UNIVERSITY OF NORTH CAROLINA Department of Economics

Economics 271 Midterm Exam Oct. 4, 1999 Dr. Gallant Fall 1999

1. (20%) Complete the following table

f(x,y)			y				
x	1	2	3	4	5	f(x)	$\mathcal{E}(Y X)(x)$
1	.01	.02	.03	.03	.04		
2	.02	.03	.03	.04	.05		
3	.03	.03	.04	.05	.05		
4	.03	.04	.05	.05	.06		
5	.04	.05	.05	.06	.07		

2. (15%) Show that

$$I_{X^{-1}(F)}(\omega) = I_F[X(\omega)].$$

3. (30%) A probability space (Ω, \mathcal{F}, P) satisfies three properties:

- (a) $P(A) \ge 0$ for all $A \in \mathcal{F}$.
- (b) $P(\Omega) = 1$.
- (c) If $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Use these three properties to show that

- (a) $P(\emptyset) = 0$.
- (b) $P(A) \le 1$.
- (c) $P(A) + P(\tilde{A}) = 1$.
- (d) $P(A \cap B) + P(A \cap \tilde{B}) = P(A)$.
- (e) $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- (f) If $A \subset B$, then $P(A) \leq P(B)$.

4. (20%) Let the random variable Y be defined by

$$Y = \beta_0 + \beta_1 x + \omega,$$

where ω is gotten by coin tossing and the value of x is known. Find the density $f_Y(y)$ of the random variable Y. What is the value of $\mathcal{E}Y$?

5. (15%) In a shipment of 1,000 transistors, 200 are defective. If 25 transistors are inspected, what is the probability that 5 of them will be defective. Be sure to include an explanation of the logic that you used to reach your answer.