THE PENNSYLVANIA STATE UNIVERSITY Department of Economics

Economics 501 Homework 4 Due Sept. 23 Gallant Fall 2014

1. A pair of correlated, six-sided dice are tossed. The random variable X denotes the first toss and the random variable Λ denotes the second; realizations of these tosses are pairs $(x, \lambda) \in \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$. The random variable $D = X - \Lambda$ is the difference. The preimages of D are shown in the first column below and the probabilities P(D = d) are shown in the third column. Fill in the correct entries for the third and fourth columns.

Preimage	d	P(D=d)	$P(D=d \Lambda=1)$	$P(D=d \Lambda=2)$
$C_{-5} = \{(1,6)\}$	-5	0	_	-
$C_{-4} = \{(1,5), (2,6)\}$	-4	0	_	_
$C_{-3} = \{(1,4), (2,5), (3,6)\}$	-3	0	-	-
$C_{-2} = \{(1,3), (2,4), (3,5), (4,6)\}$	-2	0	-	-
$C_{-1} = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}$	-1	4/18	-	-
$C_0 = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$	0	10/18	-	-
$C_1 = \{(2,1), (3,2), (4,3), (5,4), (6,5)\}$	1	4/18	-	-
$C_2 = \{(3,1), (4,2), (5,3), (6,4)\}$	2	0	-	-
$C_3 = \{(4,1), (5,2), (6,3)\}$	3	0	-	-
$C_4 = \{(5,1), (6,2)\}$	4	0	-	-
$C_5 = \{(6,1)\}$	5	0	-	-

2. If A and B are subsets of \mathcal{X} , and A_1, A_2, \ldots is a sequence of subsets from \mathcal{X} , show that the inverse image satisfies these properties:

(4)
$$X^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} X^{-1}(A_i)$$

(7)
$$X^{-1}(\sim A) = \sim X^{-1}(A)$$

You may use these facts without proof in your answer:

- (1) If $A \subset B$, then $X^{-1}(A) \subset X^{-1}(B)$ (2) $X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$ (3) $X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B)$ (5) $X^{-1}(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} X^{-1}(A_i)$ (6) If $h(\omega) = g[X(\omega)]$, then $h^{-1}(B) = X^{-1}[g^{-1}(B)]$
- 3. Let X be a random variable mapping the measurable space (Ω, \mathcal{F}) onto the measurable space $(\mathcal{X}, \mathcal{A})$. Use the properties stated in Question 2 to show that the collection of sets

$$\mathcal{F}_0 = \left\{ F \in \mathcal{F} : F = X^{-1}(A), \, A \in \mathcal{A} \right\}$$

is a σ -algebra.

4. Show that $I_{X^{-1}(F)}(\omega) = I_F[X(\omega)].$