THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Re: Homework 4
Fall 2014
Due Sept. 23

In discussions with students after class, I think I learned what is causing trouble with this problem:

1. A pair of correlated, six-sided dice are tossed. The random variable X denotes the first toss and the random variable Λ denotes the second; realizations of these tosses are pairs $(x, \lambda) \in\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$. The random variable $D=X-\Lambda$ is the difference. The preimages of D are shown in the first column below and the probabilities $P(D=d)$ are shown in the third column. Fill in the correct entries for the third and fourth columns.

| Preimage | d | $P(D=d)$ | $P(D=d \mid \Lambda=1) P(D=d \mid \Lambda=2)$ | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $C_{-5}=\{(1,6)\}$ | -5 | 0 | - | - |
| $C_{-4}=\{(1,5),(2,6)\}$ | -4 | 0 | - | - |
| $C_{-3}=\{(1,4),(2,5),(3,6)\}$ | -3 | 0 | - | - |
| $C_{-2}=\{(1,3),(2,4),(3,5),(4,6)\}$ | -2 | 0 | - | - |
| $C_{-1}=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$ | -1 | $4 / 18$ | - | - |
| $C_{0}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$ | 0 | $10 / 18$ | - | - |
| $C_{1}=\{(2,1),(3,2),(4,3),(5,4),(6,5)\}$ | 1 | $4 / 18$ | - | - |
| $\left.C_{2}=\{(3,1),(4,2),(5,3),(6,4))\right\}$ | 2 | 0 | - | - |
| $C_{3}=\{(4,1),(5,2),(6,3)\}$ | 3 | 0 | - | - |
| $C_{4}=\{(5,1),(6,2)\}$ | 4 | 0 | - | - |
| $C_{5}=\{(6,1)\}$ | 5 | 0 | - | - |

What I mean when I tell you that a 1 was thrown on the second toss is that I have told you that the union of the events $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ has occurred.

Let $\mathbb{D}=\{1,2,3,4,5,6\}$. What some of you seem to think is that what I have told you is that the event $\mathbb{D} \times\{1\}$ has occurred. Under that interpretation, the set $\mathbb{D} \times\{1\}$ must be added to the σ-algebra before you can work the problem. If so, the σ-algebra is generated by the following mutually exclusive and exhaustive sets

$$
\begin{aligned}
& A_{1}=\{(1,1)\} \\
& A_{2}=\{(2,1)\} \\
& A_{3}=\{(3,1)\} \\
& A_{4}=\{(4,1)\} \\
& A_{5}=\{(5,1)\} \\
& A_{6}=C_{5}=\{(6,1)\} \\
& A_{7}=C_{-5}=\{(1,6)\} \\
& A_{8}=C_{-4}=\{(1,5),(2,6)\} \\
& A_{9}=C_{-3}=\{(1,4),(2,5),(3,6)\} \\
& A_{10}=C_{-2}=\{(1,3),(2,4),(3,5),(4,6)\} \\
& A_{11}=C_{-1}=\{(1,2),(2,3),(3,4),(4,5),(5,6)\} \\
& A_{12}=\{(2,2),(3,3),(4,4),(5,5),(6,6)\} \\
& A_{13}=\{(3,2),(4,3),(5,4),(6,5)\} \\
& \left.A_{14}=\{(4,2),(5,3),(6,4))\right\} \\
& A_{15}=\{(5,2),(6,3)\} \\
& A_{16}=\{(6,2)\}
\end{aligned}
$$

and that I have told you that the union of $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ has occurred.
Now you have a system of equations to solve before you can work the problem:

$$
\begin{aligned}
& P\left(A_{1}\right)+P\left(A_{12}\right)=4 / 18 \\
& P\left(A_{2}\right)+P\left(A_{13}\right)=10 / 18 \\
& P\left(A_{3}\right)+P\left(A_{14}\right)=4 / 18 \\
& P\left(A_{4}\right)+P\left(A_{15}\right)=0 \\
& P\left(A_{5}\right)+P\left(A_{16}\right)=0
\end{aligned}
$$

This system does not have a unique solution because the probabilities of $P\left(A_{1}\right), P\left(A_{2}\right)$, $P\left(A_{3}\right), P\left(A_{12}\right), P\left(A_{13}\right), P\left(A_{14}\right)$ cannot be determined uniquely.

If you absolutely insist on this second view of the problem, then use these probabilities to work it: $P\left(A_{1}\right)=1 / 6, P\left(A_{2}\right)=0, P\left(A_{3}\right)=0$. And, explain why the sets A_{1} through A_{16} have become the relevant σ-algebra.

