THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 1
Fall 2014
Due Sept. 2

1. Consider the following experiment: One has a coin for which the chance of landing heads is $1 / 3$ and the chance of landing tails is $2 / 3$. One tosses that coin three times and observes the number of times heads appears.
(a) What is a sample space Ω for this experiments that has four elements?
(b) Write down the σ-algebra \mathcal{A} that contains all events to which probability can be assigned for this experiment.
(c) Write down the probabilities assigned to all singleton sets in \mathcal{A}.
(d) Assign probabilities to the remaining sets in \mathcal{A} using the fact that the probability assigned to an event $E \in \mathcal{A}$ must be the sum of the probabilities of the singleton sets that comprise E.
2. Prove DeMorgan's laws for countable unions and intersections.
3. Let F_{i} where $i=1,2, \ldots$ be an infinite sequence of events from the sample space Ω. Let F be the set of points that are in all but a finite number of the events F_{i}. Prove that $F=\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} F_{i}$. Make sure that the proof is done carefully: First, take a ω point from F and show that it is in $\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} F_{i}$. Secondly, take a point ω from $\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} F_{i}$ and show that it is in F.
4. Find the supremum and infimum of the following sets: $\emptyset,(-5,10),(-\infty, \infty), \bigcap_{i=1}^{\infty}\{2 / i\}$, $\bigcup_{i=1}^{\infty}\{2 / i\}, \bigcap_{i=1}^{\infty}[2 / i, 2], \bigcup_{i=1}^{\infty}[2 / i, 2],\{x: x=2 / i, i=1,2, \ldots\},\{x: x=-2 / i, i=$ $1,2, \ldots\},\{x: x=2 i, i=1,2, \ldots\}$, and $\{x: x=-2 i, i=1,2, \ldots\}$.
5. Compute the probability of a win for each of the one roll bets in craps.
