THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 4
Fall 2014
Due Sept. 23

1. A pair of correlated, six-sided dice are tossed. The random variable X denotes the first toss and the random variable Λ denotes the second; realizations of these tosses are pairs $(x, \lambda) \in\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$. The random variable $D=X-\Lambda$ is the difference. The preimages of D are shown in the first column below and the probabilities $P(D=d)$ are shown in the third column. Fill in the correct entries for the third and fourth columns.

Preimage	d	$P(D=d)$	$P(D=d \mid \Lambda=1) P(D=d \mid \Lambda=2)$	
$C_{-5}=\{(1,6)\}$	-5	0	-	-
$C_{-4}=\{(1,5),(2,6)\}$	-4	0	-	-
$C_{-3}=\{(1,4),(2,5),(3,6)\}$	-3	0	-	-
$C_{-2}=\{(1,3),(2,4),(3,5),(4,6)\}$	-2	0	-	-
$C_{-1}=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}$	-1	$4 / 18$	-	-
$C_{0}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$	0	$10 / 18$	-	-
$C_{1}=\{(2,1),(3,2),(4,3),(5,4),(6,5)\}$	1	$4 / 18$	-	-
$\left.C_{2}=\{(3,1),(4,2),(5,3),(6,4))\right\}$	2	0	-	-
$C_{3}=\{(4,1),(5,2),(6,3)\}$	3	0	-	-
$C_{4}=\{(5,1),(6,2)\}$	4	0	-	-
$C_{5}=\{(6,1)\}$	5	0	-	-

2. If A and B are subsets of \mathcal{X}, and A_{1}, A_{2}, \ldots is a sequence of subsets from \mathcal{X}, show that the inverse image satisfies these properties:
(4) $X^{-1}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\bigcup_{i=1}^{\infty} X^{-1}\left(A_{i}\right)$
(7) $X^{-1}(\sim A)=\sim X^{-1}(A)$

You may use these facts without proof in your answer:
(1) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$
(2) $X^{-1}(A \cup B)=X^{-1}(A) \cup X^{-1}(B)$
(3) $X^{-1}(A \cap B)=X^{-1}(A) \cap X^{-1}(B)$
(5) $X^{-1}\left(\bigcap_{i=1}^{\infty} A_{i}\right)=\bigcap_{i=1}^{\infty} X^{-1}\left(A_{i}\right)$
(6) If $h(\omega)=g[X(\omega)]$, then $h^{-1}(B)=X^{-1}\left[g^{-1}(B)\right]$
3. Let X be a random variable mapping the measurable space (Ω, \mathcal{F}) onto the measurable space $(\mathcal{X}, \mathcal{A})$. Use the properties stated in Question 2 to show that the collection of sets

$$
\mathcal{F}_{0}=\left\{F \in \mathcal{F}: F=X^{-1}(A), A \in \mathcal{A}\right\}
$$

is a σ-algebra.
4. Show that $I_{X^{-1}(F)}(\omega)=I_{F}[X(\omega)]$.

