UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Midterm Exam Oct. 15, 2000 Dr. Gallant Fall 2001

- 1. (25%) The coin tossing probability space is (Ω, \mathcal{F}, P) , where $\Omega = (0, 1]$, \mathcal{F} is the smallest σ -algebra containing all intervals of the form (a, b], $0 \le a \le b \le 1$, and $P(A) = \int I_A(\omega) d\omega$. Let $F_1 = (0, 1/2]$, $F_2 = (0, 1/4] \cup (1/2, 3/4]$, $X_1(\omega) = I_{F_1}(\omega)$, $X_2(\omega) = I_{F_2}(\omega)$ and $Y = X_1 + X_2$.
 - (a) Show that F_1 and F_2 are independent events.
 - (b) Derive the densities $f_{X_1}(x_1)$, $f_{X_2}(x_2)$, $f_{X_1,X_2}(x_1,x_2)$ of X_1 , X_2 , and (X_1,X_2) , respectively.
 - (c) Show that $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$
 - (d) F_1 is the event "tails on the first toss", F_2 is the event "tails on the second toss." Write down the event "tails on the third toss" in terms of unions of intervals of the form (a, b].
 - (e) Is $F_1 \cup F_2$ the event "one tail in the first two tosses" or is it the event "at least one tail on the first two tosses?"
 - (f) Derive the density $f_Y(y)$ of Y.
- 2. (20%) Complete the following table

f(x, y)			y				
x	1	2	3	4	5	f(x)	$\mathcal{E}(Y X)(x)$
1	.01	.02	.03	.03	.04		
2	.04	.05	.04	.05	.06		
3	.03	.03	.05	.05	.05		
4	.02	.02	.03	.04	.05		
5	.04	.05	.05	.06	.06		

- 3. (20%) A pair of dice are thrown and the sum is noted. The throws are repeated until either a sum of 6 or a sum of 7 occurs.
 - (a) What is the sample space for this experiment.
 - (b) What is the probability that the sequence of throws terminates in a 7.
- 4. (15%) Show that the intersection of two σ -algebras is a σ -algebra.
- 5. (20%) If A and B are subsets of \mathcal{X} , and A_1, A_2, \ldots is a sequence of subsets from \mathcal{X} , show that the inverse image satisfies these properties:

(5)
$$X^{-1} \left(\bigcap_{i=1}^{\infty} A_i \right) = \bigcap_{i=1}^{\infty} X^{-1} \left(A_i \right)$$

(6) If
$$h(\omega) = g[X(\omega)]$$
, then $h^{-1}(B) = X^{-1}[g^{-1}(B)]$

You may use these facts without proof in your answer:

(1) If
$$A \subset B$$
, then $X^{-1}(A) \subset X^{-1}(B)$

(2)
$$X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$$

(3)
$$X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B)$$

$$(4) X^{-1} \left(\bigcup_{i=1}^{\infty} A_i \right) = \bigcup_{i=1}^{\infty} X^{-1} \left(A_i \right)$$

$$(7) X^{-1}(\sim A) = \sim X^{-1}(A)$$