THE PENNSYLVANIA STATE UNIVERSITY Department of Economics

Economics 501 Re: Homework 4 Due Sept. 23 Gallant Fall 2014

In discussions with students after class, I think I learned what is causing trouble with this problem:

1. A pair of correlated, six-sided dice are tossed. The random variable X denotes the first toss and the random variable Λ denotes the second; realizations of these tosses are pairs $(x, \lambda) \in \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$. The random variable $D = X - \Lambda$ is the difference. The preimages of D are shown in the first column below and the probabilities P(D = d) are shown in the third column. Fill in the correct entries for the third and fourth columns.

Preimage	d	P(D=d)	$P(D=d \Lambda=1)$	$P(D=d \Lambda=2)$
$C_{-5} = \{(1,6)\}$	-5	0	-	_
$C_{-4} = \{(1,5), (2,6)\}$	-4	0	_	_
$C_{-3} = \{(1,4), (2,5), (3,6)\}$	-3	0	-	_
$C_{-2} = \{(1,3), (2,4), (3,5), (4,6)\}$	-2	0	-	-
$C_{-1} = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$	-1	4/18	-	-
$C_0 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$	0	10/18	-	-
$C_1 = \{(2,1), (3,2), (4,3), (5,4), (6,5)\}$	1	4/18	-	-
$C_2 = \{(3,1), (4,2), (5,3), (6,4))\}$	2	0	-	-
$C_3 = \{(4,1), (5,2), (6,3)\}$	3	0	-	-
$C_4 = \{(5,1), (6,2)\}$	4	0	-	-
$C_5 = \{(6,1)\}$	5	0	-	-

What I mean when I tell you that a 1 was thrown on the second toss is that I have told you that the union of the events C_0 , C_1 , C_2 , C_3 , C_4 , C_5 has occurred.

Let $\mathbb{D} = \{1, 2, 3, 4, 5, 6\}$. What some of you seem to think is that what I have told you is that the event $\mathbb{D} \times \{1\}$ has occurred. Under that interpretation, the set $\mathbb{D} \times \{1\}$ must be added to the σ -algebra before you can work the problem. If so, the σ -algebra is generated by the following mutually exclusive and exhaustive sets

$$\begin{split} A_1 &= \{(1,1)\} \\ A_2 &= \{(2,1)\} \\ A_3 &= \{(3,1)\} \\ A_4 &= \{(4,1)\} \\ A_5 &= \{(5,1)\} \\ A_6 &= C_5 &= \{(6,1)\} \\ A_7 &= C_{-5} &= \{(1,6)\} \\ A_8 &= C_{-4} &= \{(1,5), (2,6)\} \\ A_9 &= C_{-3} &= \{(1,4), (2,5), (3,6)\} \\ A_{10} &= C_{-2} &= \{(1,3), (2,4), (3,5), (4,6)\} \\ A_{11} &= C_{-1} &= \{(1,2), (2,3), (3,4), (4,5), (5,6)\} \\ A_{12} &= \{(2,2), (3,3), (4,4), (5,5), (6,6)\} \\ A_{13} &= \{(3,2), (4,3), (5,4), (6,5)\} \\ A_{14} &= \{(4,2), (5,3), (6,4))\} \\ A_{15} &= \{(5,2), (6,3)\} \\ A_{16} &= \{(6,2)\} \end{split}$$

and that I have told you that the union of A_1 , A_2 , A_3 , A_4 , A_5 , A_6 has occurred.

Now you have a system of equations to solve before you can work the problem:

$$P(A_{1}) + P(A_{12}) = 4/18$$

$$P(A_{2}) + P(A_{13}) = 10/18$$

$$P(A_{3}) + P(A_{14}) = 4/18$$

$$P(A_{4}) + P(A_{15}) = 0$$

$$P(A_{5}) + P(A_{16}) = 0$$

This system does not have a unique solution because the probabilities of $P(A_1)$, $P(A_2)$, $P(A_3)$, $P(A_{12})$, $P(A_{13})$, $P(A_{14})$ cannot be determined uniquely.

If you absolutely insist on this second view of the problem, then use these probabilities to work it: $P(A_1) = 1/6$, $P(A_2) = 0$, $P(A_3) = 0$. And, explain why the sets A_1 through A_{16} have become the relevant σ -algebra.