THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 9
Fall 2014
Nov. 4

1. Let $Y=\beta_{0}+\beta_{1} X+E$ where X and E are independent random variables that are distributed $N\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $N\left(0, \sigma_{e}^{2}\right)$, respectively. Compute $\mathcal{E}(Y), \mathcal{E}(Y \mid X)$, and find the density of Y.
2. Let $y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}$. The random variables $e_{i}, i=1, \ldots, n$, are uncorrelated with first moment $\mathcal{E}\left(e_{i}\right)=0$ and second moment $\mathcal{E}\left(e_{i}^{2}\right)=\sigma^{2}$. The $x_{i}, i=1, \ldots, n$, are known numbers; they are not random variables. This setup can be written more compactly as $y=X \beta+e$ where

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \quad X=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right) \quad \beta=\binom{\beta_{0}}{\beta_{1}} \quad e=\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)
$$

Recall that if U is a random vector and A is a matrix, then $\mathcal{E}(A U)=A \mathcal{E} U$ and $\mathcal{E}\left(U^{\prime} A U\right)=\operatorname{tr}\left[\mathcal{E}\left(U^{\prime} A U\right)\right]=\mathcal{E} \operatorname{tr}\left(U^{\prime} A U\right)=\mathcal{E} \operatorname{tr}\left(A U U^{\prime}\right)=\operatorname{tr}\left[\mathcal{E}\left(A U U^{\prime}\right)\right]=\operatorname{tr}\left[A \mathcal{E}\left(U U^{\prime}\right)\right]$.
(a) Show that $\mathcal{E} e e^{\prime}=\sigma^{2} I$, where I is the n by n identity matrix.
(b) Define $P_{X}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$ and define $P_{X}^{\perp}=I-P_{X}$. Note that P_{X} and P_{X}^{\perp} are n by n matrices. Show that $P_{X} P_{X}=P_{X}, P_{X}^{\perp} P_{X}^{\perp}=P_{X}^{\perp}$, and $P_{X} P_{X}^{\perp}=0$.
(c) The least squares estimator is the random variable $\hat{\beta}$ that minimizes the residual sum of squares

$$
s(\beta)=(y-X \beta)^{\prime}(y-X \beta)=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

Show that the first order conditions for minimizing $s(\beta)$ are $\left(X^{\prime} X\right) \hat{\beta}=X^{\prime} y$.
(d) Part 2c implies that $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$. Show that $s(\hat{\beta})=y^{\prime} P_{X}^{\perp} y$.
(e) Show that $\mathcal{E}\left(y^{\prime} P_{X}^{\perp} y\right)=(n-2) \sigma^{2}$.

