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A General Principle (1)

Consider the situation

y = f(�) + e E(ee0) = �2V

where

y =

0
BBB@
y1
y2
...
yn

1
CCCA f(�) =

0
BBB@
f(x1; �)
f(x2; �)

...
f(xn; �)

1
CCCA e =

0
BBB@
e1
e2
...
en

1
CCCA

If we factor V �1 as V �1 = P 0P; then the ro-

tated model

Py = Pf(�) + Pe or \y" = \f"(�) + \e"

is of the form we just studied because

E
h
(\e")(\e")0

i
= EPee0P 0 = PE(ee0)P 0

= �2PV P 0 = �2P(P 0P)�1P 0

= �2I
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A General Principle (2)

For this observation to have any practical im-

portance, it is necessary for P to be a sparse

matrix with rows that have a simple, repetitive

pattern.

To see this, rewrite the rotated model

Py = Pf(�) + Pe or \y" = \f"(�) + \e"

as

p0ty = p0tf(�) + p0te t = 1; : : : ; n

where p0t for t = 1; : : : ; n are rows of P . To �t

into the framework of Chapter 1,

\f"(\xt"; �) = p0tf(�)
must have a simple form such as

\f"(\xt"; �) = atf(xt�1; �) + btf(xt; �)

where the sequence

\xt" = (xt�1; xt; at; bt)
is a Cesaro sum generator. Our applications

have this structure.
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Heteroskedastic Errors, Known Form

yt = f(xt; �) + et Ee2t =
�2

 2(xt)

Rotated model

 (xt)yt =  (xt)f(xt; �) +  (xt)et

Just regress

\yt" =  (xt)yt on \f"(xt; �) =  (xt)f(xt; �)

i.e., weighted least squares.
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Heteroskedastic Errors
Known to Within a Parameter (1)

yt = f(xt; �) + et Ee2t =
1

 2(xt; �)

Either (1) put the model in implicit form and apply max-
imum likelihood or (2) estimate � from least squares
residuals.

The �rst is what ought to be done if the vectors � and
� have some elements in common.

(1) Maximum Likelihood

Implicit model: q(yt; xt; �) =  (xt; �)[yt � f(xt; �)] = \et"

Parameter: � = (�; �) with elements in common deleted.

Assumed error density: p(e; �)

Jacobian term: J(yt) =
@
@y
q(yt; xt; �) =  (xt; �)

Log likelihood:

L(�; �) =

nX
t=1

log j (xt; �)j+
nX
t=1

log p[q(yt; xt; �); �]
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Heteroskedastic Errors
Known to Within a Parameter (2)

yt = f(xt; �) + et Ee2t =
1

 2(xt; �)

Either (1) put the model in implicit form and apply max-
imum likelihood or (2) estimate � from least squares
residuals.

For (2) there are many approaches. This, in my opinion,
is the best

Regress yt on f(xt; �) by nonlinear least squares to get
a preliminary least squares estimate �̂ and residuals

ê= yt � f(xt; �̂):

Compute

(�̂ ; ĉ) =
(t;c)

argmin

nX
t=1

�
jêtj � c

 (xt; �)

�2
:

using the optimization methods discussed in Chapter 1.
Regress

\yt" =  (xt; �̂)yt on \f"(xt; �) =  (xt; �̂)f(xt; �)

to get an estimate of � : If the errors are normally dis-

tributed, then ĉ estimates
q

2�2

�
. If the discrepancy be-

tween this value and ĉ is large (Wald test), you might
worry that your assumption that Ee2t = 1

 2(xt;�)
is wrong.
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Detection of Heteroskedasticity

Breusch-Pagan test:

H :  (xt) = 1 against A :  (xt) = h(�0xt)

Regress ê2t =s
2 on xt; which is a linear regres-

sion, and reject H if

SSE(�̂)

2

exceeds the upper critical point of the chi

squared distribution on k � 1 degrees of free-

dom.

Plots:

Plot jêtj against xit for i= 1; : : : ; k.

9

Topics

� Heteroskedasticity

{ Known form

{ Unknown form

� Serial Correlation

{ Known form

{ Unknown form

10

Heteroskedasticity: Unknown Form (1)

The idea is to use the nonlinear least squares

estimator and correct the variance estimate

for heteroskedasticity. The correction is deter-

mine by working out the asymptotics assuming

that

yt = f(xt; �
o) + et Eet = 0 Var et = �2t

where �2s is not necessarily equal to �2t when

s 6= t : The independence assumption is re-

tained.

The �rst order conditions for

�̂n =
�2�

argmin sn(�)

where

sn(�) =
1

n

nX
t=1

[yt � f(xt; �)]
2

are the same in Chapter 1.
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Heteroskedasticity: Unknown Form (2)

First Order Conditions

@

@�
sn(�) = 0

Taylor's Expansion of FOC

"
@2

@�@�
sn(��n)

#p
n(�̂n � �o) = �pn @

@�
sn(�

o)

where ��n is on the line segment joining �o to

�̂n. Because ��n must therefore be closer to

�o than �̂n is and limn!1 �̂n = �o; we have

limn!1 ��n = �o as well.
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Asymptotics of RHS

�pn @
@�
sn(�

o) =
2p
n

nX
t=1

@

@�
f(xt; �

o) et

Mean: E ��pn @
@�
sn(�o)

�
= 0

Variance:

In = Var

�
�pn @

@�
sn(�

o)

�

=
4

n

nX
t=1

�2t

�
@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0

Limiting Variance: (These are assumptions)

I = lim
n!1

In
In = lim

n!1
În

where

În = 4

n

nX
t=1

�
yt � f(xt; �̂)

�2 � @
@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0

Central Limit Theorem:

�pnsn(�o) L! Np(0;I)
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Asymptotics of LHS (same as before)

Jn =

�
@2

@�@�
sn(��n)

�

=
2

n

nX
t=1

�
@

@�
f(xt; ��n)

� �
@

@�
f(xt; ��n)

�0

+
2

n

nX
t=1

et

�
@2

@�@�0
f(xt; ��n)

�

A consequence of the uniform strong law of large numbers is that
a joint limit can be computed as an iterated limit; i.e.

lim
n!1

max
�2�

jgn(�)� g(�)j= 0 & lim
n!1

��n = �o ) lim
n!1

gn(��n) = g(�o)

Therefore:

J = lim
n!1

Jn

= 2

Z �
@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0
d�(x)

+ 2

Z
e dP(e)

Z
@2

@�@�0
f(xt; �

o) d�(x)

= 2Q
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LHS & RHS Combined

Slutsky's Theorem:

Jn
p
n(�̂n � �o) = �pnsn(�o)

�pnsn(�o) L! Np(0; I)

J = lim
n!1Jn

imply

p
n(�̂n � �o)

L! Np(0;J�1IJ�1):

That is all there is. In the heteroskedastic case

the matrix J�1IJ�1 cannot be reduced to a

simpler form.
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Heteroskedasticity: Unknown Form (3)

To summarize, use the nls estimator

�̂n =
�2�

argmin [y � f(�)]0 [y � f(�)]

and estimate the variance-covariance matrix ofp
n(�̂n � �o) by

V̂ = Ĵ�1ÎĴ�1

using

Ĵ =
2

n
F̂ 0F̂

În = 4

n

nX
t=1

ê2t

�
@

@�
f(xt; �̂n)

� �
@

@�
f(xt; �̂n)

�0

where

F̂ =
@

@�0
f(�̂n) ê = y � f(�̂n)
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Heteroskedasticity: Unknown Form, Tests

H : h(�o) = 0 against A : h(�o) 6= 0

The proof that the likelihood ratio test follows
the chi squared distribution requires I to equal
J to within a scalar multiple. Therefore the
likelihood ratio test cannot be used.

The Wald test is essentially ĥ = h(�̂n) divided
by its standard error. This can still be done:

W = nĥ0(ĤV̂ Ĥ 0)�1ĥ
where Ĥ = (@=@�0)h(�̂n).

The Lagrange multiplier test is the G-N down-
hill direction ~D = (~F 0 ~F )�1 ~F 0[y � f(~�n)] divided
by its standard error:

R = n ~D0 ~H 0( ~H ~V ~H 0)�1 ~H ~D

where ~�n =
h(�)=0
argmin [y � f(�)]0 [y � f(�)]

In both cases, reject when the statistic exceeds
upper critical point of the chi squared distribu-
tion on q degrees freedom.
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Serial Correlation: Known Form (1)

yt = f(xt; �
o) + ut Eut = 0

If the errors ut are stationary, a standard as-

sumption, then

Eutut+h = (h):

That is, the covariances only depend on the

distance in time between errors, not on their

position in time.

Written in vector form, the model is

y = f(�o) + u Eu= 0 Euu0 = �n

where

�n =

0
BBB@

(0) (1) (2) : : : (n� 1)
(1) (0) (1) (n� 2)
(2) (1) (0) (n� 3)
... . . .

(n� 1) (n� 2) (n� 3) (0)

1
CCCA

19

Serial Correlation: Known Form (2)

If (h) declines to zero at a geometric rate,

a standard assumption, then the variance ma-

trix of an autoregressive model of order q can

approximate �n to within arbitrary accuracy.

The autoregressive model has a very conve-

nient factorization: (�n)�1 = P 0P
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AR-1

ut+ aut�1 = et Eet = 0 Ee2t = �2

Yule-Walker Equations:

Eutut+ aEutut�1 = Eutet
Eut�1ut+ aEut�1ut�1 = Eut�1et

that is,

(0) + a(1) = �2

(1) + a(0) = 0

AR-1 Transformation:

P =

0
BBBB@
�=
p
(0) 0 : : : 0
a 1

a 1
.. .
a 1

1
CCCCA

Rotated model:

�y1p
(0)

=
�f(x1; �)p

(0)
+ e1 t= 1

ayt+ yt�1 = af(xt; �) + f(xt�1; �) + et t= 2; : : : ; n
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AR-q

ut+a1ut�1+a2ut�2+� � �+aqut�q = et Ee2t = �2

Yule-Walker Equations:

�q+1

0
BBB@

1
a1
...
aq

1
CCCA=

0
BBB@
�2

0
...
0

1
CCCA

Solution:

a = ���1q q

�2 = (0) + a0q
where

a =

0
B@ a1

...
aq

1
CA q =

0
B@ (1)

...
(q)

1
CA
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AR-q

AR-q Transformation:

P =

0
BBBBBB@

�Pq 0

aq aq�1 : : : a1 1
aq aq�1 : : : a1 1

.. .
aq aq�1 : : : a1 1

1
CCCCCCA

where

(�q)
�1 = P 0qPq

Rotated Model:

Pq

0
B@ y1

...

yq

1
CA= Pq

0
B@ f(x1; �)

...

f(xq; �)

1
CA+ et

yt+a0
0
B@ yt�1

...
yt�q

1
CA= f(xt; �)+a0

0
B@ f(xt�1; �)

...
f(xt�q; �)

1
CA+et
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AR Transformations

All one needs to compute the transformation
are estimates of (h) : These can be estimated

as follows:

Regress yt on f(xt; �) by nonlinear least squares
to get a preliminary least squares estimate �̂
and residuals

û = yt � f(xt; �̂):

Estimate (h) by

̂(h) =
1

n

n�hX
t=1

ûtût+h

for h = 0;1; : : : ; q.

Use upward t-testing or BIC to determine q.

These are rotated models so the methods of

Chapter 1 apply.

Reference: Gallant, A. Ronald, and J. Je�ery Goebel
(1976), \Nonlinear Regression with Auto-correlated Er-
rors," Journal of the American Statistical Association

71, 961{967.
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Serial Correlation: Unknown Form (1)

yt = f(xt; �
o) + et Eet = 0 Eetet+h = (t; h)

The correlations depend on the separation in time and
the position in time, and can be heteroskedastic as well.

Regularity conditions are usually stated in terms of mix-
ing coeÆcients such as the strong mixing coeÆcient

�h =max
t

max
A;B

jP(A \B)� P(A)P(B)j

where A is an event that depends only on the past,
namely (� � � ; et�1; et); and B depends only on the future,
namely (et+h; et+h+1; : : :). Notice the gap h between the
past and future.

The relation between covariances and mixing coeÆ-
cients is as follows: If Eurt � Br; then

j(t; h)j � 8B(�h)
(r�2)=r

The typical rate to get a strong law and a central limit
theorem is

�h = h�r=(r�2)��

for some � > 0. Notice that this is slower that the geo-
metric rate on covariances implied by the AR assumption
used earlier.
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Serial Correlation: Unknown Form (2)

As with heteroskedasticity of unknown form,

the idea is to use the nonlinear least squares

estimator and correct the variance estimate for

both serial correlation and heteroskedasticity.

The correction is determined by working out

the asymptotics assuming that

yt = f(xt; �
o) + et Eet = 0 Eetet+h = (t; h):

where both xt and et satisfy mixing conditions.

The �rst order conditions for

�̂n =
�2�

argmin sn(�)

where

sn(�) =
1

n

nX
t=1

[yt � f(xt; �)]
2

are the same in Chapter 1.
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Serial Correlation: Unknown Form (3)

First Order Conditions

@

@�
sn(�) = 0

Taylor's Expansion of FOC

"
@2

@�@�
sn(��n)

#p
n(�̂n � �o) = �pn @

@�
sn(�

o)

where ��n is on the line segment joining �o to

�̂n. Because ��n must therefore be closer to

�o than �̂n is and limn!1 �̂n = �o; we have

limn!1 ��n = �o as well.
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Asymptotics of RHS

�pn @
@�
sn(�

o) =
2p
n

nX
t=1

@

@�
f(xt; �

o) et

Mean: E ��pn @
@�
sn(�o)

�
= 0

Variance:

In = Var

�
�pn @

@�
sn(�

o)

�

=
4

n

nX
s=1

nX
t=1

E
�
eset

�
@

@�
f(xs; �

o)

� �
@

@�
f(xt; �

o)

�0�

Limiting Variance: (This is an assumption)

I = lim
n!1

In

Central Limit Theorem:

�pnsn(�o) L! Np(0;I)
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Asymptotics of LHS (same as before)

Jn =

�
@2

@�@�
sn(��n)

�

=
2

n

nX
t=1

�
@

@�
f(xt; ��n)

� �
@

@�
f(xt; ��n)

�0

+
2

n

nX
t=1

et

�
@2

@�@�0
f(xt; ��n)

�

A consequence of the uniform strong law of large numbers is that
a joint limit can be computed as an iterated limit; i.e.

lim
n!1

max
�2�

jgn(�)� g(�)j= 0 & lim
n!1

��n = �o ) lim
n!1

gn(��n) = g(�o)

Therefore:

J = lim
n!1

Jn

= 2

Z �
@

@�
f(xt; �

o)

� �
@

@�
f(xt; �

o)

�0
d�(x)

+ 2

Z
e dP(e)

Z
@2

@�@�0
f(xt; �

o) d�(x)

= 2Q
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LHS & RHS Combined

Slutsky's Theorem:

Jn
p
n(�̂n � �o) = �pnsn(�o)

�pnsn(�o) L! Np(0; I)

J = lim
n!1Jn

imply

p
n(�̂n � �o)

L! Np(0;J�1IJ�1):

As for the heteroskedastic case, that is all there

is. The matrix J�1IJ�1 cannot be reduced to
a simpler form.
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Estimation of I from NLS Residuals (1)

Rewrite the variance by grouping terms that

are equidistant in time:

In =
4

n

nX
s=1

nX
t=1

E
(
eset

�
@

@�
f(xs; �

o)

� �
@

@�
f(xt; �

o)

�0)

=
n�1X

�=�(n�1)
In�

where

In�=

8>>><
>>>:
4

n

nX
t=�+1

Eetet��
@

@�
f(xt; �

o)
@

@�0
f(xt�� ; �o) � � 0

I0n;�� � < 0

This looks like the formula for the variance of

a spectral density at the zero frequency. Re-

sults from the spectral density literature can

be applied.

32



Estimation of I from NLS Residuals (2)

Use residuals

êt = yt � f(xt; �̂n)

from the nonlinear least squares estimate

�̂n =
�2�

argmin [y � f(�)]0 [y � f(�)]

to compute

In =
l(n)X

�=�l(n)
w

 
�

l(n)

!
În�

where l(n) = n1=5 and

În�=

8>>><
>>>:
4

n

nX
t=�+1

êtêt��
@

@�
f(xt; �̂)

@

@�0
f(xt�� ; �̂) � � 0

Î0n;�� � < 0

w(v) =

8>><
>>:
1� 6jvj2+6jvj3 0 � jvj � 1

2

2(1� jvj)3 1
2 � jvj � 1

33

Estimation of I from NLS Residuals (3)

In the previous transparency, the truncation of

the sum at n1=5 is to avoid summing n2 item-

s. The overall divisor is n; so the sum would

never converge. This introduces bias due to

the neglected terms In� for j� j > n1=5; but this

bias is small because In� declines to zero at a

polynomial rate due to the mixing assumptions

that were used to get asymptotic normality.

The truncation of the sum at n1=5 would de-

stroy the positive de�niteness of In were not

for the weight function w(v). That is the

reason for its presence. The weight function

shown is called the Parzen window, which is

the recommended choice in the spectral den-

sity literature.
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Serial Correlation: Unknown Form (4)

To summarize, use the nls estimator

�̂n =
�2�

argmin [y � f(�)]0 [y � f(�)]

and estimate the variance-covariance matrix of
p
n(�̂n � �o) by

V̂ = Ĵ�1ÎĴ�1

using

Ĵ =
2

n
F̂ 0F̂

and În as de�ned above, where

F̂ =
@

@�0
f(�̂n):
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Serial Correlation: Unknown Form, Tests

H : h(�o) = 0 against A : h(�o) 6= 0

The proof that the likelihood ratio test follows
the chi squared distribution requires I to equal
J to within a scalar multiple. Therefore the
likelihood ratio test cannot be used.

The Wald test is essentially ĥ = h(�̂n) divided
by its standard error. This can still be done:

W = nĥ0(ĤV̂ Ĥ 0)�1ĥ
where Ĥ = (@=@�0)h(�̂n).

The Lagrange multiplier test is the G-N down-
hill direction ~D = (~F 0 ~F )�1 ~F 0[y � f(~�n)] divided
by its standard error:

R = n ~D0 ~H 0( ~H ~V ~H 0)�1 ~H ~D

where ~�n =
h(�)=0
argmin [y � f(�)]0 [y � f(�)]

In both cases, reject when the statistic exceeds
upper critical point of the chi squared distribu-
tion on q degrees freedom.
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