Topic 4

- Fish Game
- Tragedy of the Commons
 - ▷ Introduction to Resource Economics
- Coase Theorem

Fish Game

• In class exercise

Tragedy of the Commons

- Each user of a resource imposes a negative externality on the other users
- Unrestricted use results in overexploitation of the resource because individuals will ignore the negative externality they impose on others

Freeway Example

- The personal marginal cost of each freeway driver is 0 as long as total freeway time is less than 40 min.
- Each freeway driver after the first costs all other freeway drivers 1 sec.

 \triangleright SMC = N/60 min.

The (N + 1) st freeway driver saves 10 min. less congestion cost.

▷ PMB = 10 - N/60 min.

• Social surplus of the freeway is SS = (N + 1)(10 - N/60) min.

Freeway Example

Real World Tragedy

Canadian Atlantic Codfish Landings (metric tones live weight)

Source: Adapted from Canadian Department of Fisheries and Oceans, Statistical Services, Commercial Landings, Seafisheries, department website, http://www.dfo-mpo.gc.ca/communic/statistics/main_e.htm, accessed August 14, 2006.

Canadian Atlantic Codfish

- 1977 territorial limit increased from 12 to 200 miles (UN), so Canada could exclude foreign fishers
- Sonar fish locators and seafloor mapping increased ability to find fish
- Before the collapse, fishers noticed a decline in the maturity of the fish being landed
- Ultimately, 30,000 fishers lost their jobs

Coase Theorem

- Ronald Harry Coase born in 1910 in U.K.
- Univ. of Buffalo, Univ. of Virginia, Univ. of Chicago
- "The Problem of Social Cost" (1960): suggests that welldefined property rights could overcome the problems of externalities
- Nobel Prize in Economics in 1991
 - "For his discovery and clarification of the significance of transaction costs and property rights for the institutional structure and functioning of the economy"

Coase Theorem Example

- Two competitively traded goods, but good 1 generates an externality on the production of good 2
- Cost of producing product 2 is higher when there is greater output of product 1
- Production costs (fixed costs are not sunk)

$$C_1(Q_1) = Q_1^2 + 8$$

 $C_2(Q_1, Q_2) = Q_2^2 + Q_1Q_2 + 4$

- How much **should** be produced?
- How much will be produced? (Depends on property rights.)
- Source: Kolstad, Charles D. (2000), *Environmental Economics,* New York, Oxford University Press

How Much Should Be Produced?

Market	Prices						
P1	11						
P2	10						
Total surpl	us = P1Q1 +	P2 Q2 - C1	(Q1) - C2(C	Q1,Q2)			
Q1* =	4		Q2* = 3				
				Q2			
Q1	0	1	2	3	4	5	6
0	0	5	12	17	20	21	20
1	2	6	12	16	18	18	16
2	10	13	18	21	22	21	18
3	16	18	22	24	24	22	18
4	20	21	24	25	24	21	16
5	22	22	24	24	22	18	12
6	22	21	22	21	18	13	6
7	20	18	18	16	12	6	-2
8	16	13	12	9	4	-3	-12
9	10	6	4	0	-6	-14	-24

How Much Will Be Produced?

Mark	et Prices		
P1 -	11		
P2	10		
Firm 1 pr	ofit = P1Q1 - C1(Q	a)	
Firm 2 pe	ofit = P2Q2 - C2(Q	a,q2)	
Q1*	= 5.5	Q2* :	= 2.25
œ	Profit 1	02	Profit 2
0.0	0.00	0.00	0.00
0.5	-275	0.25	-2.94
1.0	2.00	0.50	-2.00
1.5	625	0.75	-1.18
2.0	10.00	1.00	-0.50
2.5	1325	1.3	0.06
3.0	16.00	1.50	0.50
3.5	18.25	1.75	0.81
4.0	20.00	2.00	100
4.5	21.25	2.25	1.06
5.0	22.00	2.50	1.00
5.5	22.25	2.75	0.81
6.0	22.00	3.00	0.50

No transfers, no bargaining. If were allowed, $Q_1 = 4$, $Q_2 = 3$, $\Pi = 25$.

Property Rights for the Recipient (Polluter Pays)

- How much would be produced if firm 2 had the right not to be damaged?
- Firm 1 must pay firm 2 for damage imposed
- Benchmark profit for firm 2, BM_2 , is profit when $Q_1 = 0$.
- If firm 1 produces Q_1 , then firm 1 must pay

$$BM_2 - \operatorname{Profit}_2(Q_1)$$

thereby compensating firm 2 for the externality imposed.

Property Rights for the Recipient (Polluter Pays)

Ma	net Prices	-				
P1	11					
P2	10					
Firm 1 p Firm 2 p	rofit = P1 Q1 - rofit = P2 Q2 -	C1(Q1) - (KMZ - K C2(Q1,Q2) + (KM	nofit2(Q1)) 2 - Profit2(Q1))			
	BM2 = max (P2	Q2 - C2(0,Q2)) =	21.0			
	Requ	vired Payment =	16.0			
Q1'	*= 4				Q2*=	3
QL	Implied (2)	Implied Profit 2	Required Payment	Peofix 1	œ	Profit 2
0.0	5.0	21.0	0.0	0.00	0.00	16.00
0.5	4.8	18.6	24	-5.19	0.50	1A.75
1.0	45	16.3	4.8	-2.75	1.00	17.00
15	43	14.1	69	-0.69	1.50	18.75
2.0	4.0	12.0	9.0	1.00	2.00	20.00
25		10.1	10.9	2.31	2.50	20.75
3.0	35	8.3	12.8	3.75	3.00	21,00
35	- 13	6.6	14.4	3.81	3.50	20.75
4.0	3.0	5.0	16.0	4.00	4.00	20.00
45	2.8	3.6	17.4	3.81	4.50	18.75

Property Rights for the Polluter (Victim Pays)

- How much would be produced if firm 1 had the right to impose the externality but firm 2 could pay it to reduce its output (i.e. bargaining and transfers possible)?
- Firm 2 must pay firm 1 to limit production
- Benchmark profit for firm 1 is

$$BM_1 = \max_{Q_1} P_1 Q_1 - C_1(Q_1)$$

• If firm 2 wants firm 1 to limit its output to Q_1^L , it must pay firm 2

$$BM_1 - \mathsf{Profit}_1(Q_1^L)$$

to compensate firm 1 for lost profits.

Property Rights for the Polluter (Victim Pays)

M	nket Prices											
P1	11											
P2	10	5										
Firm 1 pr	ofiit = P1 Q1 - C1(Q.1) + (KML1	- Profi	ict(Q1))	8							
Firm 2 pa	offit = IP2 Q2 - C2(1	Q1,Q2) - (B	M1-P	rolitik(p(1)							
BM	1 = max (P1 Q1 - C	(Q1)) = 2	2.25	1								
Q1*	= 4	<u>(</u>		Q2*=	3							
								0	2			
- 01	Compensation	Prefit 1		O	0	0.5	1	15	2	25	3	35
0.0	22.3	22.25		0.0	-22.25	-21.50	-17.25	-1350	-10.25	-7.50	-525	-3.50
05	25.0	22.75		0.5	-25.00	-24.50	-20.50	-17.00	-14.00	-11.50	-9.50	-8.00
10	20.3	22.75		31.00	-20.25	-20.00	-1625	-13.00	-10.25	-8.00	-6.25	-5.00
15	16.0	22.25		215	-16.00	-16.00	-12.50	-9.90	-7.00	-5.00	-3.50	-2.50
2.0	12.3	22.25		20	-12.25	-12.50	-9.25	-6.50	4.25	-2.50	-1.25	-0.50
25	90	22.25		25	-9.00	-9.50	-6.90	-4.00	-2.00	-0.50	0.50	1.00
3.0	63	22.25		30	-6.25	-7.00	-4.25	-2.00	-0.25	1.00	175	2.00
35	4.0	22.25		35	-4.00	-5.00	-2.50	-0.90	1.00	2.00	2.50	250
4.0	23	22.75		4.0	-225	-3.50	-13	0.50	1.75	2.50	2.75	250
45	10	22.25		45	-1.00	-250	-0.50	1.00	2.00	2.50	250	2.00
		100.000		10000	100.000	1000	5 Pr 107				-10 -2007	-1 -0-0

Coase Theorem Result

 Any assignment of property rights generates the optimal outcome

$P_1 = 11, P_2 = 10$	Q_1	Q_2	Profit 1	Profit 2	Total
Optimal (merge firms)	4	3			25
No Property Rights	5.5	2.25	22.25	1.06	23.31
Firm 1 Shut Down	0	5	0	21	21
Property Rights					
Polluter Pays	4	3	4	21	25
Victim Pays	4	3	22.25	2.75	25

Summary of blackboard presentation

(a) Merge firms

$$Q_1 = \frac{1}{3}(2P_1 - P_2)$$
$$Q_2 = \frac{1}{3}(2P_2 - P_1)$$

(b) No property rights

$$Q_1 = \frac{1}{2}P_1$$

 $Q_2 = \frac{1}{4}(2P_2 - P_1)$

(c) Firm 1 shut down

$$Q_1 = 0$$
$$Q_2 = \frac{1}{2}P_2$$

Either (a) or (c) above is optimal; choose the one with larger profit:

$$\Pi_1 = P_1 Q_1 - Q_1^2 - 8$$

$$\Pi_2 = P_2 Q_2 - Q_2^2 - Q_1 Q_2 - 4$$

Optimal Shut Down of Firms

• If firm 1's product is less valuable, e.g., $P_1 = 8$, firm 1 should be shut down

$P_1 = 8, P_2 = 10$	Q_1	Q_2	Profit 1	Profit 2	Total
Optimal (Firm 1 shut down)	0	5			21
No Property Rights	4	3	8	5	13
Firm 1 Shut Down	0	5	0	21	21
Property Rights					
Polluter Pays	0	5	0	21	21
Victim Pays	0	5	8	13	21

Optimal Preservation of Firms

• If firm 1's product is slightly more valuable, e.g., $P_1 = 12$, firm 2 should still operate but would be driven out of business by the externality in the absence of property rights

$P_1 = 12, P_2 = 10$	Q_1	Q_2	Profit 1	Profit 2	Total
Optimal (merge firms)	4.5	2.5			29.25
No Property Rights	6	0	28	0	28
Firm 1 Shut Down	0	5	0	21	21
Property Rights					
Polluter Pays	4.5	2.5	8.25	21	29.25
Victim Pays	4.5	2.5	28	1.25	29.25

Computed to nearest \$0.25 with Excel.

In Class Exercise

If $P_1 = 9$ and $P_2 = 10$, the following table results.

$P_1 = 9, P_2 = 10$	Q_1	Q_2	Profit 1	Profit 2	Total
Optimal (Firm 1 shut down)	0	5			21
No Property Rights	4.5	2.75	12.25	3.56	15.82
Firm 1 Shut Down	0	5	0	21	21
Property Rights					
Polluter Pays	?	?	?	?	?
Victim Pays	?	?	?	?	?

1. Fill in the cells marked with question marks.

2. What is the dead weight loss due to the externality?

Equivalent Property Rights Solutions

- Merge firms
 - ▷ If the only externality is between two firms, then we can eliminate the inefficiency by merging the two firms.
- Polluter pays
- Recipient pays
- Policy of "polluter should pay," although common, is not necessarily justified on efficiency grounds

Coase Theorem

- The initial assignment of property rights regarding externalities does not matter for *efficiency* if and only if:
 - ▷ everyone has perfect information
 - ▷ no one has market power
 - ▷ enforcement of agreements is costless
 - ▷ firms maximize profit and consumers maximize utility
 - ▷ there are no income or wealth effects
 - ▷ there are no transaction costs
- If trading rights is easy and costless, then it does not matter for efficiency how they are initially distributed – rights will be traded so that they end up in the right hands
- With transaction costs, it does matter where rights are initially vested