THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 6
Fall 2014
Due Oct. 7

1. For the joint density

$$
f_{X, Y}(i, j)=\frac{\binom{8}{i}\binom{8}{j}\binom{64}{20-i-j}}{\binom{80}{20}}
$$

with marginal densities

$$
f_{X}(i)=\frac{\binom{8}{i}\binom{72}{20-i}}{\binom{80}{20}} \quad f_{Y}(j)=\frac{\binom{8}{j}\binom{72}{20-j}}{\binom{80}{20}}
$$

we derived the conditional expectation

$$
\mathcal{E}(Y \mid X)(i)=8 \frac{(20-i)}{72}
$$

Direct computation gives

$$
\mathcal{E} Y=\sum_{j=0}^{8} j f_{Y}(j)=2
$$

Theorem 2.5 states that

$$
\mathcal{E} Y=\mathcal{E}[\mathcal{E}(Y \mid X)]=\sum_{i=0}^{8} \mathcal{E}(Y \mid X)(i) f_{X}(i)
$$

Compute this sum and compare.
2. Let the random variable Y be defined by

$$
Y=\beta_{0}+\beta_{1} X+\omega
$$

where X and ω are each gotten by coin tossing and are independent. Compute $\mathcal{E}(Y)$, the unconditional expectation of Y. Compute $\mathcal{E}(Y \mid X)(x)$, the conditional expectation of Y given X.
3. Consider the jointly distributed random variables X and Y with density

$$
f(x, y)= \begin{cases}\frac{6}{5}\left(x^{2}+y\right) & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Compute the marginal density $f(x)$.
(b) Compute the conditional density $f(y \mid x)$.
(c) Compute $\mathcal{E}(Y \mid X)(x)$.
4. Show that conditional expectation is an orthogonal projection in the sense that it satisfies the Pythagorean identity

$$
\mathcal{E}\left(Y^{2}\right)=\mathcal{E}\left\{\left[\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]^{2}\right\}+\mathcal{E}\left\{\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]^{2}\right\}
$$

and the random variables $\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)$ and $\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]$ are orthogonal

$$
\mathcal{E}\left\{\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\left[Y-\mathcal{E}\left(Y \mid \mathcal{F}_{0}\right)\right]\right\}=0
$$

