Permit Trading Homework Hints Environmental Economics

Professor A. Ronald Gallant

Fall 2021

The market has the same number of odd and even firms. Thus, we can simplify things by analyzing the case with one odd and one even firm.

1 Short-cut computation of market-clearing permit price

Assume that you know the output of Firm 1, Q_1 , and Firm 2, Q_2 . This will allow you to compute the total amount of abatement A that will be required to support this level of output. Remember to subtract the total number of permits available from the total output $Q = Q_1 + Q_2$ when computing total abatement. Market clearing requires

$$A_1 + A_2 = A \tag{1}$$

The fact that successful trading will equate marginal abatement costs gives the equation

$$6A_1 = 2A_2 \tag{2}$$

 A_1 and A_2 can be determined from Equations 1 and 2.

Each firm will choose to abate until the marginal abatement cost equals the price of the permits. Letting P denote the permit price, that means

$$P = 6A_1 = 2A_2.$$

Now you must check to see if the two firms will desire to produce the quantities Q_1 and Q_2 that you guessed given that the permit price is P. If not, you will have to guess and try again.

One way to check is as follows. For Firm *i* to increase output by one unit, the marginal cost will be 1 + P, which is the marginal cost of production plus the marginal cost of a permit. If 1 + P is less than the selling price of 40 and $Q_i < 20$ then the firm will want to increase output so you should add one to Q_i and try again. If 1 + P is greater than 40 you need to subtract one from Q_i and try again.

2 Text-book computation of market-clearing permit price

Permit variables:

P is permit price.

X is permit quantity.

We will assume that Firm 2 sells to Firm 1 because Firm 2 has the lower marginal cost. If this assumption is wrong, X below will be negative, which means Firm 1 sells permits to Firm 2.

Bounds:

 $-10 \le X \le 10$ $0 \le P \le 39$ $0 \le Q_1 \le 20$ $0 \le Q_2 \le 20$

Profits for Firm 1 are revenues - cost - permit purchases - abatment. Abatement for Firm 1 is $Q_1 - 10 - X$. Profits for Firm 2 are revenues - cost + permit sales - abatement. Abatement for Firm 2 is $Q_2 - 10 + X$. Therefore the profit functions are

 $\Pi_1 = 40Q_1 - Q_1 - PX - 3(Q_1 - 10 - X)^2$ $\Pi_2 = 40Q_2 - Q_2 + PX - (Q_2 - 10 + X)^2$

Permit quantity first order conditions given Q_1 and Q_2 : Firm 1's FOC: $\frac{d}{dX}[39Q_1 - PX - 3(Q_1 - 10 - X)^2] = 0$ Firm 2's FOC: $\frac{d}{dX}[39Q_2 + PX - (Q_2 - 10 + X)^2] = 0$ or Firm 1's FOC: $-P - 6(Q_1 - 10 - X)(-1) = 0$ Firm 2's FOC: $P - 2(Q_2 - 10 + X)(+1) = 0$ or Firm 1's FOC: $P = 6Q_1 - 60 - 6X$ Firm 2's FOC: $P = 2Q_2 - 20 + 2X$ Equilibrium:

 $P(Q_1, Q_2) = (3Q_1 + 3Q_2 - 60)/2 \qquad 0 \le P \le 39$

$$X(Q_1, Q_2) = (3Q_1 - Q_2 - 20)/4 - 10 \le X \le 10$$

Derivatives:

 $\frac{dP}{dQ_1} = \frac{3}{2}$ $\frac{dP}{dQ_2} = \frac{3}{2}$ $\frac{dX}{dQ_1} = \frac{3}{4}$ $\frac{dX}{dQ_2} = -\frac{1}{4}$

Product quantity first order conditions given $P(Q_1, Q_2)$ and $X(Q_1, Q_2)$: Firm 1's FOC: $\frac{d}{dQ_1} \{39Q_1 - X(Q_1, Q_2)P(Q_1, Q_2)] - 3[Q_1 - 10 - X(Q_1, Q_2)]^2\} = 0$ Firm 2's FOC: $\frac{d}{dQ_2} \{39Q_2 + X(Q_1, Q_2)P(Q_1, Q_2)] - [Q_1 - 10 + X(Q_1, Q_2)]^2\} = 0$ or Firm 1's FOC: $39 - \frac{dP}{dQ_1}X - P\frac{dX}{dQ_1} - 6(Q_1 - 10 - X)(1 - \frac{dX}{dQ_1}) = 0$ Firm 2's FOC: $39 + \frac{dP}{dQ_2}X + P\frac{dX}{dQ_2} - 2(Q_2 - 10 + X)(1 + \frac{dX}{dQ_2}) = 0$ or Firm 1's FOC: $39 - \frac{3}{2}X - \frac{3}{4}P - 6(Q_1 - 10 - X)(1 - \frac{3}{4}) = 0$ Firm 2's FOC: $39 + \frac{3}{2}X - \frac{1}{4}P - 2(Q_2 - 10 + X)(1 - \frac{1}{4}) = 0$

Equilibrium:

 $Q_1 = 36 - \frac{1}{2}P(Q_1, Q_2)$

 $Q_2 = 36 - \frac{1}{6}P(Q_1, Q_2)$ If Q_1 exceeds 20, round down to 20. Similarly for Q_2 .

3 Justification of the short-cut computation of the market-clearing permit price

The abatement that each firm does is

$$A_1 = Q_1 - 10 - X$$
$$A_2 = Q_2 - 10 + X$$

If we add these two equations we get the total abatement required

$$A = A_1 + A_2 = Q_1 + Q_2 - 20.$$

From the permit quantity first order conditions given Q_1 and Q_2 we have

$$P = 6(Q_1 - 10 - X) = 6A_1$$
$$P = 2(Q_2 - 10 + X) = 2A_2$$

from which we get abatement marginals are equated $P = 6A_1 = 2A_2$.