THE PENNSYLVANIA STATE UNIVERSITY Department of Economics

Economics 501 Homework 2 Due Sept. 9 Gallant Fall 2014

1. Let \mathcal{B} be a σ -algebra of subsets of \mathbb{R} . Is the collection of sets of the form

$$\{(x,y)\in\mathbb{R}^2: x-y=d, d\in B, B\in\mathcal{B}\}$$

a σ -algebra?

- 2. Show the collection of all subsets of Ω is a σ -algebra.
- 3. Show that the intersection of two σ -algebras is a σ -algebra.
- 4. Let \mathcal{A} be some collection of sets. Problem 2 implies that there exists at least one σ -algebra that contains \mathcal{A} (Why?). Let \mathcal{F} be the intersection of all σ -algebras that contain \mathcal{A} . Show that \mathcal{F} is a σ -algebra. Show that \mathcal{F} is not empty. Why is \mathcal{F} the smallest σ -algebra that contains \mathcal{A} ?
- 5. Show that if F_1, F_2, \ldots are mutually exclusive and exhaustive, then the collection of all countable unions plus the empty set is a σ -algebra.
- 6. Show that if \mathcal{F} is a σ -algebra, then $B \cap \mathcal{F} = \{B \cap F : F \in \mathcal{F}\}$ is a σ -algebra. You may assume that $B \in \mathcal{F}$ and $B \neq \emptyset$.

The definition $B \cap \mathcal{F} = \{B \cap F : F \in \mathcal{F}\}$ is common but ambiguous because it is not clear how one is supposed to take the complement of a set in $B \cap \mathcal{F}$. Implicitly the sample space Ω is getting replaced by B. Therefore, complements are taken relative to B. A relative complement is defined to be the points in B that are not in F and usually denoted by $B \sim F$. One way of taking the relative complement is to take the complement of F relative to Ω and intersect the result with B.