5.0 y 10.5 x1 5.0 x2 5.0 x3 10.5 yhat 10.5;

25
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control observations (x1 = 0); triangle indicate treatment ob-
servations (x1 = 1);
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Example 1 (continued)

The inputs correspond to a one way \treatment-

control" design that uses experimental mate-

rial whose age (= x3) a�ects the response ex-

ponentially. That is, the �rst observation

x1 = (1;1;6:28)0

represents experimental material with attained

age x3 = 6:28 months that was (randomly)

allocated to the treatment group and has ex-

pected response

f(x1; �
o) = �o1+ �o2+ �o4e

6:28�o3:

Similarly, the second observation

x1 = (0;1;9:86)0

represents an allocation of material with at-

tained age x3 = 9:86 to the control group,

with expected response

f(x2; �
o) = �o2+ �o4e

9:86�o3:

and so on. The parameter �o1 is the treatment

e�ect. The data of Table 1 are simulated.
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Vector Notation(1)

The nonlinear regression equations

yt = f(xt; �
o) + et t = 1;2; : : : ; n

may be written in a convenient vector form

y = f(�o) + e

by adopting conventions analogous to those

employed in linear regression; namely

y =

0
BBB@
y1
y2
...
yn

1
CCCA

f(�) =

0
BBB@
f(x1; �)
f(x2; �)

...
f(xn; �)

1
CCCA

e =

0
BBB@
e1
e2
...
en

1
CCCA

29

Vector Notation(2)

The sum of squared deviations

SSE(�) =
nX

t=1

[yt � f(xt; �)]
2

of the observed yt from the predicted value

f(xt; �) corresponding to a trial value of the

parameter � becomes

SSE(�) = [y � f(�)]0[y � f(�)] = ky � f(�)k2

in this vector notation.

30

For Example 1,

yt=�1x1t+�2x2t+�4e
�3x3t+et t=1; : : : ;30

these vectors are

y =

0
BBBBBB@

0:98610
1:03848

...
0:50811
0:91840

1
CCCCCCA

f(�) =

0
BBBBBB@

�1+ �2+ �4e
�36:20

�2+ �4e
�39:86

...

�1+ �2+ �4e
�30:08

�2+ �4e
�36:11

1
CCCCCCA

e =

0
BBBBBB@

e1
e2
...
e29
e30

1
CCCCCCA
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Linear Pseudo-Model

The estimators employed in nonlinear regres-
sion can be characterized as linear and quadrat-

ic forms in the vector e which are similar to
those that appear in linear regression. Let

F(�) =
@

@�0
f(�);

i.e., F(�) is the matrix with typical element
(@=@�j)f(xt; �); where t is the row index and j
is the column index. The matrix F(�o) plays
the same role as the design matrix X in the

linear regression

\y" = X�+ e:

The appropriate analogy is obtained by setting

\y" = y � f(�o) + F(�o)�o

and

X = F(�o):

We shall write F for the matrix F(�) when it
is evaluated at � = �o; i.e.,

F = F (�o):
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For Example 1,

yt=�1x1t+�2x2t+�4e
�3x3t+et t=1; : : : ;30

F(�) =

0
BBBBBBBBBBB@

1 1 6:28 �4e
6:28�3 e6:28�3

0 1 9:86 �4e
9:86�3 e9:86�3

1 1 9:11 �4e
9:11�3 e9:11�3

0 1 8:43 �4e
8:43�3 e8:43�3

... ... ... ...

1 1 0:08 �4e
0:08�3 e0:08�3

0 1 6:11 �4e
6:11�3 e6:11�3

1
CCCCCCCCCCCA

which is of order 30� 4.
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Gradients, Jacobians, and Hessians(1)

Suppose that s(�) is a real valued function

of a p-dimensional argument �: The notation

(@=@�)s(�) denotes the gradient of s(�) :

@

@�
s(�) =

0
BBBBB@

@
@�1

s(�)
@
@�2

s(�)
...

@
@�p

s(�)

1
CCCCCA

a p by 1 (column) vector with typical element

(@=@�i)s(�). Its transpose is denoted by

@

@�0
s(�) =

�
@
@�1

s(�); @
@�2

s(�); : : : ; @
@�p

s(�)
�
:

34

Gradients, Jacobians, and Hessians(2)

Suppose that all second order derivatives of

s(�) exist. They can be arranged in a p by p

matrix, known as the Hessian matrix of the

function s(�);

@2

@�@�0
s(�) =

0
BBBBBBB@

@2

@�1@�1
s(�) @2

@�1@�2
s(�) : : : @2

@�1@�p
s(�)

@2

@�2@�1
s(�) @2

@�2@�2
s(�) : : : @2

@�2@�p
s(�)

... ... ...
@2

@�p@�1
s(�) @2

@�p@�2
s(�) : : : @2

@�p@�p
s(�)

1
CCCCCCCA

If the second order derivatives of s(�) are con-

tinuous in �; then the Hessian matrix is sym-

metric (Young's Theorem).
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Gradients, Jacobians, and Hessians(3)

Let f(�) be an n by 1 (column) vector valued

function of a p-dimensional argument �. The

Jacobian of

f(�) =

0
BBB@
f1(�)
f2(�)
...

fn(�)

1
CCCA

is the n by p matrix

@

@�0
f(�) =

0
BBBBBB@

@
@�1

f1(�)
@
@�2

f1(�) : : : @
@�p

f1(�)
@
@�1

f2(�)
@
@�2

f2(�) : : : @
@�p

f2(�)
... ... ...

@
@�1

fn(�)
@
@�2

fn(�) : : : @
@�p

fn(�)

1
CCCCCCA
:
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Gradients, Jacobians, and Hessians(4)

Let h0(�) be a 1 by n (row) vector valued func-

tion

h0(�) =
�
h1(�); h2(�); : : : ; hn(�)

�
:

Then its \gradient" is

@

@�
h0(�) =

0
BBBBB@

@
@�1

h1(�)
@
@�1

h2(�) : : : @
@�1

hn(�)
@
@�2

h1(�)
@
@�2

h2(�) : : : @
@�2

hn(�)
... ... ...

@
@�p

h1(�)
@
@�p

h2(�) : : : @
@�p

hn(�)

1
CCCCCA :

The following rule governs transposition�
@

@�0
f(�)

�0
=

@

@�
f 0(�):
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Gradients, Jacobians, and Hessians(5)

The Hessian matrix of s(�) can be obtained by

successive di�erentiation variously as

@2

@�@�0
s(�) =

@

@�

�
@

@�0
s(�)

�

=
@

@�

�
@

@�
s(�)

�0

=
@

@�0
�
@

@�
s(�)

�
(if symmetric)

=
@

@�0
�
@

@�0
s(�)

�0
(if symmetric).
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Gradients, Jacobians, and Hessians(6)

Product Rule: If f(�) and h0(�) are as above,
then

@

@�0
h0(�)f(�) = h0(�) @

@�0
f(�) + f 0(�) @

@�0
h(�)
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Gradients, Jacobians, and Hessians(7)

Chain Rule: Let g(�) be a p by 1 (column)

vector valued function of an r-dimensional ar-

gument �; and let f(�) be as above, then

@

@�0
f [g(�)] =

@

@�0
f [g(�)]

@

@�0
g(�)

or, perhaps better,

@

@�0
f [g(�)] =

�
@

@�0
f(�)

�
�=g(�)

@

@�0
g(�):

The Jacobian of a composition is the product

of the Jacobians.
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Application

F(�) =
@

@�0
f(�)

SSE(�) = [y � f(�)]0[y � f(�)]

@

@�0
SSE(�) = [y � f(�)]0[�F(�)] product rule

+ [y � f(�)]0[�F(�)]
= �2[y � f(�)]0F(�)

@

@�
SSE(�) = �2F 0(�)[y � f(�)] transpose
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First Order Conditions

If �̂ minimizes SSE(�); then

@

@�
SSE(�̂) = 0

so that

@

@�
SSE(�̂) = �2F 0(�)[y � f(�̂) = 0

or

F̂ 0ê = 0:

Residuals are orthogonal to the columns of F̂ .
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Taylor's Theorem

(mean value form of the remainder)

First order:

s(�) = s(��) + @

@�0
s(��)(� � ��)

Second order:

s(�) = s(��) + @

@�0
s(��)(� � ��)

+
1

2
(� � ��)0

"
@2

@�@�0
s(��)

#
(� � ��)

where

�� = ���+ (1� �)� 0 � � � 1
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Setup

yt = f(xt; �
o) + et t = 1; : : : ; n

et iid. P(e)

Eet =
R
E e dP(e) = 0

Var(et) =
R
E e2 dP(e) = �2

�o in �; a closed and bounded subset of <p

�̂n =
���

argminsn(�)

sn(�) = (1=n)
Pn
t=1[yt � f(xt; �)]

2
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Almost Sure Convergence (1)

Because

sn(�) =
1

n

nX
t=1

[yt � f(xt; �)]
2

for n = 1;2; : : : is a sequence of functions, it

can possess a limit for each �xed � in the or-

dinary calculus sense:

lim
n!1 sn(�) = s�(�)

Holding fxtg �xed, for some sequences of errors

fetg the limit will exist, for others it will not.

Almost sure convergence in this context is de-

�ned as follows:

P
h
fetg : lim

n!1 sn(�) 6= s�(�)
i
= 0

That is, the probability of getting a sequence

of errors for which convergence fails is zero.

If fxtg is a random sequence rather than a �xed se-

quence, then P(�) is interpreted as be conditional distri-

bution of fetg given fxtg.
46

Almost Sure Convergence (2)

Almost sure convergence is the standard cal-

culus notion of convergence and is subject to

all the standard manipulative rules

For instance,

limn!1 an(�) = a�(�)

limn!1 bn(�) = b�(�)

limn!1 cn = c�

implies

limn!1 an(�) + bn(�) + cn = a�(�) + b�(�) + c�

limn!1 an(�)=cn = a�(�)=c� if c� 6= 0

etc.
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Almost Sure Convergence (3)

Especially important are the rules regarding

continuity.

If G[(a,b,c)] is continuous with respect to some

norm k(a; b; c)k then

lim
n!1 k(an; bn; cn)� (a�; b�; c�)k = 0

implies

lim
n!1G[(an; bn; cn)] = G[(a�; b�; c�)]:
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Important Example

If attention is restricted to continuous func-

tions s(�) that are de�ned on a closed and

bounded set �; then the argmin function is

continuous with respect to uniform conver-

gence. Therefore,

lim
n!1max

�2�
jsn(�)� s�(�)j = 0

implies that

lim
n!1

�2�
argminsn(�) =

�2�
argmins�(�)

An assumption such as s�(�) has a unique min-

imum is necessary in addition to make sure

that the argmin function is well de�ned when

applied to s�(�). It is possible to get by with

less, but for our applications, a unique mini-

mum is a reasonable assumption.
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Proof

Let

�o =
�2�

argmins�(�)

�̂n =
�2�

argminsn(�)

If � is closed and bounded then every subse-

quence f�̂nmg of f�̂ng has a convergent subsub-
sequence f�̂nmj

g with limit point

lim
j!1 �̂nmj

= �#

Now

snmj
(�̂nmj

) � snmj
(�o)

and uniform convergence taken together imply

s�(�#) � s�(�o)

Uniqueness of �o implies �# = �o. Thus, every

limit point of f�̂ng is �o.
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Consequence

Applying these ideas to the least squares esti-

mator

�̂n =
�2�

argminsn(�)

where

sn(�) =
1

n

nX
t=1

[yt � f(xt; �)]
2:

We now know that to prove consistency of the

nonlinear least squares estimator we must (1)

show that the residual sum of squares function

has a uniform limit, (2) show that the limit

function has a unique minimum, and (3) com-

pute this minimum.
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Strong Law of Large Numbers for fetg

\Sample averages converge to population av-

erages."

That is,

lim
n!1

������
1

n

nX
t=1

g(et)�
Z
g(e) dP(e)

������ = 0

for any g(e) for which
R jg(e)j dP(e) <1.
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Stability Condition on fxtg

For some �xed sequences the statement

\Sample averages converge to popula-

tion averages."

can also be true. Chaotic data, data obtained

by replicating a �xed set of points, and a se-

quence obtained by sampling a distribution ex-

hibit this behavior:

For some �; called the design measure,

lim
n!1

������
1

n

nX
t=1

g(xt)�
Z
g(x) d�(x)

������ = 0

for any g(x) for which
R jg(x)j d�P(x) <1.

This stability condition is referred to as \fxtg
is a Cesaro sum generator" in the text.
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Uniform SLLN for the Joint Process f(xt; et)g

If fetg is iid and fxtg is a Cesaro sum generator,

then

lim
n!1

max
�2�

����� 1n
nX

t=1

g(et; xt; �)�
Z Z

g(e; x; �) dP(e)d�(x)

�����= 0

for continuous functions g(e; x; �) for which

Z Z
max
�2�

jg(e; x; �)j dP(e)d�(x) <1:
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Consistency (1)

We can now establish consistency.

We now know that if fetg is iid, fxtg is a Cesaro
sum generator, and

sn(�) =
1

n

nX
t=1

[yt � f(xt; �)]
2;

then

lim
n!1

max
�2�

���� sn(�)�
Z Z

[e+ f(x; �o)� f(x; �)]2 dP(e)d�(x)

����= 0

This is the uniform convergence we need. The

consequence is that the least square estimator

�̂n =
�2�

argminsn(�)

will converge to whatever minimizes

s�(�) =
Z Z

[e+ f(x; �o)� f(x; �)]2 dP(e)d�(x):
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Consistency (2)

s�(�) =

Z Z
[e+ f(x; �o)� f(x; �)]2 dP (e)d�(x)

=

Z Z
e2 dP (e)d�(x)

+ 2

Z Z
e[f(x; �o)� f(x; �)] dP (e)d�(x)

+

Z Z
[f(x; �o)� f(x; �)]2 dP (e)d�(x)

=

Z
e2 dP(e)

+ 2

Z
e dP (e)

Z
[f(x; �o)� f(x; �)] d�(x)

+

Z
[f(x; �o)� f(x; �)]2 d�(x)

= �2+
Z
[f(x; �o)� f(x; �)]2 d�(x)
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Consistency (3)

The least square estimator

�̂n =
�2�

argminsn(�)

will converge to whatever minimizes

s�(�) = �2+
Z
[f(x; �o)� f(x; �)]2 d�(x):

The true value of the parameter �o is certainly

a minimum. If it is also a unique minimum

then

lim
n!1 �̂n = �o:

The condition that s�(�) have a unique mini-

mum is the identi�cation condition for nonlin-

ear least squares.
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Consistency (4)

Consider Example 1

yt = �1x1t + �2x2t + �4e
�3x3t + et;

with data

t y x1 x2 x3

1 0.98610 1 1 6.28
2 1.03848 0 1 9.86
3 0.95482 1 1 9.11
4 1.04184 0 1 8.43
5 1.02324 1 1 8.11
6 0.90475 0 1 1.82
...
29 0.50811 1 1 0.08
30 0.91840 0 1 6.11

On pages 19{24 of the text, the design measure �(x) is
derived, s�(�) is computed, and the conclusion is that

s�(�) = 0; �o3 6= 0; �o4 6= 0 ) � = �o:

As you will see, this is a lot of trouble to work out. Few
would bother to do so. Most just rely on a common
sense inspection of the model and on the optimization
algorithm used to compute �̂n to detect problems.

For instance, it is easy to see that if �o4 = 0; then it
will be impossible to determine what �o3 is. Similarly, if
�o3 = 0; then it is easy to see that one can estimate the
sum �o2+ �o4 but not �

o
2 and �o4 individually.
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Asymptotic Normality (1)

First Order Conditions

@

@�
sn(�) = 0

Taylor's Expansion of FOC

"
@2

@�@�
sn(��n)

#p
n(�̂n � �o) = �pn @

@�
sn(�

o)

where ��n is on the line segment joining �o to
�̂n. Because ��n must therefore be closer to
�o than �̂n is and limn!1 �̂n = �o; we have
limn!1 ��n = �o as well.

The second order expansion is not strictly correct: Each row of
@2

@�@�0
s(��) should have its own �̂i; i = 1; : : : ; p. This leads to cluttered

notation, so it will just be understood in the transparancies. The
text, Nonlinear Statistical Models, handles this detail correctly.
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Asymptotics of RHS

�pn @

@�
sn(�

o) =
2p
n

nX
t=1

@

@�
f(xt; �

o) et

Mean: E ��pn @
@�
sn(�o)

�
= 0

Variance:

In = Var

�
�pn @

@�
sn(�

o)

�

=
4�2

n

nX
t=1

�
@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0

=
4�2

n
F 0F

Limiting Variance:

I = lim
n!1

In

= 4�2
Z �

@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0
d�(x)

= 4�2Q

Central Limit Theorem:

�pn @

@�
sn(�

o)
L! Np(0;I)
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Asymptotics of LHS

Jn =

�
@2

@�@�
sn(��n)

�

=
2

n

nX
t=1

�
@

@�
f(xt; ��n)

� �
@

@�
f(xt; ��n)

�0

+
2

n

nX
t=1

et

�
@2

@�@�0
f(xt; ��n)

�

A consequence of the uniform strong law of large numbers is that
a joint limit can be computed as an iterated limit; i.e.

lim
n!1

max
�2�

jgn(�)� g(�)j= 0 & lim
n!1

��n = �o ) lim
n!1

gn(��n) = g(�o)

Therefore:

J = lim
n!1

Jn

= 2

Z �
@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0
d�(x)

+ 2

Z
e dP(e)

Z
@2

@�@�0
f(xt; �

o) d�(x)

= 2Q
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LHS & RHS Combined

Slutsky's Theorem:

Jn
p
n(�̂n � �o) = �pn @

@�
sn(�

o)

�pnsn(�o) L! Np(0; I)

J = lim
n!1Jn

imply

p
n(�̂n � �o)

L! Np(0;J�1IJ�1):

Because J�1IJ�1 = (2Q)�1(4�2Q)(2Q)�1 =
�2Q�1; we have

p
n(�̂n � �o)

L! Np(0; �
2Q�1)

Further, �2Q�1 can be estimated consistently

by V̂ = SSE(�̂n)(F̂ 0F̂ )�1. Why?
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Computations

The best reference for nonlinear optimization

is

Fletcher, R. (1987) Practical Methods of Op-

timization, Second Edition, Wiley, New Y-

ork

an honorable mention is

Gill, Philip E., Walter Murray, and Margaret

H. Wright (1981) Practical Optimization,

Academic Press, New York

The best routine available is NPSOL by Mur-

ray, Gill, and Wright which is available from

the OÆce of Technology Licensing, Stanford

University, and is in the NaG Library.

64



Computations (an adequate approximation)

The idea is to obtain a quadratic approximation SSET0(�) that is
tangent to the residual sum of squares surface SSE(�) at a trial
value of the parameter �T0; as shown for the case p = 1 above. The
minimum �M0

of the approximating quadratic is an approximation
to �̂. The process is iterated, putting �Ti+1

= �Mi
; until the sequence

�Ti
appears to have converged. The limit is accepted as �̂.
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Computations (an inadequate approximation)

Sometimes the minimum �Mi
of the approximating quadratic over-

shoots �̂; as shown above. But also as shown, all points on the line
joining �Mi

and �Ti

� = �Ti
+ �(�Mi

� �Ti
) 0 < � � ��

for �� small enough will lead to an improvement. The idea is to try
to �nd a �i with

SSE[�Ti
+ �i(�Mi

� �Ti
)] < SSE(�Ti

)

and put �Ti+1
= �Ti

+ �i(�Mi
� �Ti

).
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Quadratic Approximations (Gauss-Newton)

SSE(�) = ky � f(�)k2

SSET (�) = ky � f(�T ) + F(�T )(� � �T )k2

(�M � �T) = [F 0(�T )F(�T )]�1F 0(�T )[y � f(�T )]

or

�M = �T +DT

where

DT = [F 0(�T )F(�T )]�1F 0(�T )[y � f(�T )];

which is called the Gauss-Newton downhill di-

rection.

67

Quadratic Approximations (Newton)

SSET (�) = SSE(�T ) +

�
@

@�0
SSE(�T )

�
(� � �T )

+
1

2
(� � �T )

0
"

@2

@�@�0
SSE(�T )

#
(� � �T )

The minimum is

�M = �T +DT

where

DT = �
"

@2

@�@�0
SSE(�T )

#�1
@

@�0
SSE(�T )

=

2
4F 0(�T )F(�T )�

nX
t=1

~et
@2

@�@�0
f(xt; �T)

3
5�1F 0(�T )~e

where

~e = y � f(�T )

which is actually the Gauss-Newton downhill

direction with a correction term added to the

matrix that gets inverted.
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Quadratic Approximations (Steepest Descent)

DT = F 0(�T )[y � f(�T )];

Quadratic Approximations (Marquardt)

DT = [F 0(�T )F(�T ) + ÆS]�1F 0(�T )[y � f(�T )];

where S is F 0(�T )F(�T ) with all o� diagonal

elements put to zero.
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Which is Better?

Gauss-Newton

DT = [F 0(�T )F(�T )]�1F 0(�T )[y � f(�T )];

or Newton

DT=

2
4F 0(�T )F(�T )�

nX
t=1

~et
@2

@�@�0
f(xt; �T )

3
5�1F 0(�T )~e

or steepest descent, or Marquardt, or some-

thing else?

In my opinion, one should just use Gauss-

Newton because the matrix F 0(�T )F(�T ) is al-
ways positive semi-de�nite and one only has to

compute �rst derivatives.

Numerical analysts argue that something that

is fast far from the solution like Gauss-Newton

or steepest descent should be used initially and

then one should switch over to the Newton

method to speed convergence towards the end.
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Line Search

There are numerous suggestions in the litera-

ture. The two most commonly used are chop-

ping and quadratic interpolation.

Chopping: Accept the �rst � in a decreasing

sequence such as 1; 12;
1
4; : : : for which

SSE[�T + �(�M � �T )] < SSE(�T )

Quadratic Interpolation: Fit a quadratic in

� to the three points

x-axis y-axis

� = 0 SSE(�T )

� =
1

2
SSE

�
�T +

1

2
(�M � �T)

�
� = 1 SSE(�M)

Put � to the minimum of the quadratic.
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Line Search (pitfalls)

Chopping: There may be no � in the sequence

1; 12;
1
4; : : : that leads to improvement because

�T + �(�M � �T) gets to within machine pre-

cision of �T . If this happens, either announce

convergence or announce failure, your choice.

Often convergence of the minimization algo-

rithm can be accelerated by starting the chop-

ping sequence o� with some � > 1.

Quadratic Interpolation: The minimizer �M
of the quadratic in � does not necessarily sat-

isfy

SSE[�T + �M(�M � �T )] < SSE(�T )

Always check this condition before taking the

step. If the condition is not satis�ed, start

chopping as above, but starting from �M .
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The Modi�ed Gauss-Newton Algorithm

0. Choose a starting value �0. Compute

D0 = [F 0(�0)F(�0)]�1F 0(�0)[y � f(�0)];

Find �0 between 0 and 1 such that

SSE[�0+ �0D0] < SSE(�0)

1. Put �1 = �0+ �0D0. Compute

D1 = [F 0(�1)F(�1)]�1F 0(�1)[y � f(�1)];

Find �1 between 0 and 1 such that

SSE[�1+ �1D1] < SSE(�1)

2. Put �2 = �1+ �1D1.

�
�
�
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Some Comments

The modi�ed Gauss-Newton method is due to

H. O. Hartley (1961), \The modi�ed Gauss-

Newton method for the �tting of nonlinear re-

gression functions by least squares," Techno-

metrics 3, 269{280.

Modi�ed means line searched.

Algorithms like this that use an approxima-

tion to the Hessian are called quasi Newton

by numerical analysts. The most popular gen-

eral quasi Newton algorithm (not just for least

squares problems) uses rank one numerical-

ly updated Hessians and is called Broyden-

Fletcher-Goldfarb-Shanno (BFGS).

The Newton algorithm with line search is the

same as above but with the Newton downhill

direction Di substituted.

Marquardt requires that Æ decrease to zero as

iterations continue.
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Stopping Rules

Stop when

k�i � �i+1k < �(k�ik+ �) for i = 1; : : : ; p

and, simultaneously,

kSSE(�i)� SSE(�i+1)k < �(kSSE(�i)k+ �)

where � > 0 and � > 0 are preset tolerances. A

standard choice is �= 10�3 and � = 10�5.

Some authors would also check whether

kDik < �

simultaneously with the above before stopping.
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Starting Values

Homily:

A plot of f(xt; �0) against t must re-

semble a plot of yt against t.

One Method:

A perfect �t to representative values.
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Consider Example 1

yt = �1x1t+ �2x2t+ �4e
�3x3t + et;

with data

t y x1 x2 x3

1 0.98610 1 1 6.28
2 1.03848 0 1 9.86
3 0.95482 1 1 9.11
4 1.04184 0 1 8.43
5 1.02324 1 1 8.11
6 0.90475 0 1 1.82
7 0.96263 1 1 6.58
8 1.05026 0 1 5.02
9 0.98861 1 1 6.52
10 1.03437 0 1 3.75
11 0.98982 1 1 9.86
12 1.01214 0 1 7.31
13 0.66768 1 1 0.47
14 0.55107 0 1 0.07
...

Solve

t = 14 : 0:55107 = �2+ �4e
�30:07

t = 6 : 0:90475 = �2+ �4e
�31:82

t = 2 : 1:03848 = �2+ �4e
�39:86

t = 11 : 0:98982 = �1+ �2+ �4e
�39:86

to get starting values.
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0 1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1
 Representative Values

x3

y

control

treatment

Plotted is

y = �1x1+ �2x2+ �4e
�3x3

against x3 with

� = (�0:048660;1:0038835;�0:737919;�0:513623)

which is a perfect �t to the data marked with a star.
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Fit to Representative Values (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

data work;
set amstat;
if t=2 or t=6 or t=11 or t=14 then output;
delete;

proc nlin data=work method=gauss iter=50 convergence=1.0e-5;
parms t1=0 t2=0 t3=-1 t4=-1;
model y=t1*x1+t2*x2+t4*exp(t3*x3);
der.t1=x1; der.t2=x2; der.t3=t4*x3*exp(t3*x3); der.t4=exp(t3*x3);
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Fit to Representative Values (SAS output)

Non-Linear Least Squares Iterative Phase
Dependent Variable Y Method: Gauss-Newton

Iter T1 T2 Sum of Squares
T3 T4

0 0 0 5.397072
-1.000000 -1.000000

1 -0.048660 1.038596 0.000447
-0.826742 -0.510747

2 -0.048660 1.038769 0.0000039585
-0.729756 -0.513288

3 -0.048660 1.038834 1.8362822E-10
-0.737864 -0.513620

4 -0.048660 1.038835 3.3698672E-19
-0.737919 -0.513623

5 -0.048660 1.038835 8.6281662E-32
-0.737919 -0.513623

NOTE: Convergence criterion met.
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Fit to Data (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss covb;
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Fit to Data (SAS output, page 1)

MODEL Procedure
OLS Estimation

Nonlinear OLS Summary of Residual Errors

DF DF
Equation Model Error SSE MSE R-Square Adj R-Sq

Y 4 26 0.0305 0.001173 0.9576 0.9527

Nonlinear OLS Parameter Estimates

Approx. 'T' Approx.
Parameter Estimate Std Err Ratio Prob>|T|

T1 -0.025890 0.01262 -2.05 0.0505
T2 1.015680 0.0099379 102.20 0.0001
T4 -0.504903 0.02566 -19.68 0.0001
T3 -1.115697 0.16354 -6.82 0.0001

Number of Observations Statistics for System
Used 30 Objective 0.001017
Missing 0 Objective*N 0.0305
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Fit to Data (SAS output, page 2)

Covariance of Estimates

CovB T1 T2 T4 T3

T1 0.000159 -0.000079 -0.000044 -0.000177
T2 -0.000079 0.0000988 -1.851E-6 0.000607
T4 -0.000044 -1.851E-6 0.000658 0.002356
T3 -0.000177 0.000607 0.002356 0.0267

This matrix is

s2
�
F̂ 0F̂

��1
where

s2 =
SSE(�̂n)

n� p
.
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DiÆcult Cases

In diÆcult cases, with numerous local minima,

such as neural nets, exible form demand sys-

tems, sums of exponentials, etc. a reasonable

strategy is the following:

Get one reasonable start value �. Let generate

a random point Æ with distance from zero kÆk=
10�8 and iterate the Gauss-Newton method 15

times starting from �+ Æ. Do this 100 times,

saving the �nal value �15 and corresponding

SSE(�15). Do this again for kÆk = 10�7; for
kÆk = 10�6; ..., for kÆk = 10�1. Of the 800

values thus produced, iterate the best 50 to

convergence. Select the best of these as the

answer �̂.
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� Examples & Least Squares Estimates

� Notation & Taylor's Theorem

� Statistical Properties

� Computations

� Hypothesis Tests

� Con�dence Intervals
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Tests of Hypotheses

yt = f(xt; �
o) + et t = 1; : : : ; n

h : �! <q

H : h(�o) = 0 against A : h(�o) 6= 0

Notation:

H(�) =
@

@�0
h(�) =

0
BBB@

@
@�1

h1(�) : : : @
@�p

h1(�)
... ...

@
@�1

hq(�) : : : @
@�p

hq(�)

1
CCCA

Example:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

H : �3�4e
�3 � 1

5
= 0

H(�) =
�
0;0; �4(1 + �3)e

�3; e�3
�

p = 4; q = 1
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Wald Test(1)

Recall:
p
n(�̂n � �o)

L! Np

�
0; �2Q�1

�
1

n
F̂ F̂ ! Q

1

n
SSE(�̂)! �2

Taylor's Theorem:
p
n
h
h(�̂n)� h(�o)

i
= H(��n)

p
n(�̂n � �o)

Slutsky's Theorem implies
p
n
h
h(�̂n)� h(�o)

i L! Nq

�
0; �2HQ�1H 0�

Therefore: If H : h(�o) = 0 is true, then

W =
nh0(�̂n)

�
H
�
1
nF̂ F̂

��1
H 0
��1

h(�̂n)

1
nSSE(�̂)

L! Xq

87

Wald Test(2)

The statistic

W =
nh0(�̂n)

h
H(F̂ F̂ )�1H 0i�1 h(�̂n)
SSE(�̂n)

is called the Wald test statistic, after Abraham

Wald. It is to be compared to the quantiles of

the chi squared distribution on q degrees of

freedom. One rejects for large W .

Often one computes

W =
h0(�̂n)

h
H(F̂ F̂ )�1H 0i�1 h(�̂n)

qs2

instead and compares to the quantiles of the F -

distribution with q numerator degrees of free-

dom and n�p denominator degrees of freedom

because this agrees with the formulas used in

linear models and gives more accurate answers

in small samples.
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Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

H : �3�4e
�3 � 1

5
= 0

H(�) =
�
0;0; �4(1 + �3)e

�3; e�3
�

Computations:

ĥ = h(�̂n) = (�1:1157)(�0:50490)e�1:1157�1
5
= �0:0154

Ĥ = H(�̂n) = (0; 0; 0:019142; �0:365599)
Ĥ(F̂ F̂)�1Ĥ 0 = 0:055256

s2 = 0:00117291

W =
(�0:0154)(0:055256)�1(�0:0154)

(1)(0:00117291)
= 3:66

F(0:95;1;26) = 4:22
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Wald Test (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss covb;
test t3*t4*exp(t3)-0.20 = 0 ,/ wald;

Wald Test (SAS output)

Test Results

Test Type Statistic Prob. Label

Test0 Wald 3.66 0.0556
T3*T4*EXP(T3)-0.20 =
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Constrained and Unconstrained Estimates

yt = f(xt; �
o) + et t = 1; : : : ; n

H : h(�o) = 0 against A : h(�o) 6= 0

Unconstrained Estimate:

�̂n =
�2�

argmin SSE(�)

Constrained Estimate:

~�n =
h(�)=0
argmin SSE(�)
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Likelihood Ratio Test(1)

The statistic

L =
n
h
SSE(~�n)� SSE(�̂n)

i
SSE(�̂n)

is, after some algebra, the likelihood ratio test

statistic for H : h(�o) = 0 against A : h(�o) 6=
0 under the assumption that the errors fetg are
normally distributed. It is to be compared to

the quantiles of the chi squared distribution on

q degrees of freedom. One rejects for large L.

Often one computes

L =

h
SSE(~�n)� SSE(�̂n)

i
=q

SSE(�̂n)=(n� p)

instead and compares to the quantiles of the F -

distribution with q numerator degrees of free-

dom and n�p denominator degrees of freedom

because this agrees with the formulas used in

linear models and gives more accurate answers

in small samples.
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Likelihood Ratio Test(2)

The derivation of the asymptotic distribution

of the likelihood ratio test is not diÆcult but it

is time consuming and therefore will be omit-

ted.

What takes time is in getting the asymptot-

ic distribution of the constrained estimator ~�n.

The rest of the derivation is a straightforward

application of Taylor's Theorem.

Each of the following references contains the

derivation. The second is recommended and

can be downloaded from the course web page.

Gallant, A. Ronald (1987) Nonlinear Statistical Models, Wiley,
New York.

Gallant, A. Ronald (1992) Nonlinear Regression Asymptotics,

Manuscript, Department of Economics, University of North
Carolina.

Gallant, A. Ronald (1997) Introduction to Econometric Theory,

Princeton University Press, Princeton NJ.
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Computing ~�n (1)

~� minimizes SSE(�)

subject to h(�) = 0

Direct Approach:

Use software such as NPSOL from the OÆce

of Technical Licensing, Stanford University.

Indirect Approach:

Rewrite the hypothesis as a functional depen-

dence

H : h(�o) = 0 against A : h(�o) 6= 0

,
H : �o = g(�) for some � against A : �o 6= g(�) for any �

h(�) 2 <q; � 2 <p; � 2 <r; p = r+ q
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Computing ~�n (2)

Once the hypothesis is written as a functional

dependence, �t the model

yt = f [xt; g(�)] + et

to get the unconstrained estimate �̂n and then

put

~�n = g(�̂n)
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Example:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

H : �3�4e
�3 � 1

5
= 0

,
H : �4 = 5(�3e

�3)�1

That is, �1; �2; and �3 are free parameters and

the value of �4 is implied by the parametric

restriction h(�) = 0. This can be expressed as

the functional dependence

(�1; �2; �3; �4) = g(�1; �2; �3)

where

�1 = �1

�2 = �2

�3 = �3

�4 = 5(�3e
�3)�1
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Constrained Estimation (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc model data=amstat;
t1=r1; t2=r2; t3=r3; t4=1.0/(5.0*r3*exp(r3));
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms r1=-0.048660 r2=1.038835 r3=-0.737919;
fit y / ols converge=1.0e-5 maxiter=150 method=gauss;

Constrained Estimation (SAS output)

MODEL Procedure
OLS Estimation

Nonlinear OLS Summary of Residual Errors

DF DF
Equation Model Error SSE MSE R-Square Adj R-Sq

Y 3 27 0.0349 0.001294 0.9514 0.9478

Nonlinear OLS Parameter Estimates

Approx. 'T' Approx.
Parameter Estimate Std Err Ratio Prob>|T|

R1 -0.023019 0.01315 -1.75 0.0915
R2 1.019656 0.01010 100.98 0.0001
R3 -1.160403 0.16300 -7.12 0.0001
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Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

H : �3�4e
�3 � 1

5
= 0

H(�) =
�
0;0; �4(1 + �3)e

�3; e�3
�

Computations:

SSE(~�) = 0:3493

SSE(�̂) = 0:3049

L=
(0:3493� 0:3049)=1

(0:3049)=26
= 3:78

F(0:95;1;26) = 4:22
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Likelihood Ratio Test (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss;
test t3*t4*exp(t3)-0.20 = 0 ,/ lr;

Likelihood Ratio Test (SAS output)

Test Results

Test Type Statistic Prob. Label

Test0 L.R. 3.78 0.0518
T3*T4*EXP(T3)-0.20 =
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Lagrange Multiplier Test (1)

aka EÆcient Score Test

aka nR2 Test

Intuition:

R =
n ~D0( ~F 0 ~F) ~D
SSE(~�)

where

~D = (~F 0 ~F )�1 ~F 0~e ~e = y � f(~�)

is the Gauss-Newton step from ~� to �̂. That

is, one expects that

�̂
:
= ~�+ ~D:

Thus, if the constraint h(�) = 0 is markedly

false, then one expects that ~D
:
= �̂ � ~� will

be large and that R will therefore be large.

Conversely, if h(�) = 0 is approximately true,

then ~D and therefore R should be small.
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Lagrange Multiplier Test (2)

R =
n ~D0( ~F 0 ~F) ~D
SSE(~�)

=
(n=4)~�0 ~H( ~F 0 ~F)�1 ~H 0~�

SSE(~�)

The Lagrangian for the constrained optimiza-

tion problem is

L(�; �) = SSE(�) + �0h(�)

with �rst order condition

0 = �2~e0 ~F +~�0 ~H

so that

~D = (~F 0 ~F)�1 ~F 0~e = (1=2) ~H 0~�

The shadow price of the constraint h(�) = 0 in

SSE units is �. When the constraint is severely

binding, one expects that � and hence R will

be large.
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Lagrange Multiplier Test (3)

The statistic

R =
n ~D0( ~F 0 ~F) ~D
SSE(~�)

is to be compared to the quantiles of the chi

squared distribution on q degrees of freedom.

One rejects for large R. To make degrees of

freedom corrections, compare to

d =
nF

(n� p)=q+ F

where F is the quantile of the F -distribution

with q numerator degrees of freedom and n�p

denominator degrees of freedom.

A diÆculty with the Lagrange multiplier test

is the division by SSE(~�) instead of SSE(�̂); if

the hypothesis is false then the former is larger

than the latter, which reduces power.
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Lagrange Multiplier Test (4)

R =
n ~D0( ~F 0 ~F) ~D
SSE(~�)

where

~D = (~F 0 ~F )�1 ~F 0~e

Computation:

Regress ~e = y � f(~�) on ~F = @
@�f(

~�) with no

intercept term in the regression. Then

SSE(~�) = uncorrected sum of squares

~D0( ~F 0 ~F ) ~D = regression sum of squares

R = n� uncorrected R2 statistic
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Lagrange Multiplier Computations (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

data work;
set amstat;
r1 = -0.023019; r2 = 1.019656; r3 = -1.160403;
t1=r1; t2=r2; t3=r3; t4=1.0/(5.0*r3*exp(r3));
e = y - t1*x1 - t2*x2 - t4*exp(t3*x3);
f1=x1; f2=x2; f3=t4*x3*exp(t3*x3); f4=exp(t3*x3);

proc reg data=work;
model e = f1 f2 f3 f4 / noint;
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Lagrange Multiplier Computations (SAS output)

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 4 0.00444 0.00111 0.946 0.4531
Error 26 0.03049 0.00117
U Total 30 0.03493

Root MSE 0.03425 R-square 0.1271
Dep Mean 0.00000 Adj R-sq -0.0072
C.V. 7641577.2219

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0

F1 1 -0.002857 0.01261060 -0.227
F2 1 -0.003987 0.00982955 -0.406
F3 1 0.043420 0.15679176 0.277
F4 1 0.045355 0.02612781 1.736
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Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

H : �3�4e
�3 � 1

5
= 0

Computations:

SSE(~�) = 0:3493

~D0( ~F 0 ~F) ~D = 0:00444

R =
(30)(0:0444)

(0:3493)=26
= 3:81

R = (30)(0:1271) = 3:81

X 2(0:95;1) = 3:841 d = 4:19
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Lagrange Multiplier Test (SAS code)

data amstat;
infile "amstat.dat";
input t y x1 x2 x3;

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss;
test t3*t4*exp(t3)-0.20 = 0 ,/ lm;

Lagrange Multiplier Test (SAS output)

Test Results

Test Type Statistic Prob. Label

Test0 L.M. 3.81 0.0509
T3*T4*EXP(T3)-0.20 =
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Lagrange Multiplier Test (5)

As for the likelihood ratio test, the derivation

of the asymptotic distribution of the Lagrange

multiplier test is not diÆcult but it is time con-

suming and therefore will be omitted.

Each of the following references contains the

derivation. The second is recommended and

can be downloaded from the course web page.

Gallant, A. Ronald (1987) Nonlinear Statistical Models, Wiley,
New York.

Gallant, A. Ronald (1992) Nonlinear Regression Asymptotics,

Manuscript, Department of Economics, University of North
Carolina.

Gallant, A. Ronald (1997) Introduction to Econometric Theory,

Princeton University Press, Princeton NJ.
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Lack of Invariance of the Wald Test (1)

Me: I want to test the hypothesis that the half life in the
following exponential model is 2 hours. My parameters
are Cl and V; which is the standard parameterization in
pharmacokinetic applications. The value of D0 is known.

yt =
D0

V
e�

Cl

V
t + et

Half life: V
Cl
log 2

H: V
Cl
= 2

log 2

You: You use the standard parameterization of the mod-
el in the statistical literature:

yt = D0�1e��2t + et

Half life: log 2

�2

H: �2 =
log 2

2

Both of us are using the same model and testing the
same hypothesis. With the same data, one would expect
that we should both get the same result. But if we use
the Wald test, one of us might accept and the other
reject.

The relation between the models has the form � = g(�);
that is,

� = (�1; �2) = (
1

V
;
Cl

V
) = g(Cl; V ) = g(�)
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Lack of Invariance of the Wald Test (2)

Here is why this happens:

Me: y = f(�) + e

H: � = ��

W = (�̂ � ��)0(F̂ 0F̂ )(�̂ � ��)=(ps2)

You: y = f [g(�)] + e

H: �= �� where g(��) = ��

W = (�̂� ��)0(Ĝ0F̂ 0F̂ Ĝ)(�̂� ��)=(ps2)

The two statistics would be the same if

�̂ � �� = Ĝ(�̂� ��)
but this is not the case in general. The dif-

ference is the second order term in a Taylor's

expansion:

(�̂���)�Ĝ(�̂���) = 1

2
(�̂���)0 @2

@�@�0
g(��)(�̂���)
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� Wald Test

{ Advantages: Can be computed from �̂ only,
which is useful if f(x; �) is linear and h(�) is
not.

{ Disadvantages: Asymptotics are inaccurate. Not
invariant to reparametrization.

� Likelihood Ratio Test

{ Advantages: Asymptotics are very accurate. In-
variant to reparametrization. Better power than
the Lagrange multiplier test.

{ Disadvantages: Requires two optimizations.

� Lagrange Multiplier Test

{ Advantages: Asymptotics are accurate. Invari-
ant to reparametrization. Can be computed
from ~� only, which is useful if f [x; g(�)] is lin-
ear.

{ Disadvantages: Spurious acceptance because
~D = 0 at every local minimum, local maximum,
and saddle point. Power is not as good as the
likelihood ratio test.
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Topics

� Examples & Least Squares Estimates

� Notation & Taylor's Theorem

� Statistical Properties

� Computations

� Hypothesis Tests

� Con�dence Intervals
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Con�dence Intervals

0.16 0.17 0.18 0.19 0.2 0.21 0.22
0

1

2

3

4

5

6

7

8

9

10
 Inverting a Test Statistic

Test Statistic

Critical Value

γ*

W
, L

, o
r 

R

To set a con�dence interval on a nonlinear function (�); invert one
of the three tests. That is, let

h(�) = (�)� �

and put in the interval all � for which

H : h(�) = 0

is accepted.
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Wald Test

The Wald test accepts when

j(�̂)� �j
s
h
Ĥ(F̂ 0F̂ )�1Ĥ 0

i1
2

� t�=2

The points that satisfy the inequality are

(�̂)� t�=2 s
h
Ĥ(F̂ 0F̂)�1Ĥ 0i12
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Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

(�) = �3�4e
�3

Wald Test (SAS code)

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss;
estimate "GrowthRate" t3*t4*exp(t3) ,/ covb;

Wald Test (SAS output)

Approx. 'T' Approx.
Term Estimate Std Err Ratio Prob>|T| Label

GrowthRate 0.184592 0.008050 22.93 0.0001 T3*T4*EXP(T3)

Computations:

(�̂)� t�=2 s
�
Ĥ(F̂ 0F̂)�1Ĥ 0

�1
2

= 0:1846� (2:054)(0:00805)

= [0:168;0:201]
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Likelihood Ratio Test

The likelihood ratio test accepts when

SSE(~��)� SSE(�̂)

SSE(~��)=(n� p)
� F�=2

where

~�� =
(�)=�
argmin SSE(�)

Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

(�) = �3�4e
�3
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Likelihood Ratio Test (SAS code)

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss;
test t3*t4*exp(t3)=0.166 ,/ lr;
test t3*t4*exp(t3)=0.167 ,/ lr;
test t3*t4*exp(t3)=0.168 ,/ lr;
test t3*t4*exp(t3)=0.200 ,/ lr;
test t3*t4*exp(t3)=0.201 ,/ lr;
test t3*t4*exp(t3)=0.202 ,/ lr;

Likelihood Ratio Test (SAS output)

Test Results

Test Type Statistic Prob. Label

Test0 L.R. 4.62 0.0316
T3*T4*EXP(T3)=0.166
Test1 L.R. 4.18 0.0408
T3*T4*EXP(T3)=0.167
Test2 L.R. 3.76 0.0523
T3*T4*EXP(T3)=0.168
Test3 L.R. 3.78 0.0518
T3*T4*EXP(T3)=0.200
Test4 L.R. 4.29 0.0382
T3*T4*EXP(T3)=0.201
Test5 L.R. 4.84 0.0278
T3*T4*EXP(T3)=0.202
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Likelihood Ratio Test (Matlab code)

A = [1 0.166 0.166^2 ; 1 0.167 0.167^2 ; 1 0.168 0.168^2];
y = [4.62 ; 4.18 ; 3.76];
b = inv(A)*y;
root_l = (- b(2) - sqrt(b(2)^2 - 4*b(3)*(b(1)-4.22)))/(2*b(3))

A = [1 0.200 0.200^2 ; 1 0.201 0.201^2 ; 1 0.202 0.202^2];
y = [3.78 ; 4.29 ; 4.84];
b = inv(A)*y;
root_r = (- b(2) + sqrt(b(2)^2 - 4*b(3)*(b(1)-4.22)))/(2*b(3))

Likelihood Ratio Test (Matlab output)

root_l =

0.1669

root_r =

0.2009

Con�dence Interval:

[0:167; 0:201]
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Lagrange Multiplier Test

The Lagrange multiplier test accepts when

n ~D0 ~F 0 ~F ~D

SSE(~��)
� d�=2

:
= X2

�=2

where

~�� =
(�)=�
argmin SSE(�)

Consider Example 1:

yt = �1x1t+ �2x2t+ �4e
�3x3t + et

(�) = �3�4e
�3

119

Lagrange Multiplier Test (SAS code)

proc model data=amstat;
y=t1*x1+t2*x2+t4*exp(t3*x3);
parms t1=-0.048660 t2=1.038835 t3=-0.737919 t4=-0.513623;
fit y / ols converge=1.0e-8 maxiter=50 method=gauss;
test t3*t4*exp(t3)=0.166 ,/ lm;
test t3*t4*exp(t3)=0.167 ,/ lm;
test t3*t4*exp(t3)=0.168 ,/ lm;
test t3*t4*exp(t3)=0.200 ,/ lm;
test t3*t4*exp(t3)=0.201 ,/ lm;
test t3*t4*exp(t3)=0.202 ,/ lm;

Lagrange Multiplier Test (SAS output)

Test Results

Test Type Statistic Prob. Label

Test0 L.M. 4.60 0.0320
T3*T4*EXP(T3)=0.166
Test1 L.M. 4.23 0.0398
T3*T4*EXP(T3)=0.167
Test2 L.M. 3.85 0.0497
T3*T4*EXP(T3)=0.168
Test3 L.M. 3.81 0.0509
T3*T4*EXP(T3)=0.200
Test4 L.M. 4.25 0.0391
T3*T4*EXP(T3)=0.201
Test5 L.M. 4.71 0.0300
T3*T4*EXP(T3)=0.202
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Lagrange Multiplier Test (Matlab code)

y = [4.60 ; 4.23 ; 3.85];
b = inv(A)*y;
root_l = (- b(2) - sqrt(b(2)^2 - 4*b(3)*(b(1)-4.19)))/(2*b(3))

A = [1 0.200 0.200^2 ; 1 0.201 0.201^2 ; 1 0.202 0.202^2];
y = [3.81 ; 4.25 ; 4.71];
b = inv(A)*y;
root_r = (- b(2) + sqrt(b(2)^2 - 4*b(3)*(b(1)-4.19)))/(2*b(3))

Lagrange Multiplier Test (Matlab output)

root_l =

0.1671

root_r =

0.2009

Con�dence Interval:

[0:167; 0:201]
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Con�dence Interval Problems
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 Inverting a Test Statistic
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r 
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Neither the likelihood ratio test statistic nor the Lagrange multipli-
er test statistic are guaranteed to plot above their critical values.
This can result in open ended con�dence intervals as shown above.
Models with exponential terms in them sometimes exhibit this be-
havior. Also, the test statistic can oscillate about its critical value
resulting in con�dence sets that are a union of disjoint intervals.
This can happen with spline models where the join point is esti-
mated. The Wald test does not have these problems and always
produces a con�dence interval that is symmetric about the estimate
of the parametric function.
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Topics

� Examples & Least Squares Estimates

� Notation & Taylor's Theorem

� Statistical Properties

� Computations

� Hypothesis Tests

� Con�dence Intervals
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