UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Final Exam Dec. 10, 1999 Dr. Gallant Fall 1999

- 1. (15%) Let A be an event from (Ω, \mathcal{F}, P) that occurs with probability p = P(A) where p is known. Let Y be the random variable on (Ω, \mathcal{F}, P) defined by $Y(\omega) = I_A(\omega)$.
 - (a) Compute $\mathcal{E}Y$.
 - (b) Compute Var(Y).
 - (c) Derive the density function $f_Y(y)$ of Y.
 - (d) Derive the distribution function $F_Y(y)$ of Y.
- 2. (10%) Let X_i for i = 1, ..., n be independently and identically distributed with mean μ and finite variance σ^2 . Estimate $P(\bar{X}_n > 1)$, where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$, using both Chebishev's inequality and the central limit theorem. You may assume that $1 \mu > 0$.
- 3. (10%) Let X_i for i = 1, ..., n be independently and identically distributed with common distribution function F_X . Let g(x) be an increasing function with inverse $g^{-1}(y)$. Let $Y_i = g(X_i)$ for i = 1, ..., n. Prove that the Y_i are independently and identically distributed with common distribution function F_Y and derive F_Y .
- 4. (5%) Show that $I_{X^{-1}(F)}(\omega) = I_F[X(\omega)]$.
- 5. (10%) Let X_i be independently and identically distributed with finite variance. Show that $S_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ converges almost surely to Var(X).
- 6. (10%) Let (Y_i, X_i) be iid random variables with common density

$$f_{X,Y}(x,y) = n(y|\beta x, 1) f_X(x),$$

where $n(\cdot|\mu, \sigma^2)$ denotes the normal density with mean μ and variance σ^2 . Derive the maximum likelihood estimator of β . Note that, unlike the example worked in class, here β and x are scalars, not vectors.

7. (15%) Consider the jointly distributed random variables X and Y with density

$$f(x,y) = \begin{cases} \frac{6}{5}(x^2+y) & 0 \le x \le 1, \ 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the marginal density f(x).
- (b) Compute the conditional density f(y|x).
- (c) Compute $\mathcal{E}(Y|X)(x)$.
- 8. (5%) Let the random variable X be normally distributied with mean μ and variance σ^2 . Compute $\mathcal{E}(e^X)$ and $Var(e^X)$. Hint: The moment generating function of the normal distribution is $M_X(t) = \exp(\mu t + t^2 \sigma^2/2)$.
- 9. (20%) Let X_1, \ldots, X_n be iid $\mathcal{U}(0, \theta)$. The $\mathcal{U}(0, \theta)$ density is $f_X(x) = \theta^{-1}I_{[0,\theta]}(x)$ and the $\mathcal{U}(0, \theta)$ distribution function is

$$F_X(x) = \begin{cases} 0 & -\infty < x < 0 \\ x/\theta & 0 \le x < \theta \\ 1 & \theta \le x < \infty \end{cases}$$

- (a) Show that $P(\max_{1 \le i \le n} X_i \le t) = [F_X(t)]^n$.
- (b) Compute the mean and variance of $\tilde{\theta}_n = [(n+1)/n] \max_{1 \leq i \leq n} X_i$.
- (c) Show that $\tilde{\theta}_n = [(n+1)/n] \max_{1 \leq i \leq n} X_i$ converges in probability to θ .
- (d) Compute the mean and variance of $\hat{\theta}_n = (2/n) \sum_{t=1}^n X_i$.
- (e) Show that $\hat{\theta}_n = (2/n) \sum_{t=1}^n X_i$ converges in probability to θ .
- (f) Which of the two is the better estimator and why.