THE PENNSYLVANIA STATE UNIVERSITY
 Department of Economics

Economics 501
Gallant
Homework 10
Fall 2014
Nov. 11

1. Plot the empirical distribution function of the numbers $0.71,0.73,1.57,1.61,0.02,0.7$, $0.67,1.1,1.8$, and 0.76 .
2. Let f_{X} be a density function, which may be either discrete or continuous, that is symmetric about zero and let $Y=X I_{[-B, B]}(X)$. Show that $\mathcal{E} Y=0$.
3. Let X_{i} be independently and identically distributed with finite variance. Show that $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ where $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ converges almost surely to $\operatorname{Var}(X)$.
4. In a common valuation, oral ascending auction with n bidders, the winner pays the second largest value in a random sample X_{1}, \cdots, X_{n} from the common valuation distribution $F_{X}(x)$. Derive the distribution of the winning bid.

Hint: If there are two bidders and Y denotes the winning bid then $F_{Y}(y)=P\left(X_{1} \leq\right.$ $\left.y, X_{2} \leq y\right)+P\left(X_{1} \leq y, y<X_{2}\right)+P\left(X_{2} \leq y, y<X_{1}\right)$.
5. Let U and V be independent uniform random variables. Show that

$$
\begin{aligned}
& X=\cos (2 \pi U) \sqrt{-2 \log V} \\
& Y=\sin (2 \pi U) \sqrt{-2 \log V}
\end{aligned}
$$

are independent normal random variables.

