THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Final Exam Answers

1. (10%) Show that the random variables $\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)$ and $\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]$ are orthogonal in the sense that $\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]\right\}=0$.

Answer:

$$
\begin{aligned}
\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]\right\} & =\mathcal{E}\left\{\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right] \mid \mathcal{F}_{0}\right\}\right\} \text { iterated expectations } \\
& =\mathcal{E}\left\{\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right) Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)^{2} \mid \mathcal{F}_{0}\right\}\right\} \text { factorization } \\
& =\mathcal{E}\left\{\mathcal{E}\left\{\left[\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)^{2}-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)^{2}\right] \mid \mathcal{F}_{0}\right\}\right\} \text { linearity \& factorization } \\
& =\mathcal{E}(0)
\end{aligned}
$$

2. (15%) Let X and $X_{n}, n=1, \ldots, \infty$ be random variables defined on a probability space (Ω, \mathcal{F}, P) each with range in an open set \mathcal{X}. Let $g(x)$ be continous on \mathcal{X}.
(a) Suppose $\lim _{n \rightarrow \infty} X_{n}=X$ almost surely. Prove that $\lim _{n \rightarrow \infty} g\left(X_{n}\right)=g(X)$ almost surely.
(b) Suppose $\lim _{n \rightarrow \infty} X_{n}=X$ in probability Prove that $\lim _{n \rightarrow \infty} g\left(X_{n}\right)=g(X)$ in probability.

Answer:

From lecture:

- $g(x)$ continuous at $x \in \mathcal{X} \Leftrightarrow \lim g\left(x_{n}\right)=g\left(\lim x_{n}\right) \forall x_{n}$ that converges to x.
- $X_{n} \xrightarrow{P} X \Rightarrow \exists X_{n_{i}} \ni X_{n_{i}} \xrightarrow{\text { a.s. }} X$
- $X_{n} \xrightarrow{P} X \Leftrightarrow \forall X_{n_{i}} \exists X_{n_{i_{j}}} \ni X_{n_{i_{j}}} \xrightarrow{\text { a.s. }} X$
(a) $X_{n}(\omega) \xrightarrow{\text { a.s. }} X(\omega)$
$\Rightarrow \lim X_{n}(\omega)=\lim X(\omega)$ for $\omega \notin E$ where $P(E)=0$
$\Rightarrow \lim g\left[X_{n}(\omega)\right]=g\left[\lim X_{n}(\omega)\right]$ for $\omega \notin E$ where $P(E)=0$ by second bullet above $\Rightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$
(b) Let $g\left(X_{n_{i}}\right)$ be any subsequence of $g\left(X_{n}\right)$.
$X_{n} \xrightarrow{P} X$
$\Rightarrow X_{n_{i}} \xrightarrow{P} X$
$\Rightarrow \exists X_{n_{i_{j}}} \ni X_{n_{i_{j}}} \xrightarrow{\text { a.s. }} X$
$\Rightarrow g\left(X_{n_{i_{j}}}\right) \xrightarrow{\text { a.s. }} g(X)$ by (a) above
$\Rightarrow g\left(X_{n}\right) \xrightarrow{P} g(X)$ by third bullet above

3. (10%) Let $E_{i}, i=1, \ldots, \infty$ be events from the probability space (Ω, \mathcal{F}, P). Prove that $\sum_{i=1}^{\infty} P\left(E_{i}\right)<\infty$ implies $P\left[E_{i}\right.$ i.o. $]=0$.
Answer:
$\left[E_{i}\right.$ i.o. $]=\bigcap_{I=1}^{\infty} \bigcup_{i=I}^{\infty} E_{i} \subset \bigcup_{i=I}^{\infty} E_{i} \forall i \Rightarrow P\left[E_{i}\right.$ i.o. $] \leq \lim _{I \rightarrow \infty} \sum_{i=I}^{\infty} P\left(E_{i}\right)=0$
4. (15\%) Hoeffding's inequality states that independent random variables Y_{i} with zero mean and bounded range, i.e., $-B<Y_{i}<B$, satisfy $P\left(\left|Y_{1}+Y_{2}+\ldots+Y_{n}\right| \geq \eta\right) \leq$ $2 \exp \left[\left(-2 \eta^{2}\right) /\left(4 n B^{2}\right)\right]$. Define $\bar{Y}_{n}=(1 / n) \sum_{i=1}^{n} Y_{i}$. Use Hoeffding's inequality and the result of Problem 3 to prove that $P\left[\left|\bar{Y}_{n}\right|>n^{-\frac{1}{2}+\tau}\right.$ i.o. $]=0$ for every $\tau>0$.
Answer:

$$
\begin{aligned}
& P\left(\left|\bar{Y}_{n}\right| \geq n^{-\frac{1}{2}+\tau}\right)=P\left(\left|Y_{1}+\ldots+Y_{n}\right| \geq n^{\frac{1}{2}+\tau}\right) \leq 2 \exp \left(-\frac{1}{2} n^{2 \tau} / B^{2}\right) \\
& \sum \exp \left(-\frac{1}{2} n^{2 \tau} / B^{2}\right)<\infty \Rightarrow P\left[\left|\bar{Y}_{n}\right| \geq n^{-\frac{1}{2}+\tau} \text { i.o. }\right]=0
\end{aligned}
$$

5. (15\%) Let X and Z be measurable functions mapping (Ω, \mathcal{F}) to $\left(\mathbb{R}^{d}, \mathcal{B}\right)$, where \mathcal{B} is the collection of Borel subsets of \mathbb{R}^{d}. Let \mathcal{X} be the range of X, that is, $\mathcal{X}=X(\Omega)$. Let $\mathcal{F}_{0}=X^{-1}(\mathcal{B})$, that is, $\mathcal{F}_{0}=\left\{F: F=X^{-1}(B), B \in \mathcal{B}\right\}$. Assume Z is measurable $\left(\Omega, \mathcal{F}_{0}\right)$. Prove that there exists a function g mapping \mathcal{X} into \mathbb{R}^{d} such that $Z(\omega)=g[X(\omega)]$.

Answer:

Let $F_{z}=Z^{-1}(\{z\}) . \quad F_{z} \in \mathcal{F}_{0} \Rightarrow \exists B_{z} \in \mathcal{B} \ni F_{z}=X^{-1}\left(B_{z}\right)$. Let $g(x)=$ $\sup _{z \in \mathcal{Z}} z I_{B_{z} \cap \mathcal{X}}(x)$. Then

$$
g[X(\omega)]=\sup _{z \in \mathcal{Z}} z I_{B_{z} \cap \mathcal{X}}[X(\omega)]=\sup _{z \in \mathcal{Z}} z I_{X^{-1}\left[B_{z}\right]}(\omega)=\sup _{z \in \mathcal{Z}} z I_{F_{z}}(\omega)=Z(\omega)
$$

The last equality is because the F_{z} are disjoint, Z is constant on F_{z}, and that constant is z.
6. (10%)
(a) State Chebishev's inequality.
(b) Prove Chebishev's inequality for a general random variable, that is, do not assume that the random variable has a density.

Answer:

(a) $P(|X-\mu|>\epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}$
(b) Let $Y=X-\mu$. Then $\epsilon^{2} P(|X-\mu|>\epsilon)=\epsilon^{2} P(|Y|>\epsilon)=\int_{-\infty}^{-\epsilon} \epsilon^{2} d P_{Y}+\int_{\epsilon}^{\infty} \epsilon^{2} d P_{Y} \leq$ $\int_{-\infty}^{-\epsilon} Y^{2} d P_{Y}+\int_{-\epsilon}^{\epsilon} Y^{2} d P_{Y}+\int_{\epsilon}^{\infty} Y^{2} d P_{Y}=\operatorname{Var}(Y)=\operatorname{Var}(X)$
7. (10\%) The Metropolis-Hastings algorithm is as follows:

- Proposal density: $T\left(\theta_{\text {here }}, \theta_{\text {there }}\right)$
- Posterior: $f\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\left[\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)\right] \pi(\theta) / \int\left[\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)\right] \pi(\theta) d \theta$
- Propose: Draw $\theta_{\text {prop }}$ from $T\left(\theta_{\text {old }}, \theta\right)$
- Compute: $\alpha=$?
- Put $\theta_{\text {new }}$ to $\theta_{\text {prop }}$ with probability α (accept)
- Put $\theta_{\text {new }}$ to $\theta_{\text {old }}$ with probability $1-\alpha$ (reject)
(a) Write the formula for α.
(b) Why is it not necessary to know the normalization factor $\int\left[\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)\right] \pi(\theta) d \theta$ in order use the Metropolis-Hastings algorithm.
(c) What determines the rejection rate of the chain?
(d) What is the theoretically best choice of proposal density.

Answer:

(a) $\alpha=\min \left[1, \frac{f\left(\theta_{\text {prop }} \mid x_{1}, \ldots, x_{n}\right) T\left(\theta_{\text {prop }}, \theta_{\text {old }}\right)}{f\left(\theta_{\text {old }} \mid x_{1}, \ldots, x_{n}\right) T\left(\theta_{\text {old }}, \theta_{\text {prop }}\right)}\right]$
(b) The normalization factor does not involve θ and therefore cancels out in the computation of α.
(c) The scale of the proposal density.
(d) Iid draws from the posterior.
8. (15%) Let $x_{1}, x_{2}, \ldots, x_{n}$ be independent $n\left(x_{i} \mid \mu, \sigma^{2}\right)$ random variables. Define

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\frac{1}{\sqrt{n}} \\
\frac{1}{\sqrt{n}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}}
\end{gathered}
$$

and $z=U x$.
You may use without proof the fact that $U U^{\prime}=U^{\prime} U=I$.
(a) Show that $z_{1}=\sqrt{n} \bar{x}$.
(b) Show that $\sum_{i=2}^{n} z_{i}^{2}=(n-1) s^{2}$.
(c) Show that the density of z is

$$
f(z)=n\left(z_{1} \mid \sqrt{n} \mu, \sigma^{2}\right) \times \prod_{i=2}^{n} n\left(z_{i} \mid 0, \sigma^{2}\right)
$$

(d) Why does 8 c imply that \bar{x} and s^{2} are independent?

Answer:
(a) $z_{1}=\frac{1}{\sqrt{n}} \mathbf{1}^{\prime} x=\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} x_{i}$
(b) $(n-1) s^{2}=x^{\prime} x-n \bar{x}^{2}=x^{\prime} U^{\prime} U x-n \bar{x}^{2}=\sum_{i=1}^{n} z_{i}^{2}-z_{1}^{2}$
(c) A linear transform of the $N\left(\mu, \sigma^{2}\right)$ is the multivariate normal with mean $\mathcal{E} z=$ $(\sqrt{n} \mu, 0, \ldots, 0)^{\prime}$ and variance $\mathcal{C}\left(z, z^{\prime}\right)=U\left(\sigma^{2} I\right) U^{\prime}=\sigma^{2} I$
(d) Density factors.

