THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 7
Fall 2014
Due Oct. 14

1. Draw a diagram upon which are superimposed the sets $\left(-\infty, b_{x}\right] \times\left(-\infty, b_{y}\right],\left(-\infty, a_{x}\right] \times$ $\left(-\infty, b_{y}\right],\left(-\infty, b_{x}\right] \times\left(-\infty, a_{y}\right]$, and $\left(-\infty, a_{x}\right] \times\left(-\infty, a_{y}\right]$. Mark the four points $\left(a_{x}, a_{y}\right)$, $\left(b_{x}, a_{y}\right),\left(a_{x}, b_{y}\right)$, and $\left(b_{x}, b_{y}\right)$ on the diagram. Use Proposition 1.1 to show that $P\left(a_{x}<\right.$ $\left.X \leq b_{x}, a_{y}<Y \leq b_{y}\right)=F_{X, Y}\left(b_{x}, b_{y}\right)-F_{X, Y}\left(a_{x}, b_{y}\right)-F_{X, Y}\left(b_{x}, a_{y}\right)+F_{X, Y}\left(a_{x}, a_{y}\right)$.
2. If X and Y are independent random variables, show that $F_{X, Y}\left(b_{x}, b_{y}\right)-F_{X, Y}\left(a_{x}, b_{y}\right)-$ $F_{X, Y}\left(b_{x}, a_{y}\right)+F_{X, Y}\left(a_{x}, a_{y}\right)=\left[F_{X}\left(b_{x}\right)-F_{X}\left(a_{x}\right)\right]\left[F_{Y}\left(b_{y}\right)-F_{Y}\left(a_{y}\right)\right]$.
3. Let X be continuous random variable with distribution function $F_{X}(x)$ and let Y be a continuous random variable with distribution $F_{Y}(y)$. Assume that both F_{X} and F_{Y} are strictly increasing.
(a) What is the transformation $g(x)$ such that the random variable $W=g(X)$ has the uniform distribution.
(b) What is the transformation $g(x)$ such that the random variable $W=g(X)$ is distributed as F_{Y}.
4. Suppose that $f_{X}(x)=(1 / \sigma) f_{Z}[(x-\mu) / \sigma]$ where $f_{Z}(z)$ is a density with mean 0 and standard deviation 1 . What is the mean and variance of the random variable X.
5. For each density f_{X}, support \mathcal{X}, and transformation $Y=g(X)$ listed below find the density f_{Y} and support \mathcal{Y} of the random variable Y. Check your work by verifying that $\int_{\mathcal{Y}} f_{Y}(y) d y=1$.
(a) $f_{X}(x)=42 x^{5}(1-x), \mathcal{X}=\{x: 0<x<1\}, Y=X^{3}$.
(b) $f_{X}(x)=5 e^{-5 x}, \mathcal{X}=\{x: 0<x<\infty\}, Y=2 X+1$.
(c) $f_{X}(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2} ; \mathcal{X}=\{x:-\infty<x<\infty\}, Y=2 X+1$.
(d) $f_{X}(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2} ; \mathcal{X}=\{x:-\infty<x<\infty\}, Y=e^{X}$.
(e) $f_{X}(x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2} ; \mathcal{X}=\{x:-\infty<x<\infty\}, Y=|X|$.
