SNP: Nonparametric Time Series Analysis

by

A. Ronald Gallant

Department of Economics
University of North Carolina
Chapel Hill NC 27599-3305 USA
(C) 2000 by A. Ronald Gallant

Application

S\&P 500, 1928-1987

Price and Volume, 16127 observations
Files: nyse.doc, nyse.dat

References

Gallant, A. Ronald, and George Tauchen (1998), SNP: A Program for Nonparametric Time Series Analysis, User's Guide At ftp.econ.duke.edu in pub/arg/snp.

Gallant, A. Ronald, Peter E. Rossi, and George E. Tauchen (1992), "Stock Prices and Volume," The Review of Financial Studies 5, 199-242.

Gallant, A. Ronald, Peter E. Rossi, and George E. Tauchen (1993), "Nonlinear Dynamic Structures," Econometrica 61, 871-907.

Topics

- Application

- Hermite Expansions
- SNP Density
- Performance
- Model Selection
- Extension to Time Series
- VAR-type Location Function
- ARCH- or GARCH-type Scale Function
- Non-homogeneous Innovations
- Miscellany

Assumptions

1. Stationary, multivariate

$$
y_{t}=\left(\begin{array}{c}
y_{1 t} \\
y_{2 t} \\
\vdots \\
y_{M t}
\end{array}\right) \quad M \times 1
$$

Stationarity is assumed so that densities for a stretch of data are time invariant. That is, they are of the form $f\left(y_{t-L}, . ., y_{t}\right)$ rather than $f_{t}\left(y_{t-L}, . ., y_{t}\right)$.
2. Markovian

The conditional density of y_{t} given the entire past depends only on a finite number of lags That is, $f\left(y_{t} \mid y_{t-\tau}, . ., y_{t-1}\right)=f\left(y_{t} \mid x_{t-1}\right)$ for every $\tau \geq L$, where

$$
x_{t-1}=\left(y_{t-L}, . ., y_{t-1}\right)^{\prime} \quad M L \times 1
$$

3. Smooth

The density $f\left(y_{t-L}, . ., y_{t}\right)$, which is the same as $f\left(x_{t-1}, y_{t}\right)$ in the notation above, must have derivatives to the order ML/2 or higher and have tails that are bounded above by $\mathcal{P}\left(y_{t-L}, . ., y_{t}\right) \exp \left(\frac{1}{2} \sum_{\tau=0}^{L} y_{t-L}^{2}\right)$ where \mathcal{P} is a polynomial of large but finite degree.

Transition Density

The transition density of a Markov process is the conditional density

$$
f\left(y_{t} \mid x_{t-1}\right)=f\left(y_{t} \mid y_{t-L}, \ldots, y_{t-1}\right)
$$

Given the functional form $f(x, y)=f\left(y_{-L}, \ldots, y_{-1}, y_{0}\right)$ of the joint density the transition density can be obtained from

$$
f(y \mid x)=\frac{f(y, x)}{\int f(y, x) d y}
$$

Conversely, given the functional form of a transition density $f(y \mid x)=f\left(y_{0} \mid y_{-L}, \ldots, y_{-1}\right)$ the marginal density can be recovered by solving the equation

$$
f(x)=\int f(y \mid x) f(x) d y
$$

for $f(x)$ and the joint density can be obtained from this solution using

$$
f(x, y)=f\left(y_{-L}, \ldots, y_{-1}, y_{0}\right)=f(y \mid x) f(x)
$$

Thus, either $f(x, y)$ or $f(y \mid x)$ can be regarded as containing all the probabilistic information about a Markovian process $\left\{y_{t}\right\}$ and either is a proper focus of nonparametric interest. We shall focus on estimation of the transition density.

Application

The application used for illustration is the S\&P 500 price and volume series from 1928-1987 used in Gallant, Rossi, and Tauchen (1992, 1993). The data are in file nyse.dat have been adjusted to remove calendar effects as described in nyse.doc. The multivariate series used for analysis is

$$
y_{t}=\binom{100 *\left[\log \left(P_{t}\right)-\log \left(P_{t-1}\right)\right]}{\log \left(V_{t}\right)}
$$

where P_{t} is the closing Standard and Poors price index and V_{t} is the daily volume on the New York Stock Exchange. We abbreviate as

$$
y_{t}=\binom{\Delta p_{t}}{v_{t}}
$$

Interpretation

Using the GRT nonparametric estimate $\hat{f}_{n}(y \mid x)$ of the transition density, we will illustrate some analyses that are possible once a nonparametric transition density estimate has been obtained because it seems reasonable to be sure that having an estimate is of some practical value before going to the bother of derivation and computation.

The GRT fit to the S\&P 500 that we shall use to illustrate the interpretation of a nonparametric fit has $L=16$:

$$
\begin{gathered}
\widehat{f}(y \mid x)=\widehat{f}_{n}\left(\Delta p_{0}, v_{0} \mid \Delta p_{-16}, v_{-16}, \ldots, \Delta p_{-1}, v_{-1}\right) \\
\widehat{f}\left(y_{t} \mid x_{t-1}\right)=\widehat{f}_{n}\left(\Delta p_{t}, v_{t} \mid \Delta p_{t-16}, v_{t-16}, \ldots, \Delta p_{t-1}, v_{t-1}\right)
\end{gathered}
$$

7

Simulation

One important application is simulation. From a simulation, one can asses the reasonableness of a fit by comparing simulated data to actual data. Also, one can compute both conditional and unconditional expectations of nonlinear functions by simulating and averaging.

Visualization

A visual impression of the conditional density is of interest. Shown next are surface and contour plots of

$$
\widehat{f_{n}}(y, x)
$$

in the variable

$$
y=\binom{\Delta p}{v}
$$

with the elements of x set to the unconditional mean of the data. That is,

$$
x=\left(y_{-16}, \ldots, y_{-1}\right)^{\prime}=(\bar{y}, \cdots, \bar{y})^{\prime} \quad 32 \times 1
$$

One-step ahead dynamics

Density:

$$
\widehat{f}_{n}\left(\Delta p_{0}, v_{0} \mid \Delta p_{-16}, v_{-16}, \ldots, \Delta p_{-1}, v_{-1}\right)
$$

Held fixed:
$\Delta p_{t}=$ sample mean for $t=-16, \ldots,-2$
$v_{t}=$ sample mean for $\mathrm{t}=-16, \ldots,-1$
Vary:
Δp_{-1} over -15 to +15 sample std. devs. from the sample mean

Examine:
$\mathcal{E}(v \mid x)=\iint v \widehat{f}_{n}(p, v \mid x) d p d v$
$\operatorname{Var}(v \mid x)=\iint[v-\mathcal{E}(v \mid x)]^{2} \widehat{f}_{n}(p, v \mid x) d p d v$
where $x=\left(\Delta p_{-16}, v_{-16}, \ldots, \Delta p_{-1}, v_{-1}\right)$
Conclusion:
Large price movements are followed by high and volatile volume.
GRT (1992) demonstrated that the conditional variance of Δp and the conditional mean of v are nearly the same thing. Thus, the conclusion applies to price volatility as well.

$\Delta p_{-} 1$ is standardized with $\mathrm{mu}=0.016$, sigma $=1.15$ Dashed: Conditional Mean Solid: Conditional Variance

Multi-step ahead dynamics

Density:
$\widehat{f}_{n}\left(y_{j} \mid x_{j-1}\right) \quad \widehat{\mathcal{E}}, \widehat{\operatorname{Var}}$ computed wrt this density $y_{j}=\left(\Delta p_{j}, v_{j}\right)^{\prime} \quad x_{j-1}=\left(\Delta p_{j-16}, v_{j-16}, \ldots, \Delta p_{j-1}, v_{j-1}\right)^{\prime}$

A Mean Profile:

$$
\begin{aligned}
& \widehat{y}_{j}(x)=\widehat{\mathcal{E}}\left[\widehat{\mathcal{E}}\left(y_{j} \mid x_{j-1}\right) \mid x_{0}=x\right] \\
& j=0,1,2, \ldots, J
\end{aligned}
$$

A Volatility Profile:
$\widehat{\mathcal{V}}_{j}(x)=\widehat{\mathcal{E}}\left[\widehat{\operatorname{Var}}\left(y_{j} \mid x_{j-1}\right) \mid x_{0}=x\right]$
$j=1,2, \ldots, J$
A Shock:

A Differential Response:
Mean: $\widehat{y}_{j}(x+)-\widehat{y}_{j}\left(x^{o}\right) \quad j=0,1, \ldots, J$
Volatility: $\hat{\mathcal{V}}_{j}(x+)-\hat{\mathcal{V}}_{j}\left(x^{o}\right) \quad j=1, \ldots, J$

Sup-Norm Bands

The sup-norm bands shown in the previous plots were constructed as follows:

Bootstrap:

Using the initial conditions from the data and the estimated density, generate 500 simulated data sets. Estimate a density and compute a profile for each of the simulated data sets.

Sup-norm confidence bands:

ϵ-bands are plotted about the profile computed from the data that are just wide enough to contain 95% of the profiles computed from the simulated data sets.

(b)

(a) Price profile bundle, (b) Volume profile bundle, (c) Price volatility profile bundle

Profile Bundles

A visual method for assessing persistence. One can fit an exponential curve to the bundles and compute a half-life to get a quantitative measure.

Price Profile:

$$
\widehat{\Delta p}_{j}(x)=\mathcal{E}\left[\mathcal{E}\left(\Delta p_{j} \mid x_{j-1}\right) \mid x\right] \quad j=1, \ldots, 100
$$

Volume Profile:

$$
\widehat{v}_{j}(x)=\mathcal{E}\left[\mathcal{E}\left(v_{j} \mid x_{j-1}\right) \mid x\right] \quad j=1, \ldots, 100
$$

Price Volatility Profile:

$$
\hat{\mathcal{V}}_{j}(x)=\mathcal{E}\left[\operatorname{Var}\left(\Delta p_{j} \mid x_{j-1}\right) \mid x\right] \quad j=1, \ldots, 100
$$

Profile Bundles: Evaluate at the data points

$$
x=x_{s}, \quad s=28,156,258, \ldots, 16028
$$

every 128th, 125 profiles in total.

Topics

- Application

- Hermite Expansions

- SNP Density

- Performance
- Model Selection
- Extension to Time Series
- VAR-type Location Function
- ARCH- or GARCH-type Scale Function
- Non-homogeneous Innovations
- Miscellany

Notation for a Multivariate Polynomial
Degree K, dimension M

$$
\mathcal{P}(z)=\sum_{|\alpha|=0}^{K} a_{\alpha} z^{\alpha}
$$

where

$$
\begin{gathered}
z^{\alpha}=\left(z_{1}\right)^{\alpha_{1}} \cdot\left(z_{2}\right)^{\alpha_{2}} \cdots\left(z_{M}\right)^{\alpha_{M}} \\
|\alpha|=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+\ldots+\left|\alpha_{M}\right|
\end{gathered}
$$

Example, $\mathrm{K}=2, \mathrm{M}=2$

$$
\begin{aligned}
\mathcal{P}(z)= & a_{(0,0)}+\underbrace{a_{(1,0)} z_{1}+a_{(0,1)} z_{2}}_{\text {linear terms }} \\
& +\underbrace{a_{(1,1)} z_{1} z_{2}+a_{(2,0)} z_{1}^{2}+a_{(0,2)} z_{2}^{2}}_{\text {quadratic terms }}
\end{aligned}
$$

Let $h(z)$ be a density function. Because

$$
\int h(z) d z=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(z) d z_{1} \cdots d z_{M}=1
$$

$\sqrt{h(z)}$ is in $L_{2}(-\infty, \infty)$ and can therefore be approximated by $\mathcal{P}(z) \sqrt{\phi(z)}$ as accurately as desired by taking K large enough.

This fact motivates using

$$
h_{K}(z)=\frac{\mathcal{P}^{2}(z) \phi(z)}{\int \mathcal{P}^{2}(s) \phi(s) d s}
$$

to approximate $h(z)$, where the division is to guarantee that $h_{K}(z)$ integrates to one.

Hermite Expansions: Rationale (1)

An unnormalized Hermite polynomial has the form

$$
\mathcal{P}(z) \sqrt{\phi(z)}
$$

where

$$
\phi(z)=N_{M}(0, I)=(2 \pi)^{-\frac{1}{2} M} e^{-\frac{1}{2} z^{\prime} z}
$$

A function $g(z)$ that satisfies

$$
\|g\|_{2}=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g^{2}(z) d z_{1} \cdots d z_{M}<\infty
$$

is called an L_{2} function and the collection of such functions is denoted by $L_{2}(-\infty, \infty)$.

The Hermite polynomials are dense in $L_{2}(-\infty, \infty)$ which means that

$$
\lim _{K \rightarrow \infty}\|g(z)-\mathcal{P}(z) \sqrt{\phi(z)}\|_{2}=0
$$

where the coefficients $\left\{a_{\alpha}\right\}_{|\alpha| \leq K}$ of $\mathcal{P}(z)$ are those that minimize the approximation error $\|g(z)-\mathcal{P}(z) \sqrt{ } \phi(z)\|_{2}$.

The Main Idea

Take $h_{K}(z)$ as the parent density and use a location-scale transform

$$
y=R z+\mu
$$

to generate a location-scale family of densities

$$
f(y \mid \theta)=\frac{\left\{\mathcal{P}\left[R^{-1}(y-\mu)\right]\right\}^{2} \phi\left[R^{-1}(y-\mu)\right]}{|\operatorname{det}(R)| \int \mathcal{P}^{2}(s) \phi(s) d s}
$$

which can be estimated from data $\left\{y_{t}\right\}_{t=1}^{n}$ by quasi maximum likelihood

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmax}} \prod_{t=1}^{n} f\left(y_{t} \mid \theta\right)
$$

The density estimate is

$$
\widehat{f}(y)=f(y \mid \widehat{\theta})
$$

The consistency of the estimator was established by Gallant, A. Ronald, and Douglas W. Nychka (1987), "Semi-Nonparametric Maximum Likelihood Estimation," Econometrica 55, 363-390.

Some Remarks

$$
f(y \mid \theta)=\frac{\left\{\mathcal{P}\left[R^{-1}(y-\mu)\right]\right\}^{2} \phi\left[R^{-1}(y-\mu)\right]}{|\operatorname{det}(R)| \int \mathcal{P}^{2}(s) \phi(s) d s}
$$

Note that $\mathcal{P}^{2}(z) / \int \mathcal{P}^{2}(s) \phi(s) d s$ is homogeneous of degree zero in the coefficients $\left\{a_{\alpha}\right\}_{\alpha=0}^{K}$. To achieve identification set $a_{0}=1$.

Note also that

$$
N_{M}(y \mid \mu, \Sigma)=\frac{\phi\left[R^{-1}(y-\mu)\right]}{|\operatorname{det}(R)| \int \mathcal{P}^{2}(s) \phi(s) d s}
$$

where $\Sigma=R R^{\prime}$ so that

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R^{-1}(y-\mu)\right] N(y \mid \mu, \Sigma)
$$

Therefore, $f(y \mid \theta)$ with $K=0$ is the normal density.

The constant of proportionality is $1 / \int \mathcal{P}^{2}(s) \phi(s) d s$ above.

Topics

- Application
- Hermite Expansions
- SNP Density
- Performance
- Model Selection
- Extension to Time Series
- VAR-type Location Function
- ARCH- or GARCH-type Scale Function
- Non-homogeneous Innovations
- Miscellany

SNP Density: IID Data

Location-scale transform:

$$
y=R z+\mu \quad R \text { upper triangular }
$$

Density:

$$
\begin{gathered}
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R^{-1}(y-\mu)\right] N\left(y \mid \mu, R R^{\prime}\right) \\
K=0 \Rightarrow y \sim N_{M}\left(\mu, R R^{\prime}\right)
\end{gathered}
$$

Example: $K=2, M=2$

$$
\begin{aligned}
R= & \left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right) \\
\theta= & \left(a_{(0,0)}, a_{(1,0)}, a_{(0,1)},\right. \\
& a_{(1,1)}, a_{(2,0)}, a_{(0,2)}, \\
& \left.\mu_{1}, \mu_{2}, R_{11}, R_{12}, R_{22}\right)^{\prime} \\
a_{(0,0)}= & 1
\end{aligned}
$$

How well does SNP do?
Rate results:

Fenton, Victor M., and A. Ronald Gallant (1996), "Convergence Rates of SNP Density Estimators," Econometrica 64, 719-727.

Qualitative comparison:

Fenton, Victor M., and A. Ronald Gallant (1996), "Qualitative and Asymptotic Performance of SNP Density Estimators," Journal of Econometrics 74, 77-118.

Plots of SNP Estimates, $\mathrm{n}=1600$, Marron-Wand Test Suite. In each panel the SNP estimate is plotted as a solid line and the density that was sampled is plotted as a dotted line. For each density, the degree p that gives the smallest value for $\sqrt{ } \int_{-3}^{3}\left(\hat{f}_{p}-f_{o}\right)^{2} d x$ is selected.

Plots of Kernel Estimates, $\mathrm{n}=1600$, Marron-Wand Test Suite. In each panel the kernel estimate is plotted as a solid line and the density that was sampled is plotted as a dotted line. Bandwidth selection is by least-squares cross-validation within the limits of 0.25 to 1.5 times Silverman's rule-of-thumb bandwidth.

ane

Plots of SNP Estimates, $\mathrm{n}=5625$, Marron-Wand Test Suite. In each panel the SNP estimate is plotted as a solid line and the density that was sampled is plotted as a dotted line. For each density, the degree p that gives the smallest value for $\sqrt{ } \int_{-3}^{3}\left(\widehat{f}_{p}-f_{o}\right)^{2} d x$ is selected.

Plots of Kernel Estimates, $\mathrm{n}=5625$, Marron-Wand Test Suite. In each panel the kernel estimate is plotted as a solid line and the density that was sampled is plotted as a dotted line. Bandwidth selection is by least-squares cross-validation within the limits of 0.25 to 1.5 times Silverman's rule-of-thumb bandwidth.

Choice of K

Coppejans, Mark, and A. Ronald Gallant (2000), "Cross Validated SNP Density Estimates," Working paper. Duke University, Durham NC. File: an.ps, an.pdf.

Bottom line: BIC seems to work well.

Estimation: Equivalent to maximum likelihood, but more stable numerically is to minimize the negative of the average log likelihood.

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\operatorname{argmin}} s_{n}(\theta) \\
s_{n}(\theta) & =-\frac{1}{n} \sum_{t=1}^{n} \log \left[f\left(y_{t} \mid \theta\right)\right]
\end{aligned}
$$

Schwarz criterion: Choose K to minimize

$$
\operatorname{BIC}(K)=s_{n}(\hat{\theta})+\frac{p}{2 n} \log (n)
$$

where p is the number of free parameters in θ.

Densities considered. The plot labeled sv is the density of a scale mixture of normals with parameters chosen such that the density has mean 0 , variance $1 / 4$, and raw kurtosis 8 ; orln is the density of the second largest order statistic in a sample of size 100 from the \log normal with location parameter -3 and scale parameter 1. The densities trimodal, gaussian, and smooth_comb are densities from the Marron-Wand test suite.

Scale Mixture of Normals. Plotted is the mean squared error (MSE) and its cross validated estimate (CV) for a realization of size n, as shown in each plot, from the density $p(y \mid \rho)=$ $\int_{-\infty}^{\infty} n\left(y \mid \rho_{1}, e^{2 u}\right) n\left(u \mid \rho_{2}, \rho_{3}^{2}\right) d u$ with ρ chosen so that the density has mean 0 , variance $1 / 4$, and raw kurtosis 8 . Solid line is MSE, dashed line is its leave-one-out CV estimate (CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV estimates (CVH). Upper dotted horizontal line is MSE achieved by a crossvalidated kernel estimate and lower dotted line is best kernel MSE for this realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.

Second Largest Order Statistic of the Lognormal. Plotted is the mean squared error (MSE) and its cross validated estimate (CV) for a realization of size n, as shown in each plot, from the density $p(y \mid \rho)=\frac{N(N-1)}{y}\left[\Phi\left(\frac{\log y-\rho_{2}}{\rho_{3}}\right)\right]^{N-2}\left[1-\Phi\left(\frac{\log y-\rho_{2}}{\rho_{3}}\right)\right] \phi\left(\frac{\log y-\rho_{2}}{\rho_{3}}\right)$ where $y>0, \phi$ and Φ denote the standard normal density and distribution functions, respectively, and $\left(N, \rho_{2}, \rho_{3}\right)=(100,-3,1)$. Solid line is MSE, dashed line is its leave-one-out CV estimate (CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV estimates (CVH). Upper dotted horizontal line is MSE achieved by a cross-validated kernel estimate and lower dotted line is best kernel MSE for this realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.

Trimodal. Plotted is the mean squared error (MSE) and its cross validated estimate (CV) for a realization of size n, as shown in each plot, from the trimodal density of the Marron-Wand test suite. plot, from the trimodal density of the Marron-Wand test suite.
Solid line is MSE, dashed line is its leave-one-out CV estimate Solid line is MSE, dashed line is its leave-one-out CV estimate
(CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV estimates (CVH). Upper dotted horizontal line is MSE achieved by a cross-validated kernel estimate and lower dotted line is best kernel MSE for this realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.

42

Trimodal. Plotted are SNP density estimates a realization of size 900 and values of K as shown in each plot, from the trimodal density of the Marron-Wand test suite. Solid line is the estimate, dashed line is true density.

Gaussian. Plotted is the mean squared error (MSE) and its cross validated estimate (CV) for a realization of size n, as shown in each plot, from the gaussian density of the Marron-Wand test suite. Solid line is MSE, dashed line is its leave-one-out CV estimate (CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV estimates (CVH). Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.

Smooth Comb. Plotted is the mean squared error (MSE) and its cross validated estimate (CV) for a realization of size n, as shown in each plot, from the smooth comb density of the Marronshown in each plot, from the Smooth comb density of the Marron-
Wand test suite. Solid line is MSE, dashed line is its leave-one-out Wand test suite. Solid line is MSE, dashed line is its leave-one-out
CV estimate (CVL), and dashed and dotted line is the average of ten, 10% hold-out-sample CV estimates (CVH). Upper dotted horizontal line is MSE achieved by a cross-validated kernel estimate and lower dotted line is best kernel MSE for this realization. Vertical lines indicate BIC, CVL, and CVH choices of K, as marked.

Topics

- Application

- Hermite Expansions

- SNP Density
- Performance
- Model Selection

- Extension to Time Series

- VAR-type Location Function
- ARCH- or GARCH-type Scale Function
- Non-homogeneous Innovations
- Miscellany

SNP Density: IID Data

Location-scale transform:

$$
y=R z+\mu \quad R \text { upper triangular }
$$

Density:

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R^{-1}(y-\mu)\right] N\left(y \mid \mu, R R^{\prime}\right)
$$

$K_{z}=0 \Rightarrow$ Gaussian, homogeneous z
$K_{z}>0 \Rightarrow$ non-Gaussian, homogeneous z

Extension to Time Series

The idea is to modify the location and scale transforms of the SNP density for iid data to be functions of the past, which is the standard method of modifying a model for iid data for application to time series data. Lastly, the SNP density itself is modified to accommodate non-homogeneous innovations. We shall proceed step-by-step.

SNP Transition Density for Time Series Data (1)
VAR location function:

$$
\begin{aligned}
y & =R z+\mu_{x_{t-1}} \quad R \text { upper triangular } \\
\mu_{x_{t-1}} & =b_{0}+B x_{t-1} \quad \text { inear in the past } \\
x_{t-1} & =\left(y_{t-L_{u}}, \ldots, y_{t-1}\right)^{\prime}
\end{aligned}
$$

b_{0} is $M \times 1, B$ is $M \times L_{u}$,
Density:

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R^{-1}\left(y-\mu_{x_{t-1}}\right)\right] N\left(y \mid \mu_{x_{t-1}}, R R^{\prime}\right)
$$

$K_{z}=0 \Rightarrow$ Gaussian VAR, homogeneous z
$K_{z}>0 \Rightarrow$ non-Gaussian VAR, homogeneous z

Example: $K=2, M=2, L_{u}=1$

$$
\begin{aligned}
\theta= & \left(a_{(0,0)}, a_{(1,0)}, a_{(0,1)}, a_{(1,1)}, a_{(2,0)}, a_{(0,2)},\right. \\
& b_{01}, b_{02}, B_{11}, B_{21}, B_{12}, B_{22}, \\
& \left.R_{11}, R_{12}, R_{22}\right)^{\prime}
\end{aligned}
$$

SNP Transition Density for Time Series Data (2)
ARCH-type scale function:

$$
\begin{aligned}
y & =R_{x_{t-1}} z+\mu_{x_{t-1}} \quad R_{x_{t-1}} \text { upper triangular } \\
\mu_{x_{t-1}} & =b_{0}+B x_{t-1} \\
x_{t-1} & =\left(y_{t-L_{u}}, \ldots, y_{t-1}\right)^{\prime} \\
\operatorname{vech}\left(R_{x_{t-1}}\right) & =\rho_{0}+\sum_{i=1}^{L_{r}} P_{(i)} \mid y_{t-1-L_{r}+i}-\mu_{x_{t-2-L r+i}} \\
S_{t-1} & =\left(y_{t-L_{u}-L_{r}}, \ldots, y_{t-1}\right)^{\prime} \quad \text { state vector }
\end{aligned}
$$

$\operatorname{vech}(R)$ means columnwise storage of the nonzero elements of an upper triangular matrix, S_{t-1} is the information required to move the system forward one step, ρ_{0} is $M(M+1) / 2 \times 1, P=\left[P_{(1)}|\cdots| P_{\left(L_{r}\right)}\right]$ is $M(M+1) / 2 \times L_{r}$,

Density:

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R_{x_{t-1}}^{-1}\left(y-\mu_{x_{t-1}}\right)\right] N\left(y \mid \mu_{x_{t-1}}, R_{x_{t-1}} R_{x_{t-1}}^{\prime}\right)
$$

$K_{z}=0 \Rightarrow$ Gaussian ARCH, homogeneous z
$K_{z}>0 \Rightarrow$ non-Gaussian ARCH, homogeneous z
Example: $K=2, M=2, L_{u}=1, L_{r}=2$

$$
\operatorname{vech}(R)=\left(R_{11}, R_{21}, R_{22}\right)^{\prime}
$$

$\theta=\left(a_{(0,0)}, a_{(1,0)}, a_{(0,1)}, a_{(1,1)}, a_{(2,0)}, a_{(0,2)}\right.$, $b_{01}, b_{02}, B_{11}, B_{21}, B_{12}, B_{22}$, $\left.\rho_{01}, \rho_{02}, \rho_{03}, P_{11}, P_{21}, P_{31}, P_{12}, P_{22}, P_{32}\right)^{\prime}$

SNP Transition Density for Time Series Data (3)
GARCH-type scale function:

$$
\begin{aligned}
y= & R_{x_{t-1}} z+\mu_{x_{t-1}} \\
\mu_{x_{t-1}}= & b_{0}+B x_{t-1} \\
\operatorname{vech} R_{x_{t-1}}= & \rho_{0}+\sum_{i=1}^{L_{r}} P_{(i)}\left|y_{t-1-L_{r}+i}-\mu_{x_{t-2-L r t i}}\right| \\
& +\sum_{i=1}^{L_{s}} \operatorname{diag}\left(G_{(i)}\right) R_{x_{t-2-L_{g}+i}} \\
S_{t-1}= & \left(y_{t-L_{u}-L_{r}}, \ldots, y_{t-1}, \operatorname{vech} R_{x_{t-2-L_{s}}}, \ldots, \operatorname{vech} R_{x_{t-2}}\right)^{\prime}
\end{aligned}
$$

$$
\rho_{0} \text { is } M(M+1) / 2 \times 1, P=\left[P_{(1)}|\cdots| P_{\left(L_{r}\right)}\right] \text { is } M(M+
$$ 1) $/ 2 \times L_{r}, G=\left[G_{(1)}|\cdots| G_{\left(L_{g}\right)}\right]$ is $M(M+1) / 2 \times L_{g}$

Density:

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R_{x_{t-1}}^{-1}\left(y-\mu_{x_{t-1}}\right)\right] N\left(y \mid \mu_{x_{t-1}}, R_{x_{t-1}} R_{x_{t-1}}^{\prime}\right)
$$

$K_{z}=0 \Rightarrow$ Gaussian GARCH, homogeneous z
$K_{z}>0 \Rightarrow$ non-Gaussian GARCH, homogeneous z
Example: $K=2, M=2, L_{u}=1, L_{r}=1, L_{g}=1$ $\operatorname{vech}(R)=\left(R_{11}, R_{21}, R_{22}\right)^{\prime}$

$$
\begin{aligned}
\theta= & \left(a_{(0,0)}, a_{(1,0)}, a_{(0,1)}, a_{(1,1)}, a_{(2,0)}, a_{(0,2)}\right. \\
& b_{01}, b_{02}, B_{11}, B_{21}, B_{12}, B_{22} \\
& \rho_{01}, \rho_{02}, \rho_{03}, P_{11}, P_{21}, P_{31}, \\
& \left.G_{11}, G_{21}, G_{31},\right)^{\prime}
\end{aligned}
$$

SNP for Non-homogeneous Innovations (1)
The Past:

$$
x=\left(x_{t-L_{p}}, \ldots, x_{t-1}\right)^{\prime}
$$

Polynomial Part:

Non-homogeneous innovations are accommodated by letting the polynomial part of the SNP model

$$
\mathcal{P}(z)=\sum_{|\alpha|=0}^{K_{z}} a_{\alpha} z^{\alpha}
$$

have coefficients a_{α} that are polynomials in x

$$
a_{\alpha}(x)=\sum_{|\beta|=0}^{K_{x}} a_{\alpha \beta} x^{\beta}
$$

It is denoted by $\mathcal{P}(z, x)$.

SNP for Non-homogeneous Innovations (2)
The SNP density for non-homogeneous innovations is Hermite polynomial in z whose coefficients are polynomials in x

Polynomial Part:

$$
\mathcal{P}(z, x)=\sum_{|\alpha|=0}^{K_{z}} \sum_{|\beta|=0}^{K_{x}} a_{\alpha \beta} x^{\beta} z^{\alpha}
$$

SNP density:

$$
h_{K}(z \mid x)=\frac{\mathcal{P}(z, x) \phi(z)}{\int \mathcal{P}(s, x) \phi(s) d s}
$$

Remarks:
Here $K=\left(K_{z}, K_{x}\right) . \mathcal{P}(z, x)$ is a polynomial in (z, x) of degree $|K|=K_{z}+K_{x}$ of a type known as a rectangular expansion. A radial expansion of degree K has the form

$$
\sum_{|\gamma|=0}^{|K|} a_{\gamma}(z, x)^{\gamma}=\sum_{|\alpha|+|\beta|=0}^{K_{z}+K_{x}} a_{\alpha \beta} x^{\beta} z^{\alpha}
$$

SNP Transition Density for Time Series Data (4)
Non-homogeneous innovations:

$$
\begin{aligned}
\mu_{x_{t-1}}= & b_{0}+B x_{t-1} \\
\operatorname{vech} R_{x_{t-1}}= & \rho_{0}+\sum_{i=1}^{L_{r}} P_{(i)}\left|y_{t-1-L_{r}+i}-\mu_{x_{t-2-L r+i}}\right| \\
& +\sum_{i=1}^{L_{s}} \operatorname{diag}\left(G_{(i)}\right) R_{x_{t-2-t_{g}+i}} \\
S_{t-1}= & \left(y_{t-\max \left(L_{u}+L_{r}, L_{p}\right)}, \ldots, y_{t-1}, \operatorname{vech} R_{x_{t-2-L_{g}}}, \ldots, \operatorname{vech} R_{x_{t-2}}\right)^{\prime}
\end{aligned}
$$

Density:

$$
f(y \mid \theta) \propto \mathcal{P}^{2}\left[R_{x_{t-1}}^{-1}\left(y-\mu_{x_{t-1}}, x_{t-1}\right)\right] N\left(y \mid \mu_{x_{t-1}}, R_{x_{t-1}} R_{x_{t-1}}^{\prime}\right)
$$

$$
x=\left(x_{t-L_{p}}, \ldots, x_{t-1}\right)^{\prime}
$$

Example: $K=2, M=2, L_{u}=1, L_{r}=1, L_{g}=1, L_{p}=1$

$$
\operatorname{vech}(R)=\left(R_{11}, R_{21}, R_{22}\right)^{\prime}
$$

$\theta=\left(a_{(0,0),(0,0)}, a_{(1,0),(0,0)}, a_{(0,1),(0,0)}\right.$,
$a_{(1,1),(0,0)}, a_{(2,0),(0,0)}, a_{(0,2),(0,0)}$,
$a_{(0,0),(1,0)}, a_{(1,0),(1,0)}, a_{(0,1),(1,0)}$, $a_{(1,1),(1,0)}, a_{(2,0),(1,0)}, a_{(0,2),(1,0)}$, $a_{(0,0),(0,1)}, a_{(1,0),(0,1)}, a_{(0,1),(0,1)}$, $a_{(1,1),(0,1)}, a_{(2,0),(0,1)}, a_{(0,2),(0,1)}$, $b_{01}, b_{02}, B_{11}, B_{21}, B_{12}, B_{22}$, $\rho_{01}, \rho_{02}, \rho_{03}, P_{11}, P_{21}, P_{31}$, $\left.G_{11}, G_{21}, G_{31},\right)^{\prime}$

Consistency

If the parameters of $f(y \mid x, \theta)$ are estimated by quasi maximum likelihood, viz.

$$
\begin{gathered}
\hat{\theta}_{n}=\underset{\theta}{\operatorname{argmin}} s_{n}(\theta) \\
s_{n}(\theta)=-\frac{1}{n} \sum_{t=1}^{n} \log f\left(y_{t} \mid x_{t-1}, \theta\right),
\end{gathered}
$$

and $K=\left(K_{z}, K_{x}\right)$ grows with sample size, then the estimator

$$
\widehat{f}_{n}(y \mid x)=f\left(y \mid x, \widehat{\theta}_{n}\right)
$$

converges almost surely to the true transition density $f(y \mid x)$ in Sobolev norm as sample size increases. Moreover, K can depend on the data.

Reference:

Gallant, A. Ronald, and Douglas W. Nychka (1987), "Seminonparametric Maximum Likelihood Estimation," Econometrica 55, 363390.

Restrictions Implied by Settings of the Tuning Parameters

Parameter setting	Characterization of $\left\{y_{t}\right\}$
$L_{u}=0, L_{g}=0, L_{r}=0, L_{p} \geq 0, K_{z}=0, K_{x}=0$	iid Gaussian
$L_{u}>0, L_{g}=0, L_{r}=0, L_{p} \geq 0, K_{z}=0, K_{x}=0$	Gaussian VAR
$L_{u}>0, L_{g}=0, L_{r}=0, L_{p} \geq 0, K_{z}>0, K_{x}=0$	semiparametric VAR
$L_{u} \geq 0, L_{g}=0, L_{r}>0, L_{p} \geq 0, K_{z}=0, K_{x}=0$	Gaussian ARCH
$L_{u} \geq 0, L_{g}=0, L_{r}>0, L_{p} \geq 0, K_{z}>0, K_{x}=0$	semiparametric ARCH
$L_{u} \geq 0, L_{g}>0, L_{r}>0, L_{p} \geq 0, K_{z}=0, K_{x}=0$	Gaussian GARCH
$L_{u} \geq 0, L_{g}>0, L_{r}>0, L_{p} \geq 0, K_{z}>0, K_{x}=0$	semiparametric GARCH
$L_{u} \geq 0, L_{g} \geq 0, L_{r} \geq 0, L_{p}>0, K_{z}>0, K_{x}>0$	nonlinear nonparametric

Standard Data Transformation

Sample mean and variance

$$
\begin{gathered}
\bar{y}=\frac{1}{n} \sum_{t=1}^{n} \tilde{y}_{t} \\
S=\frac{1}{n} \sum_{t=1}^{n}\left(\tilde{y}_{t}-\bar{y}\right)\left(\tilde{y}_{t}-\bar{y}\right)^{\prime}
\end{gathered}
$$

\tilde{y}_{t} denotes the raw data

Apply the methods above to

$$
y_{t}=S^{-1 / 2}\left(\tilde{y}_{t}-\bar{y}\right)
$$

where $S^{-1 / 2}$ denotes the Cholesky factor of the inverse of S.

Suggest taking S diagonal.

Problem

If the true density $f(y \mid x)$ is heavy tailed, then x_{t-1} will contain extreme observations which have a strong and undesirable influence on estimates when $L_{r}>0$.

Cure

Replace each component of x by its log spline transform

$$
\hat{x}_{i}= \begin{cases}(1 / 2)\left[x_{i}-\sigma_{\mathrm{tr}}-\log \left(1-x_{i}-\sigma_{\mathrm{tr}}\right)\right] & x_{i}<-\sigma_{\mathrm{tr}} \\ x_{i} & -\sigma_{\mathrm{tr}}<x_{i}<\sigma_{\mathrm{tr}} \\ (1 / 2)\left[x_{i}+\sigma_{\mathrm{tr}}+\log \left(1-x_{i}-\sigma_{\mathrm{tr}}\right)\right] & \sigma_{\mathrm{tr}}<x_{i} .\end{cases}
$$

The consistency result is not affected by this transform.

A logistic transform can also be used for this purpose. It is a more aggressive solution to the problem but has poor properties with persistent data such as interest rates. It does work well with strongly mean reverting data such as stock returns.

Tuning Parameters

Major:

$$
\left(L_{u}, L_{g}, L_{r}, L_{p}, K_{z}, I_{z}, K_{x}, I_{x}\right)
$$

Recommended Minor:
Diagonal S, diagonal GARCH, logarithmic spline transform with $\sigma_{\mathrm{tr}}=2, \epsilon_{0}=10^{-3}$.

Availability

Fortran code and a User's Guide are available by anonymous ftp at host ftp.econ.duke.edu in directory pub/arg/snp or click on "browse ftp site" at http:/www.unc.edu/~arg.

