UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Midterm Exam Oct. 11, 2000 Dr. Gallant Fall 2000

1. (20%) Complete the following table

f(x,y)			y				
x	1	2	3	4	5	f(x)	$\mathcal{E}(Y X)(x)$
1	.01	.02	.03	.03	.04		
2	.03	.03	.04	.05	.05		
3	.03	.05	.04	.05	.06		
4	.02	.02	.04	.04	.05		
5	.04	.05	.05	.06	.07		

- 2. (20%) Let (Ω, \mathcal{F}, P) be the coin tossing probability space; i.e., $\Omega = (0, 1]$, \mathcal{F} is the smallest σ -algebra that contains all finite unions of sets of the form (a, b], and P(a, b] = b a. Consider the random variable $X(\omega) = \sqrt{\omega}$, which maps (Ω, \mathcal{F}, P) into a new probability space $(\mathcal{X}, \mathcal{A}, P_X)$.
 - (a) What is \mathcal{X} in this new probability space?
 - (b) What is A in this new probability space?
 - (c) If $(c, d] \subset \mathcal{X}$, what is the value of $P_X(c, d]$?
 - (d) What is the density $f_X(x)$ of the random variable X?
 - (e) What is the value of $\mathcal{E}X$?
- 3. (20%) A pair of dice are thrown and the value $\omega = (n_1, n_2)$ is observed where n_1 is the number of spots showing on the first die and n_2 is the number of spots showing on the second.
 - (a) What is the joint probability density function $f_{X,Y}(x,y)$ of the random variables $X(\omega) = (n_1 n_2), Y(\omega) = (n_1 + n_2)$?

- (b) What is the value of $\mathcal{E}X$?
- (c) Let $F = \{\omega : X(\omega) = 1\}$. What is the value of $\mathcal{E}(Y|F)$?
- 4. (20%) For each of the following, if the statement is true, then prove it, if the statement is false, then give a counter example.
 - (a) The collection $\mathcal{A} = \{\emptyset, \Omega, A, \tilde{A}\}$ a σ -algebra.
 - (b) The union of two σ -algebras a σ -algebra.
 - (c) The intersection of two σ -algebras a σ -algebra.
- 5. (20%) Assume that $0 \le X(\omega) \le Y(\omega)$. Use the definition of expectation

$$\mathcal{E}X = \sup \left\{ \mathcal{E}X_N : X_N(\omega) = \sum_{i=1}^N x_i I_{F_i}(\omega), 0 \le X_N(\omega) \le X(\omega) \right\}$$

to show directly that $0 \leq \mathcal{E}X \leq \mathcal{E}Y$.