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Chapter 1

Probability

1.1 Examples

This chapter introduces the basic ideas of probability theory. Four examples
are used throughout to motivate the theoretical constructs. The �rst two, craps
and keno, are games of chance, the third is a coin tossing experiment, and the
fourth is the triangle map, which generates deterministic chaos. The theory
that we shall develop is applicable to each of these examples.

1.1.1 Craps

Craps is a dice game that has one feature that makes it especially interesting
as an example in our study of probability: The number of rolls of the dice
required to decide the outcome of a bet is indeterminate. Conceptually the dice
might have to be rolled forever and the bet never decided. Dealing with this
contingency forces us to develop a theory of probability that turns out to be
rich enough to support the study of econometrics in general and the study of
time series phenomena, such as weekly interest rates, in particular. Moreover,
there is nothing abstract about craps. The game is real; it is tangible; you can
play it yourself in Las Vegas, Reno, Atlantic City, and elsewhere; and people
have been playing it in something like its present form since at least the time
of the Crusades.

The game is played at a table laid out as shown in Figure 1.1. The casino
crew consists of a boxman, a stickman, and two dealers who occupy positions
as shown in the �gure. Dealers manage betting at their end of the table. The
stickman manages the dice and the bets at the center of the table, which are
hardway and one roll bets. The boxman makes change and supervises the game.
The players crowd around the table at either side of the stickman. Play is noisy
with players and crew announcing, deciding, and paying bets, encouraging the
dice, talking to one another, etc. It is great fun.

The 
ow of the game is determined by the pass line bet. Custom and social
pressure require the shooter, who is the player throwing the dice, to place a bet
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2 PROBABILITY

Figure 1.1. The Layout of a Crap Table and the Positions of Players and Crew.

on the pass line before the �rst roll, which is called a come out roll, although
the rules do permit a bet on the don't pass bar instead. A come out roll occurs
immediately after the previous pass line bet has been decided. If the previous
pass line bet lost on the roll of a seven, then the losing shooter also loses the
dice and they are o�ered to players to the shooter's left, in turn, until a player
accepts them to become the new shooter. The payo� on the pass line is stated
as either \1 to 1" or \2 for 1". Each means that a winning player who bet $1
gets that $1 back plus $1.

Figure 1.2 shows the 36 possible positions in which the dice may land when
thrown. The stickman will disallow rolls that bounce o� the table, land on a
pile of chips, or in the dice bin, and will scold a shooter who does not throw
hard enough to hit the opposite end of the table or players who get their hands
in the way of the dice.

If the sum of the dice on the come out roll is craps, which is a 2, 3, or 12,
then the roll is called a miss and the pass line loses. If the come out roll is a
7 or 11, it wins. Otherwise, a 4, 5, 6, 8, 9, or 10 has been thrown. Whichever
it is becomes the point. The shooter then continues to roll the dice until either
the point recurs, in which case the pass line wins, or a 7 occurs, in which case
the pass line loses and the dice pass leftward. It is this indeterminate number
of rolls after the point is established that makes the game of craps interesting
to us as an example.

If the come out roll is 4, 5, 6, 8, 9, or 10, then players who have bet the
pass line are o�ered free odds. They can make a fair bet { called odds, taking
the odds, or a right bet { that wins if the point recurs before a 7 is rolled.
Minimally, one can bet $1 for every $1 bet on the pass line, but some casinos
(e.g., Binion's Horseshoe, Downtown Las Vegas) have allowed as much as 100
times the pass line bet. This is a form of price competition among casinos. Free
odds pay 6 to 5 if the point is 6 or 8, 3 to 2 if the point is 5 or 9, and 2 to 1 if
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Figure 1.2. The Possible Outcomes of a Single Roll of a Pair of Dice.

the point is 4 or 10.

The don't pass bar bet is the opposite of the pass line bet, in the sense that
the don't pass bet wins when the pass line bet loses and conversely, except that
the don't pass bet neither wins nor loses if a 12 is thrown on the come out roll.
Of course, the free odds bet is also reversed, it wins if a 7 is thrown before the
point is made. Don't pass free odds pay 5 to 6 if the point is 6 or 8, 2 to 3 if
the point is 5 or 9, and 1 to 2 if the point is 4 or 10.

The come and don't come bets are the same as the pass and don't pass bets
except that a player may place that bet before any roll except the come out roll.

If you play craps, and want to keep the house advantage to a percentage
that is nearly irrelevant, then play the pass, don't pass, come, don't come, and
always take maximum odds. Stay away from all other bets. Admittedly, this
strategy takes much of the entertainment value out of the game.

A place bet to win is the same as a pass line bet without the initial skirmish
of the come out roll. The bettor chooses a point, a 4, 5, 6, 8, 9, or 10, and the
bet wins if the point is rolled before a 7. The bet is usually o� on any come out
roll. Similarly, a place bet to lose is the same as a don't pass bar bet without
the initial skirmish. Payo�s vary somewhat from casino to casino on place bets.
Typical payo�s are shown in Table 1.1. Casinos that are more generous with
free odds are often more generous with place bet payo�s as well.

A hardway bet on the 8 wins if a hard 8 is rolled before either an easy 8 or
a 7. A hard 8 occurs when (4,4) is thrown; an easy 8 occurs when either (2,6)
or (3,5) is thrown. The other hardway bets are 4, 6, and 10: Typical payo�s are
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True Payo� % Casino
Bet Odds Odds Advantage

Multiple Roll Bets

Pass or Come 251 to 244 1 to 1 1.414
with free odds 0.848
with double odds 0.606

Don't Pass or Don't Come 976 to 949 1 to 1 1.402
with free odds 0.832
with double odds 0.591

Place 4 or 10 to win 2 to 1 9 to 5 6.666
5 or 9 3 to 2 7 to 5 4.000
6 or 8 6 to 5 7 to 6 1.515

Place 4 or 10 to lose 1 to 2 5 to 11 3.030
5 or 9 2 to 3 5 to 8 2.500
6 or 8 5 to 6 4 to 5 1.818

Hardway 4 or 10 8 to 1 7 to 1 11.111
6 or 8 10 to 1 9 to 1 9.090

Big 6 or Big 8 6 to 5 1 to 1 9.090
Buy 4 or 10 2 to 1 True odds less 5% of bet 4.761
5 or 9 3 to 2 True odds less 5% of bet 4.761
6 or 8 6 to 5 True odds less 5% of bet 4.761

Lay 4 or 10 1 to 2 True odds less 5% of payo� 2.439
5 or 9 2 to 3 True odds less 5% of payo� 3.225
6 or 8 5 to 6 True odds less 5% of payo� 4.000

Single Roll Bets

Field 5 to 4 1 to 1, 2 to 1 on 2 and 12 5.556
Any 7 5 to 1 4 to 1 16.666
2 or 12 35 to 1 30 to 1 13.890
3 or 11 17 to 1 15 to 1 11.111
Any craps 8 to 1 7 to 1 11.111

Table 1.1. True Odds, Payo� Odds, and Casino Advantage at Craps. Source:
Patterson and Jaye 1982 and Dunes Hotel 1984.

shown in Table 1.1.

Other bets, whose de�nitions are plainly marked in Figure 1.1, are the �eld
and the single roll bets at the center of the table. The single roll bets at the
center are 2 (snake eyes), 3, 12 (box cars), any craps, 11 (the yo), and any 7.
Typical payo�s are shown in Table 1.1.

These are all the bets we shall need as examples. For the remainder, see a
casino brochure or Patterson and Jaye 1982.

1.1.2 Keno

Keno has the appeal of a state lottery: for a small wager you can win a lot
of money. Unlike a state lottery, one does not have to wait days to learn the
outcome of the bet. A new game is played every half hour or so, twenty-four
hours a day. Moreover, the game comes to you, you do not have to go to it. Keno
runners are all over the casino, in the restaurant, bars, they are ubiquitous. Or,
there is a keno parlor set aside for the game where you can place wagers directly
and watch the numbers be drawn.



1.1. EXAMPLES 5

The game is played by marking a ticket such as is shown in the top panel of
Figure 1.3. One can mark any number of spots from 1 to 15. The ticket in the
�gure has eight spots marked.

Write the amount of the wager at the top of the ticket and hand it in with
the wager to a writer at the keno parlor or to a keno runner. You receive back
an authorized game ticket marked as shown in the second panel of Figure 1.3.
The authorized game ticket is a full receipt that shows the amount wagered, the
number of the game, the number of spots marked, and the marked spots.

Twenty numbered balls are drawn from 80. The mechanism that draws the
balls is usually made of clear plastic and sounds, acts, and functions much as a
hot air corn popper; one sees similar machines in bingo parlors. These numbers
are displayed on electronic boards throughout the casino. The boards look much
like a huge ticket with the draws lit up. The catch is the number of draws that
match those marked on the game ticket.

If you are in the keno parlor you can pick up a draw card such as is shown in
the bottom of Figure 1.3. This card has the game number on it with the draws
indicated by punched holes. The catch can be determined quickly by laying the
draw card over the game card. The draw card is a convenience to keno runners
and to players who play multiple tickets per game.

Payo�s vary somewhat from casino to casino. A typical set of payo�s is
shown in Table 1.2.
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Figure 1.3. Keno Player's Ticket, Authorized Game Ticket, and Draw Card. The
top panel is a blank keno ticket as marked by a player. The middle panel is the
authorized game ticket issued by the casino for a wager as speci�ed by the player's
ticket. The game ticket shows the spots marked, the amount wagered, and the game
number, which is 132 in this instance. The bottom panel gives the twenty numbers
that were drawn on game number 132. The catch is the number of draws that match
those marked on the game ticket, which is three in this instance.
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Wager $1.00 $5.00 $10.00 Wager $1.00 $5.00 $10.00

Catch Win Win Win Catch Win Win Win

Mark 1 Spot Mark 11 Spots

1 3.00 15.00 30.00 6 9.00 45.00 90.00
7 75.00 375.00 750.00

Mark 2 Spots 8 380.00 1,900.00 3,800.00
9 2,000.00 10,000.00 20,000.00

2 12.00 60.00 120.00 10 12,000.00 50,000.00 50,000.00
11 25,000.00 50,000.00 50,000.00

Mark 3 Spots
Mark 12 Spots

2 1.00 5.00 10.00
3 40.00 200.00 400.00 6 5.00 25.00 50.00

7 30.00 150.00 300.00
Mark 4 Spots 8 240.00 1,200.00 2,400.00

9 600.00 3,000.00 6,000.00
2 1.00 5.00 10.00 10 1,500.00 7,500.00 15,000.00
3 3.00 15.00 30.00 11 8,000.00 40,000.00 50,000.00
4 112.00 560.00 1,120.00 12 25,000.00 50,000.00 50,000.00

Mark 5 Spots Mark 13 Spots

3 1.00 5.00 10.00 6 1.00 5.00 10.00
4 22.00 110.00 220.00 7 16.00 80.00 160.00
5 500.00 2,500.00 5,000.00 8 80.00 400.00 800.00

9 700.00 3,500.00 7,000.00
Mark 6 Spots 10 2,000.00 20,000.00 40,000.00

11 8,000.00 40,000.00 50,000.00
3 1.00 5.00 10.00 12 20,000.00 50,000.00 50,000.00
4 3.00 15.00 30.00 13 25,000.00 50,000.00 50,000.00
5 85.00 425.00 850.00
6 1,500.00 7,500.00 15,000.00 Mark 14 Spots

Mark 7 Spots 6 1.00 5.00 10.00
7 10.00 50.00 100.00

4 2.00 10.00 20.00 8 40.00 200.00 400.00
5 23.00 115.00 230.00 9 300.00 1,500.00 3,000.00
6 350.00 1,750.00 3,500.00 10 1,000.00 5,000.00 10,000.00
7 5,000.00 25,000.00 50,000.00 11 3,500.00 17,500.00 35,000.00

12 12,000.00 50,000.00 50,000.00
Mark 8 Spots 13 25,000.00 50,000.00 50,000.00

14 36,000.00 50,000.00 50,000.00
5 9.00 45.00 90.00
6 85.00 425.00 850.00 Mark 15 Spots
7 1,500.00 7,500.00 15,000.00
8 18,000.00 50,000.00 50,000.00 7 8.00 40.00 80.00

8 25.00 125.00 250.00
Mark 9 Spots 9 130.00 650.00 1,300.00

10 300.00 1,500.00 3,000.00
5 4.00 20.00 40.00 11 2,600.00 13,000.00 26,000.00
6 40.00 200.00 400.00 12 8,000.00 40,000.00 50,000.00
7 300.00 1,500.00 3,000.00 13 25,000.00 50,000.00 50,000.00
8 4,000.00 20,000.00 40,000.00 14 32,000.00 50,000.00 50,000.00
9 18,000.00 50,000.00 50,000.00 15 50,000.00 50,000.00 50,000.00

Mark 10 Spots

5 2.00 10.00 20.00
6 20.00 100.00 200.00
7 126.00 630.00 1,260.00
8 950.00 4,750.00 9,500.00
9 4,000.00 20,000.00 40,000.00
10 18,000.00 50,000.00 50,000.00

Table 1.2. Keno Payo�s. No limit to betting. $50,000.00 aggregate payo� limit to
all players per game. From MGM Grand Hotel 1984.
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1.1.3 Coin Tossing

Consider x 2 [0; 1] written as a decimal (or base 10) number. For example,

:625 = 6
1

10
+ 2

1

100
+ 5

1

1000
:

This number also has a binary (or base 2) form

:625 = :1012 = 1
1

2
+ 0

1

4
+ 1

1

8
:

Similarly to decimals, every number x 2 [0; 1] has a binary representation and,
conversely, every sequence of 0's and 1's represents a number in [0,1].

If the sequence of 0's and 1's is repetitive, then the formula

1

1� r
= 1 + r + r2 + r3 + � � � 0 � r < 1

for the sum of a geometric progression (Abramowitz and Stegun 1964) may be
used to determine which x 2 [0; 1] the sequence represents. For example

:010101 � � �2 = 0
1

2
+ 1

1

4
+ 0

1

8
+ 1

1

16
+ � � � =

1

4

�
1 +

1

4
+

1

42
+ � � �

�
=

1

3
:

Moreover, one can observe from this that every repetitive sequence of 0's and
1's must be a ratio of positive integers and therefore a rational number. A
sequence of 0's and 1's that terminates is a rational number also. A sequence
that terminates has more than one representation. For example, :12 = :011 � � �2.

Suppose that we select the 0's and 1's by tossing a fair coin. We can deter-
mine to which x 2 [0; 1] the sequence corresponds to any desired accuracy by
tossing the coin long enough. We can also determine whether or not x 2 [a; b] for
0 � a < b � 1. There is a problem with endpoints. For example, if b = 1=2; then
in principle one would have to toss the coin an in�nite number of times to de-
termine if x were either of the two sequences :011 � � �2 or :100 � � �2 that represent
1/2. As a practical matter, the chance of this occurring is 0 = limn!1(1=2)

n.
Thus, endpoints can be disregarded and the chance that x 2 (a; b) or x 2 (a; b]
or x 2 [a; b) or x 2 [a; b] is the same.

Disregarding endpoints, what are the chances of getting a sequence that
represents x 2 (0; 1=2]? Observe that each x 2 (0; 1=2] has �rst digit 0 and has
an exact counterpart in (1/2,1] obtained by putting that 0 to a 1. Therefore,
all that matters is the �rst toss. The chance of a 0 is 1/2 so the chance of
x 2 (0; 1=2] is 1/2.

By similar logic one concludes that the chance of x being in (0,1/4] or
(1/4,1/2] or (1/2,3/4] or (3/4,1] is 1/4. The terminus of this reasoning is that
the chance that x is in (a; b] where 0 � a < b � 1 is the length b � a of the
interval.

To summarize, we see that it is quite possible to describe a physical mecha-
nism that generates numbers x in [0,1] for which it is reasonable to state that the
chance that x is in some subinterval (a,b] is the length b�a of that subinterval.
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1.1.4 Triangular Map

The next example is interesting because there is nothing random to it at all, it
is completely deterministic. Yet probability theory can be used to describe the
salient characteristics of sequences fxtg1t=0 generated according to this deter-
ministic recipe.

The triangular map is

T (x) = 1� 2

����12 � x

���� = �
2x x 2 [0; 12 ]
2� 2x x 2 (12 ; 1]

:

Consider a sequence fxtg1t=1 generated by starting with some point x0 2 [0; 1]
and using the recursion

xt+1 = T (xt)

for t = 1; 2; : : : to generate the rest of the sequence. If we let x have binary
representation (see Section 1.1.3), then we see that the action of the triangular
map is to discard the leading 0 or 1 and occasionally 
ip digits. For example,

T (:01012) = :1012

T (:1012) = 10:02 � 1:012 = 1:111:::2� 1:012 = :10111:::2 = :112

T (:110 110 ::: 2) = 1:111 111 111 ::: 2� 1:101 101 101 ::: 2 = :010 010 010 ::: 2:

Notice if we start the recursion with an x0 whose binary representation termi-
nates, then from some point on the sequence fxtg

1
t=0 has xt � 0. If we start with

x0 whose digits repeat then the sequence fxtg
1
t=0 cycles among some �nite set

of points. Starting the recursion with a rational number leads to uninteresting
sequences.

However, if we start with an irrational number, the sequence fxtg
1
t=0 is

interesting. It is an example of what is known as a chaotic process. The fact
that it is chaotic and various properties of the process are discussed in Chapter 1
of Schuster 1988. Of these properties, one is of special interest to us: For any a
and b with 0 � a < b � 1;

lim
n!1

1

n

nX
t=1

I(a;b](xt) = b� a;

where I(a;b](xt) denotes the indicator function of the set (a; b]. That is, for a set
A

IA(x) =

�
1 x 2 A
0 x 62 A

:

What this means is that the proportion of the sequence fxtg
1

t=0 that is in the
interval (a; b] is given by the interval's length b� a.
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1.2 Sample Space

A useful �rst step in building a mathematical model with which to analyze
data that might arise from the examples of Section 1.1 is to list all possible
outcomes. The set of all possible outcomes is called the sample space, which,
following custom, we shall denote by 
. This listing of all possible outcomes is
context dependent and is not unique. There may be many acceptable listings
for a given application. What is important is that the listing be exhaustive;
that is, there is a sample point to represent every outcome. We now illustrate.

Suppose one should like to analyze the single roll bets in the game of craps
(described in Section 1.1.1). The set of ordered pairs of the numbers from 1
to 6,


p =

8>>>>>><>>>>>>:

(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)
(2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6)
(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)
(4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6)
(5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6)
(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)

9>>>>>>=>>>>>>;
consisting of 36 points would be an adequate sample space. It exhausts the pos-
sibilities (see Figure 1.2). Since order is not important in deciding the outcome
of any single roll bet, the sample space


u =

8>><>>:
(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)
(2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 3)
(3; 4); (3; 5); (3; 6); (4; 4); (4; 5); (4; 6)
(5; 5); (5; 6); (6; 6)

9>>=>>;
consisting of 21 points would also be adequate. As a practical matter, it is
usually easier to work with 
p.

An analysis of the �eld bet requires only knowledge of the sum of the spots
showing on the thrown dice; therefore the sample space


s = f2; 3; 4; 5;6; 7; 8; 9;10;11;12g

consisting of 11 points would su�ce.
Bets on the pass line require an indeterminate number of rolls to decide. In

principle, it is possible that neither the shooter's point nor a seven will ever be
rolled and the game could continue inde�nitely. One possible choice of 
 is all
possible in�nite sequences of ordered pairs (n1; n2) of the numbers from 1 to 6.
If we let 
p;i be a copy of 
p above, then all possible sequences of ordered pairs
can be written as the Cartesian product of the 
p;i


1p = X
1

i=1
p;i:

This choice of 
 is rich enough to support the analysis of any bet on the table.
For example, consider the point

! = [(1; 6); (1; 3); (6; 1); (4; 3); : : : ]
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from 
1p . If the �rst throw is a come out roll, then bets on the pass line would
win, lose, win in the �rst four rolls. Field bets would win once and lose thrice
in the �rst four rolls. Hardway bets on the four would lose on each of the �rst
four rolls.

If one only wanted to analyze place bets, come bets, and bets on the pass
line, it would be enough to keep track of the sum of the dice on each roll. In
this case the sample space could consist of all in�nite sequences of the numbers
from 2 to 12, namely,


1s = X
1

i=1
s;i;

where each 
s;i is a copy of 
s above.

For the game of keno (Section 1.1.2), the sample space comprised of all
sequences of length 20 made up of the numbers from 1 to 80 where no number
is repeated within the sequence is adequate. We could let order be important
so that (3; 5; 6; : : :) and (6; 3; 5; : : :) count as di�erent sequences, or we could let
order be unimportant so they count as the same sequence. The order of draws
is not important in determining whether or not a keno bet wins, so either is
acceptable.

For the coin tossing example (Section 1.1.3), one could put 
 = (0; 1] or
take 
 to be all possible sequences of 0's and 1's. Recall that endpoints do not
matter so that 
 = (0; 1); [0; 1); or [0,1] are also acceptable choices.

For the triangular map example (Section 1.1.4), one could put 
 = [0; 1] or
take 
 to be all the irrational numbers in [0,1].

1.3 Events

An event E is a subset of the sample space 
. It may be empty, a proper subset
of the sample space, or the sample space itself. Situations such as Section 1.1
describe are often called experiments. An event occurs if the experiment is
performed, ! is the outcome, and ! 2 E. We illustrate using the game of craps,
which is described in Section 1.1.1.

The event \snake eyes" is a single roll bet that pays 30 to 1. Relative to
the sample space 
p consisting of all pairs (n1; n2) of the numbers 1 through 6,
which is displayed in Section 1.2 and again later in this section, snake eyes is
the singleton set

E = f(1; 1)g:

The shooter rolls. If the dice land ! = (1; 1); then snake eyes occurs. The event
\any seven" is another single roll bet. It pays 4 to 1. It is

E = f(1; 6); (6; 1); (2; 5); (5; 2); (3; 4); (4; 3)g:

As noted in Section 1.2, multiple roll bets such as a place bet on the eight to
win require a more complicated sample space. For place bets, the sample space

1s consisting of all in�nite sequences of the numbers from 2 to 12 is adequate.
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With this sample space, one wins a place bet on the eight if the event

E = f\an eight before a seven"g

=
n
! : ! = (!1; !2; : : :); minfi : !i = 8g < minfi : !i = 7g

o
occurs. For instance, if the shooter rolls the sequence

! = (!1; !2; !3; : : :) = (5; 6; 8; : : :);

then a place bet on the eight wins and E occurs. If the shooter rolls

! = (!1; !2; !3; !4; !5; : : :) = (6; 6; 9; 4; 7; : : :);

then it loses and E does not occur.
Subsetting, or containment, is indicated by A � B; which means that every

! that is in A is also in B. The de�nition can be written symbolically as

A � B
def

, (! 2 A) ! 2 B);

which reads

A is a subset of B if and only if ! in A implies that ! is in B:

As an example, consider A = fx : x < 5g and B = fx : x < 8g :

x 2 A) x < 5

x < 5) x < 8

x < 8) x 2 B;

therefore
x 2 A) x 2 B:

By the de�nition,
A � B:

Two events A and B are equal, written A = B; if they contain the same
elements. This can be written symbolically as

A = B
def

, (A � B and B � A):

To prove equality, one must take an arbitrary element ! from A and show that
it is in B and then take an arbitrary element ! from B and show that it is in
A.

The union of A and B; written A [B; is the set of elements that belong to
either A or B; or both,

A [B = f! : ! 2 A or ! 2 Bg:
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The intersection of A and B; written A\B; is the set of elements that belong
to both A and B;

A \B = f! : ! 2 A and ! 2 Bg:

The complement of A; written as ~A or �A; is the set of elements in 
 that are
not in A;

~A = f! 2 
 : ! 62 Ag:

We illustrate complement, union, and intersection with some single roll bets
from craps.


p =

8>>>>>><>>>>>>:

(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)
(2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6)
(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)
(4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6)
(5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6)
(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)

9>>>>>>=>>>>>>;
\sample space"

F =

8<:
(1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (3; 1);
(3; 6); (4; 5); (4; 6); (5; 4); (5; 5); (5; 6);
(6; 3); (6; 4); (6; 5); (6; 6)

9=; \�eld"

~F =

8>><>>:
(1; 4); (1; 5); (1; 6); (2; 3); (2; 4); (2; 5);
(2; 6); (3; 2); (3; 3); (3; 4); (3; 5); (4; 1);
(4; 2); (4; 3); (4; 4); (5; 1); (5; 2); (5; 3);
(6; 1); (6; 2)

9>>=>>; \no �eld"

H = f(4; 4)g \hard eight"

E = f(2; 6); (6; 2); (3; 5); (5;3)g \easy eight"

H [E = f(4; 4); (2; 6); (6; 2); (3;5); (5;3)g \any eight"

H \E = fg = ; \empty set."

The union and intersection operations are commutative, associative, and
distributive. Speci�cally, if A; B; and C are subsets of 
; then union and
intersection commute

A [B = B [A

A \B = B \A;

associate

A [ (B [C) = (A [B) [ C

A \ (B \C) = (A \B) \C;

and distribute

A [ (B \C) = (A [B) \ (A [C)

A \ (B [C) = (A \B) [ (A \C):
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Also useful are DeMorgan's laws

� (A [B) = ~A \ ~B

� (A \B) = ~A [ ~B:

The �rst is proved as follows:

!o 2 g(A[B) ) !o 62 (A [B)

) !o 62 f! : ! 2 A or ! 2 Bg

) !o 62 A and ! 62 B

) !o 2 ~A and ! 2 ~B

) !o 2 f! : ! 2 ~A and ! 2 ~Bg

) !o 2 ( ~A \ ~B):

Thus g(A[B) � ~A \ ~B:

A similar argument yields
~A \ ~B � g(A[B);

which proves the result.
It is possible to take the union or intersection of a countable number of sets.

A point is in
S1
i=1Ai if it is in at least one of the Ai; that is,

1[
i=1

Ai = f! : 9 i in 1 � i <1 3 ! 2 Aig

= f! : ! 2 Ai for some i in 1 � i <1g:

A point is in
T1
i=1Ai if it is in every one of the Ai; that is,

1\
i=1

Ai = f! : 1 � i <1) ! 2 Aig

= f! : ! 2 Ai for every i in 1 � i <1g:

To illustrate, if the game is craps, the sample space is 
1s ; and Ei is the
event \the shooter rolls 8 on roll i", then

T1
i=1Ei contains the single point

! = (8; 8; : : :) and
S1
i=1Ei is the set of all sequences that have at least one 8 as

an element. Other examples are

1[
i=1

[
1

i
; 1] = fx :

1

i
� x � 1 for some 1 � i <1g = (0; 1]

and
1\
i=1

[
1

i
; 1] = fx :

1

i
� x � 1 for every 1 � i <1g = [1]:
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DeMorgan's Laws apply to countable intersections and unions:

�
1[
i=1

Ai =
1\
i=1

~Ai;

�
1\
i=1

Ai =
1[
i=1

~Ai:

Consider the event E consisting of those sample points

! = (!1; !2; !3; : : :) 2 
1s

for which an in�nite number of the !i are equal to 8. Let Ei be the event \8
on roll i" as above. If ! 2 E; then ! is in in�nitely many of the events in the
sequence E1; E2; E3; : : : ; that is, events in the sequence occur in�nitely often.
For this reason, the event E is called \Ei in�nitely often" and is written [Ei i.o.].
We can characterize [Ei i.o.] in terms of countable unions and intersections of
the Ei as follows:

! 2 [Ei i.o.] , for every I � 1 there is an i � I such that ! 2 Ei

! 2 [Ei i.o.] , for every I � 1 we have ! 2
1[
i=I

Ei

! 2 [Ei i.o.] , ! 2
1\
I=1

1[
i=I

Ei:

Therefore

[Ei i.o.] =
1\
I=1

1[
i=I

Ei:

Another event of interest is Ei occurs all but a �nite number of times. By
a similar logic this event is

S
1

I=1

T
1

i=I Ei. One sometimes sees the notation
liminfEi to mean

S
1

I=1

T
1

i=I Ei and limsupEi to mean
T
1

I=1

S
1

i=I Ei.
Two events A and B are disjoint (or mutually exclusive) if A \ B = ;. A

sequence of events A1; A2; : : : is disjoint (or mutually exclusive) if the sets Ai

are pairwise disjoint; that is, if Ai\Aj = ; for all i 6= j. A sequence of events is
called exhaustive if 
 =

S1
i=1Ai. In the coin tossing experiment (Section 1.1.3)

with 
 = [0; 1]; the sets

A0 = [0]; Ai = (
1

i+ 1
;
1

i
] i = 1; 2; : : :

are mutually exclusive and exhaustive.

1.4 Probability Spaces

1.4.1 Coin Tossing: One Dimension

Probability theory is designed to permit a mathematical analysis of the situa-
tions described in the examples of Section 1.1 and similar situations. The coin
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tossing example serves best to illustrate the ideas. Recall that the salient fea-
ture of that example is that it is a physical mechanism that generates numbers
! in (0,1] for which it is reasonable to state that the chance that ! is in some
subinterval (a; b] is the length b� a of that subinterval. A sample space for the
coin tossing example is 
 = (0; 1]. With this choice of sample space, an event
A is a subset of (0,1]. To determine if an event occurs, one tosses the coin long
enough to determine if

! = t1
1

2
+ t2

1

4
+ t3

1

8
+ � � �

is in A; where ti is 1 if the coin lands heads on toss i and is 0 if it lands tails.
The probability function P assigns to an event A the chance P (A) that it

will occur. If the event A is a subinterval of 
 = (0; 1]; then its probability is
its length, viz.

P
n
(a; b]

o
= b� a:

If A is the union of two disjoint subintervals, then its probability is the sum of
the lengths of the two subintervals,

P
n
(a; b][ (c; d]

o
= b� a+ d� c:

From this together with P (
) = Pf(0; 1]g= 1; one can infer that

P
n
� (a; b]

o
= 1� P

n
(a; b]

o
:

If A is the �nite union of disjoint subintervals, that is, A =
Sn

i=1(ai; bi] and
(ai; bi] \ (aj ; bj] = ; for i 6= j; then

P (A) =
nX
i=1

(bi � ai):

The empty set has no length and cannot occur so it is natural to put

P (;) = 0:

If we let A denote the collection of sets of the form (a; b] with 0 � a < b � 1;
�nite unions of such sets, plus the empty set ;; then, at present, we have P
de�ned over A. Note that (i) the empty set is in A; (ii) ~A 2 A whenever A is,
and (iii) A[B 2 A whenever A and B are. A collection of sets with these three
properties is called an algebra of sets. This is as far as the notion of length will
take us. Unfortunately it is not far enough. We will need P to be de�ned for a
larger class of events than the algebra A.

A �-algebra (or �-�eld or Borel �eld) is a collection of sets B that satisfy
the following three properties: (i) ; 2 B (the empty set is a member of B);
(ii) if B 2 B; then ~B 2 B (B is closed under complementation), and (iii) if
B1; B2; : : : 2 B; then

S1
i=1Bi 2 B (B is closed under countable union).
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Let F denote the smallest �-algebra that contains A (Problem 11). Note
that F will contain intervals of the form (a; b); [a; b); and [a; b] because they
can be constructed from countable unions and intersections of sets of the form
(a; b] 2 A. For instance, (a; b) =

S
1

i=1(a; b� 1=i]. We can extend the de�nition
of P to F .

Before doing so, let us introduce or recall, as the case may be, the de�nitions
of the supremum and in�mum of a subset B of the real line, denoted supB and
inf B; respectively. If B has an upper bound, that is, there is some real number
b such that x � b for all x 2 B; then supB is the smallest such b. If B does
not have an upper bound, then supB =1. De�ne sup ; = �1. For example,
sup(0; 1] = sup(0; 1) = 1; sup(�1;1) = 1; and supfx : x = 1 � 1=i; i =
1; 2; : : :g = 1. InfB is de�ned analogously: If B has a lower bound, then infB is
the largest lower bound. If B does not have a lower bound, then inf B = �1.
inf ; = 1. As examples, inf[0; 1) = inf(0; 1) = 0; inf(�1;1) = �1; and
inffx : x = 1=i; i = 1; 2; : : :g = 0. Supremum and in�mum are related by
inf B = � supf�x : x 2 Bg. If A � B; then supA � supB and inf B � infA.

Returning to the extension of P to F ; for F 2 F de�ne

P (F ) = inf
1X
i=1

P (Ai);

where fAig ranges over all sequences A1; A2; : : : from A such that F �
S1
i=1Ai.

That is,

P (F ) = inf
n
p : p =

1X
i=1

P (Ai); F �
1[
i=1

Ai; Ai 2 A
o
:

The probability function so de�ned will satisfy three properties: (i) P (F ) � 0
for all F 2 F (P is positive); (ii) P (
) = 1; and (iii) if F1; F2; : : : 2 F are
disjoint, then P (

S
1

i=1 Fi) =
P
1

i=1 P (Fi) (P is countably additive). Because the
function P takes as its argument the elements of F ; which are sets, P is called
a set function. Properties (i) through (iii) are called the axioms of probability.
Thus, a probability function P is a positive, countably additive, set function
that is de�ned over a �-algebra F of subsets of a sample space 
 and satis�es
P (
) = 1. A probability space is the triplet (
;F ; P ).

For later reference, we note that if P is countably additive, then it must
also be �nitely additive; that is, if F1; F2; : : : ; Fn 2 F are disjoint, then P (F ) =Pn

i=1 P (Fi). This is proved by noting that sequence F1; F2; : : : ; Fn; ;; ;; : : : is
disjoint and that for this sequence

Pn

i=1 P (Fi) =
P1

i=1 P (Fi) and
Sn

i=1 Fi =S1
i=1 Fi.

1.4.2 Coin Tossing: Two Dimensions

As the coin tossing example suggests, probability is akin to the notions of length,
area, and volume and we will make use of this analogy frequently in the sequel.
Because area lends itself better to graphical illustration than length or volume,
we shall extend the coin tossing example to two dimensions.
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Figure 1.4. A Covering of an Irregularly Shaped Set F by Disjoint Rectangles.
The probability of F is approximated by the smallest value of

Pn

t=1
Area(Ai) that

can be achieved by rectangles such as those shown. The approximation converges to
P (F ) as n tends to in�nity.

Consider performing the coin tossing experiment of Section 1.1.3 twice with
two di�erent coins and letting the outcome be recorded as the two-dimensional
point (x; y) where x corresponds to the tosses of the �rst coin and y to the
tosses of the second. The relevant sample space is 
2 = (0; 1] � (0; 1]. The
probability of a rectangle is its area Pf(a; b]� (c; d]g = Areaf(a; b]� (c; d]g =
(b � a) � (d � c). The probability of the union

Sn

i=1Ai of disjoint rectangles
of the form Ai = (ai; bi] � (ci; di] is the sum of the areas of the rectangles:
P (
Sn

i=1Ai) =
Pn

i=1Area(Ai). The collection A consisting of ; and all �nite
unions of rectangles of the form (a; b]�(c; d] is an algebra. Let F be the smallest
�-algebra that contains A. A covering

Sn

i=1Ai of F 2 F by a union of disjoint
rectangles Ai 2 A is shown in Figure 1.4. The probability of F is approximated
by the smallest value of

Pn

t=1Area(Ai) that can be achieved by rectangles such
as those shown. Indeed, this is how the area of irregular objects is computed
in practice. The approximation converges to P (F ) as n tends to in�nity. More
generally, to accommodate sets less regularly shaped than shown in Figure 1.4,
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the probability of F 2 F is

P (F ) = inf
n
p : p =

1X
i=1

Area(Ai); F �
1[
i=1

Ai; Ai 2 A
o
:

1.4.3 Craps: Single Roll Bets

To illustrate how these ideas can be extended beyond the coin tossing example,
we shall apply them to the game of craps described in Subsection 1.1.1. For
a given bet, our goal shall be to describe an appropriate sample space 
; a
�-algebra F ; and a probability function P .

To analyze the single roll bets, we take 
p; de�ned in Section 1.2, as the
sample space. The �-algebra Fp over which P is de�ned is the collection of all
possible subsets of 
p. Fp contains ;; all singleton sets, of which there are 36,
all sets containing two elements, of which there are 1260 = 36� 35; and so on.
Every outcome in 
p is equally likely { presumably state gaming commissions
make sure that this is true { so the probability assigned to any singleton set is
P (f!g) = 1=36.

We extend the de�nition beyond singleton sets by making P be �nitely
additive. Thus, the probability assigned to an event with two elements is
P (fw1; w2g) = P (fw1g) + P (fw2g) = 1=36 + 1=36 = 1=18; and, in general,
the probability of any event is the number of points in it divided by 36. For
example, the probability that a place bet on the 4 wins on the �rst roll is
P [f(1; 3); (2; 2); (3; 1)g] = 1=12.

1.4.4 Craps: Multiple Roll Bets

If we consider two tosses of the dice, we would let 
p;1 and 
p;2 each be copies
of 
p; and let the sample space be the Cartesian product


2
p = 
p;1 �
p;2

= f(!1; !2) : !1 2 
p;1; !2 2 
p;2g

= f[(n1; n2); (n3; n4)] : (n1; n2) 2 
p;1; (n3; n4) 2 
p;2g:

Let Fp;1 and Fp;2 each be copies of Fp. The �-algebra F2
p over which P is

de�ned is the smallest �-algebra that contains

Fp;1 � Fp;2 = fE1 �E2 : E1 2 Fp;1; E2 2 Fp;2g;

where

E1 � E2 = f(!1; !2) : !1 2 E1; !2 2 E2g

= f[(n1; n2); (n3; n4)] : (n1; n2) 2 E1; (n3; n4) 2 E2g:

The operation of taking the smallest �-algebra containing some class of sets A
is often written �(A) so that

F2
p = �(Fp;1 � Fp;2):
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As above, each of the outcomes (!1; !2) 2 
2
p is equally likely and there are

36� 36 = 1; 296 such points so that, as above, to assign a probability P (E) to
an event E is a matter of counting up the number of points in E and dividing
by 1,296.

Let us consider the probability that a place bet on the 4 wins on the second
roll. This is the event

E =

8>>>><>>>>:
(1; 1); (1; 2); (1; 4); (1; 5); (2; 1); (2; 3);
(2; 4); (2; 6); (3; 2); (3; 3); (3; 5); (3; 6);
(4; 1); (4; 2); (4; 4); (4; 5); (4; 6); (5; 1);
(5; 3); (5; 4); (5; 5); (5; 6); (6; 2); (6; 3);
(6; 4); (6; 5); (6; 6)

9>>>>=>>>>;
�

8<:
(1; 3);
(2; 2);
(3; 1)

9=; :

There are 27� 3 points in this event so that

P (E) =
27� 3

36� 36
=

3

4
�

1

12
:

By continuing along these lines, one can determine the probability space
(
n

p ;F
n
p ; P ) for n rolls. One would conclude that the probability of the event

Ei = \a place bet on the 4 wins on roll i" is

P (Ei) =
1

12
�

�
3

4

�i�1
:

Note that these probability spaces are consistent in that if one computed the
probability that a place bet wins on roll i in any of them for which n � i; one
would get the same answer. That is,

P (Ei) = P (Ei � 
p;i+1 � � � � � 
p;n):

For multiple roll bets the sample space is


1p = X
1

i=1
p;i;

as described in Section 1.2, where each 
p;i is a copy of 
p. The �-algebra
on which P is de�ned is constructed as follows. Let A be the collection of sets
formed by taking events En fromFn

p and appending an in�nite number of copies
of 
p for n = 1; 2; : : :. That is,

A =
1[
n=1

fA : A = En �
p;n+1 � 
p;n+2 � � � � ; En 2 F
n
p ; 
p;i = 
pg:

Probabilities are assigned to A 2 A according to

P (En � 
p;n+1 �
p;n+2 � � � �) = P (En):

Put F1p = �(A). The de�nition is extended to F 2 F1p by putting P (F ) =
inf
P1

i=1P (Ai); where the sequence A1; A2; : : : ranges over all disjoint sequences
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of sets from A whose union contains F . The triple (
1p ;F1p ; P ) so constructed
is a probability space.

Notations such as

E =
1[
n=1

En �
p;n+1 � 
p;n+2 � � � � and P (En � 
p;n+1 � 
p;n+2 � � � �)

are cumbersome. Henceforth, we will let the fact that copies of 
p must be
appended to En 2 F

n
p in order to get membership in F1p be understood and

we will write

E =
1[
n=1

En and P (En)

instead.
In applications, the only probabilities one actually needs to compute are

probabilities for sets from A; which is a matter of counting as we have seen.
For example, to compute the probability of the event E = \a place bet on the
4 wins," one notes that the events Ei = \a place bet on the 4 wins on roll i"
are disjoint and that

E =
1[
i=1

Ei:

By countable additivity and the de�nition of P; the probability that a place bet
on the 4 wins is

P (E) =
1X
i=1

P (Ei) =
1

12

1X
i=1

�
3

4

�i�1
=

1

12
� 4 =

1

3
:

This can be compared to the true odds of 3 for 1 | 3 for 1 is the same as 2 to
1 | in Table 1.1. Our computation agrees!

By the same logic used to work out the place bet, Ai = \a place bet on the
4 is decided on roll i" occurs with probability P (Ai) = (1=4)(3=4)i�1 so that
P (
S1
i=1Ai) = 1. Since ! 2

S1
i=1Ai , 9 i 3 ! 2 Ai; the bet is decided in a

�nite number of rolls with probability 1. The probability of other multiple roll
bets will be easier to work out after some more ideas from probability theory
are in place, in particular, the notion of conditional probability.

1.4.5 Coin Tossing: Countable Dimensions

We extended the coin tossing example from one dimension to two. The same
construction can be used to extend it to n dimensions. Having extended to n
dimensions, the extension to 
1 = X

1

i=1(0; 1] is the same as for multiple roll
bets in craps: A is the collection of all events from the �nite dimensional spaces
with an in�nite number of copies of (0; 1] appended. Probabilities P (A) are
assigned to events A 2 A using probabilities from the �nite dimensional spaces.
F = �(A). For F 2 F ; P (F ) = inf

P1

i=1 P (Ai); where the sequence A1; A2; : : :
ranges over all disjoint sequence of sets from A whose union contains F . The
reader who would like to pursue the ideas behind these constructions in more
depth should see Royden 1988, Chapter 11.
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1.5 Properties of Probability Spaces

We can summarize the previous section in the following de�nition.

DEFINITION 1.1 A probability space is the triple (
;F ; P ) consisting of a
sample space 
; a �-algebra F of subsets of 
; and a function P de�ned on F
that satis�es the axioms of probability:

1. P (A) � 0 for all A 2 F .

2. P (
) = 1.

3. If A1; A2; : : : 2 F are disjoint, then P (
S1
i=1Ai) =

P1

i=1 P (Ai).

In this section we derive some useful properties of probability spaces that
follow from the de�nition, which we can summarize as follows.

PROPOSITION 1.1 Let (
;F ; P ) be a probability space and let A; B; and
A1; A2; : : : be sets in F . Then

1. P (;) = 0.

2. P (A) � 1.

3. P (A) + P ( ~A) = 1.

4. P (A \B) + P (A \ ~B) = P (A).

5. P (A [B) = P (A) + P (B)� P (A \B).

6. If A � B; then P (A) � P (B).

7. If A1; A2; : : : are mutually exclusive and exhaustive, then P (A) =P1

i=1 P (A \Ai).

8. P (
S
1

i=1Ai) �
P
1

i=1 P (Ai) (countable subadditivity).

As pointed out in the previous section, probability is akin to area. More
precisely, the properties of the probability function are similar to those of area
if all sets under consideration are con�ned to some bounded region that has
total area 1, such as 
 = (0; 1] � (0; 1]. As may be seen from inspection of
Figure 1.5, the properties listed in Proposition 1.1 are properties of area. We
shall verify a few of them rigorously in the remainder of this section.

To show Property 4, note that 
 = B [ ~B. Therefore, by the distributive
laws,

A = A \
 = A \ (B [ ~B) = (A \B) [ (A \ ~B):

Moreover, by the commutative and associative laws,

(A \B) \ (A \ ~B) = A \ (B \ ~B) = A \ ; = ;;
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Figure. 1.5. Illustration of Proposition 1.1. The sample space is 
 = (0;1]� (0;1].
The area of a set A is equal to its probability P (A). The upper left panel shows
P (A \B) + P (A \ ~B) = P (A). The upper right panel shows P (A [B) = P (A) +

P (B) � P (A \ B). The lower two panels show that
S
5

i=1
Ai =

S
5

i=1
A�
i
where

A�
1
= A1 and A�

i
= Ai \ [� (

Si�1

j=1
Aj)]. Therefore, P (

S
5

i=1
Ai) = P (

S
5

i=1
A�
i
) =P

5

i=1
P (A�i ) �

P
5

i=1
P (Ai).

which shows that (A \B) and (A \ ~B) are disjoint. By �nite additivity, which
is a consequence of countable additivity as veri�ed in Section 1.4, we have

P (A) = P (A \B) + P (A\ ~B):

This proves Property 4.
To show Property 5, we apply the distributive law to get

(A \ ~B) [B = (A [B) \ ( ~B [B) = (A [B) \
 = A [B:

The sets (A \ ~B) and B are disjoint because, by the associative law,

(A \ ~B) \B = A \ ( ~B \B) = A \ ; = ;:
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Therefore, by �nite additivity,

P (A [B) = P (A \ ~B) + P (B):

Using P (A) = P (A \B) + P (A \ ~B) from above,

P (A [B) = P (A)� P (A \B) + P (B);

which proves Property 5.
To show Property 7, we apply the distributive law to get

A = A \
 = A \

 
1[
i=1

Ai

!
=

1[
i=1

(A \Ai):

The sets (A \A1); (A \A2); : : : are disjoint because the associative law implies
that for i 6= j we have

(A \Ai) \ (A \Aj) = (A \A) \ (Ai \Aj) = A \ ; = ;:

Countable additivity implies

P (A) =
1X
i=1

P (A \Ai);

which proves Property 7.
Lastly, we shall verify Property 8. As indicated in the bottom two panels

of Figure 1.5, the idea is to show that
S1
i=1Ai =

S1
i=1A

�

i ; where A�1; A
�
2; : : :

are disjoint and A�i � Ai so that P (
S1
i=1Ai) =

P1

i=1P (A
�

i ) �
P1

i=1P (Ai) by
countable additivity and Property 6.

The A�i are de�ned by

A�1 = A1; A�i = Ai \

"
�

 
i�1[
k=1

Ak

!#
= Ai \

 
i�1\
k=1

~Ak

!
for i = 1; 2; : : :; where the last equality is due to DeMorgan's laws.

To see that A�1; A
�
2; : : : are disjoint, let i < j and apply the commutative and

associative laws repeatedly to get

A�i \A
�

j = Ai \

 
i�1\
k=1

~Ak

!
\Aj \

 
j�1\
k=1

~Ak

!

= Ai \

" 
i�1\
k=1

~Ak

!
\ ~A1

#
\Aj \

 
j�1\
k=2

~Ak

!

= Ai \

 
i�1\
k=1

~Ak

!
\Aj \

 
j�1\
k=2

~Ak

!
...

= Aj \

 
i�1\
k=1

~Ak

!
\
�
~Ai \Ai

�
\

 
j�1\

k=i+1

~Ak

!
:
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But ~Ai \Ai = ; which implies A�i \A
�
j = ;.

To see that
S
1

i=1Ai =
S
1

i=1A
�

i ; let ! 2
S
1

i=1Ai. Then ! is in one or more
Ai; let Aj be the �rst such Ai. Then ! 2 A�j by the de�nition of A�j . We

have
S1
i=1Ai �

S1
i=1A

�

i . Conversely, let ! 2
S1
i=1A

�

i . Since A�1; A
�

2; : : : are
disjoint, ! is in exactly one A�i ; denote it by A

�

j . Then ! 2 Aj by the de�nition

of A�j . We have
S
1

i=1Ai �
S
1

i=1A
�

i . Because both
S
1

i=1Ai �
S
1

i=1A
�

i andS
1

i=1Ai �
S
1

i=1A
�

i hold, it follows that
S
1

i=1Ai =
S
1

i=1A
�

i .
We now have P (

S
1

i=1Ai) =
P
1

i=1 P (A
�
i ) and A�i � Ai which proves Prop-

erty 8 as remarked above.

1.6 Combinatorial Results

A sample space 
 for the game of keno, described in Section 1.1.2, consists of
all sequences of length 20 made up of the numbers 1 to 80 with no number
repeated within the sequence. As we have seen in Section 1.4, if N denotes
the total number of such sequences, then the probability function will assign
probability 1=N to each singleton set; that is, P (f!g) = 1=N . In order to do
this, we need to be able to compute N .

The �-algebraF for keno is the set of all possible subsets of 
. For each event
F in F the probability function will assign the value P (F ) = C=N; where C is
the number of points in F . For example, to determine the probability of catching
three on an 8-spot ticket we need to determine the number C of sequences of
length 20 made up of the numbers 1 to 80 with no number repeated within the
sequence that have exactly three numbers from our speci�ed list of eight.

These are the sorts of questions that this section addresses. Speci�cally, we
seek the answers to four questions:

1. Ordered samples with replacement. How many di�erent sequences of r
numbers can be formed from the numbers 1; 2; : : : ; n if numbers can be
repeated within the sequence and the order in which the numbers appear
matters?

2. Ordered samples without replacement. How many di�erent sequences of r
numbers can be formed from the numbers 1; 2; : : : ; n if numbers cannot be
repeated within the sequence and the order in which the numbers appear
matters?

3. Unordered samples without replacement. How many di�erent sequences of
r numbers can be formed from the numbers 1; 2; : : : ; n if numbers cannot
be repeated within the sequence and the order in which the numbers
appear does not matter?

4. Unordered samples with replacement. How many di�erent sequences of r
numbers can be formed from the numbers 1; 2; : : : ; n if numbers can be
repeated within the sequence and the order in which the numbers appear
does not matter?
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We will answer each of these questions in turn.
Question 1. Consider the sequence (n1; n2; n3; n4; : : : ; nr). There are n

choices for n1 and n choices for n2; making n � n = n2 choices for the �rst
two entries. Continuing thus, there are n2 � n = n3 choices for the �rst three
entries, n3 � n = n4 for the �rst four, and so on up to nr; which is the answer.

Question 2. Again consider (n1; n2; : : : ; nr). There are n choices for n1; there
are n � 1 choices for n2; making n � (n � 1) choices for the �rst two entries.
Continuing thus, there are

Pn
r = n� (n� 1)� � � � � (n� r + 1)

choices for a sequence of length r; which is the answer.
For a positive integer n; de�ne

n! = n� (n � 1)� (n� 2) � � � �3� 2� 1

and de�ne 0! = 1. Read n factorial for n!. In factorial notation

Pn
r =

n!

(n� r)!
:

By the logic of Question 2, n! is the number of permutations (n1; n2; : : : ; nn) of
the numbers 1 through n.

Question 3. There are at least three ways of looking at this problem:
Answer 1. Suppose we denote the answer by

�
n

r

�
. If we took this answer,

and multiplied it by the number of permutations of r objects, then we would
have the answer to Question 2. Thus r!

�
n

r

�
= Pn

r or�
n

r

�
=

n!

r!(n� r)!
:

Read n choose r for
�
n
r

�
.

Answer 2. We know that the answer is Pn
r when order is important. What we

need to do is divide out the redundant permutations of (n1; n2; : : : ; nr) because
they are no longer regarded as important. Thus, the answer is�

n

r

�
=

Pn
r

r!
=

n!

r!(n� r!)
:

Answer 3. Consider the permutations of n objects where we have added
some grouping

n! = [n� (n� 1)� � � � � (n � r + 1)]� [(n� r) � � � � � 3� 2� 1]:

As the grouping suggests, this is the number of ways of dividing n objects into
two groups, the �rst of size r and the second of size n � r; where the order of
the objects within each group matters. What we want to do is disregard the
permutations within each group. Therefore we must divide them out to get�

n

r

�
=

[n� (n� 1) � � � � � (n � r + 1)]

r!
�
[(n� r)� � � � � 3� 2� 1]

(n � r)!
:

Other interpretations of
�
n

r

�
are
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Figure. 1.6. Unordered Samples with Replacement. The number of di�erent se-
quences of r numbers that can be formed from the numbers 1;2; : : : ; n when numbers
can be repeated within the sequence and the order in which the numbers appear does
not matter is given by the number of ways that r balls can be placed in n bins. From
Cassela and Berger 1990.

�
n

r

�
is the number of permutations of n objects of which r are alike

and of one kind and n� r are alike and of another kind; and�
n

r

�
is the number of ways n distinct objects can be put in two boxes,

r in the �rst box and n� r in the second box.

Some extensions are

n!=(n1!�n2!�� � ��nk!); where n1+n2+ � � �+nk = n; is the number
of permutations of n objects of which n1 are alike and of one kind,
n2 are alike and of another, and so on; and

n!=(n1!�n2!�� � ��nk!); where n1+n2+ � � �+nk = n; is the number
of ways n distinct objects can be put in k boxes, n1 in the �rst box,
n2 in the second box, and so on up to the kth box.

Question 4. As seen from Figure 1.6, the number of ways a sequence
(n1; n2; : : : ; nr) can be formed from the numbers 1; 2; : : : ; n when numbers can
be repeated is the number of ways that r balls can be placed in n bins. This
number can be obtained by dropping the two outer bin partitions and consid-
ering the number of permutations of n � 1 + r objects of which n� 1 are alike
and of one kind and r are alike and of another. This number is

�
n�1+r

r

�
; which

is the answer.
The game of keno is covered by Question 3. Consider the probability C=N

of catching three on an 8-spot ticket. There are 80 numbers of which 20 are
chosen; order is not important. Thus, N =

�80
20

�
. Of the 80 numbers, eight

are marked on the player's ticket. The number of ways of choosing three from
eight is

�
8
3

�
. The number of ways of choosing 17 misses from the 72 unmarked

numbers is
�72
17

�
. Therefore, C=N =

�8
3

��72
17

�
=
�80
20

�
. This analysis will work for

any number of catches i and spots S; where 0 � i � S and 1 � S � 20; so we
have

P (catch i of S spots) =

�
S

i

��80�S
20�i

��
80
20

� :

These probabilities for S = 8 are shown in Table 1.3.
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i P (Fi)

0 0.0882662377
1 0.2664641139
2 0.3281456217
3 0.2147862251
4 0.0815037015
5 0.0183025856
6 0.0023667137
7 0.0001604552
8 0.0000043457

Table 1.3. Probabilities for an Eight Spot Keno
Ticket. Fi is the event \catch i spots on an 8 spot
ticket".

If our logic is correct, then it must be true that

SX
i=0

�
S
i

��
80�S
20�i

��80
20

� = 1

because the events

Fi = fcatch i of S spotsg; i = 1; 2; : : : ; S;

are mutually exclusive and exhaustive. More generally, the following is true:

min(n;D)X
i=max(0;n+D�N)

�
D

i

��
N �D

n� i

�
=

�
N

n

�

for any n;N;D � 0 such that n � N and D � N . We shall need this fact
several times in Chapter 2.

1.7 Conditional Probability

Consider Figure 1.7, which displays the sample space 
 for a roll of a pair of
dice and the events A and B. Given that B has occurred, the relevant sample
space becomes


0 = B =

�
(1; 4); (1; 5); (2; 4); (2; 5); (3; 4); (3; 5)
(4; 4); (4; 5); (5; 4); (5; 5); (6; 4); (6; 5)

�
:
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Figure 1.7. Conditional Probability. The unconditional probability of A is
10/36=0.28. The conditional probability of A is 6/12=0.50.

The other points in 
 are now irrelevant. Furthermore, the only points in A
that are now relevant are

A \
0 = A \B =

�
(1; 5); (2; 4); (2; 5)
(3; 4); (3; 5); (4; 4)

�
:

Because there is no information available that suggests otherwise, it seems
appropriate to assume that the points in 
0 bear the same relative probability
to one another as they did in 
. That is, it seems appropriate that the new
probability function P0 de�ned on (
0;F0) satis�es

P0(f!ig)

P0(f!jg)
=

P (f!ig)

P (f!jg)
;

where !i; !j 2 
0 and P is the probability function de�ned on (
;F). As in
Section 1.4, F0 consists of all possible subsets of 
0 and F all possible subsets
of 
. Because P0(
0) = 1; we can recover the constant of proportionality from

1

P0(f!jg)
=
X
!i2
0

P0(f!ig)

P0(f!jg)
=
X
!i2B

P (f!ig)

P (f!jg)
=

P (B)

P (f!jg)
;

giving

P0(f!jg) =
P (f!jg)

P (B)
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for !j 2 
0. From this it follows that for A0 2 F0;

P0(A0) =
X

!j2A0

P (f!jg)

P (B)
=

P (A \B)

P (B)
:

This seems the obvious way to proceed, and motivates the following de�nition.

DEFINITION 1.2 If A and B are events in F ; then the conditional proba-
bility of A given B; denoted P (AjB); is

P (AjB) =
P (A \B)

P (B)
:

If P (B) = 0; then de�ne P (AjB) = 0 for every A 2 F .

It is nearly obvious at sight that
�

 \ B;F \ B;P (�jB)

�
is a probability

space, where F \B = fF \B : F 2 Fg (Problem 12). The connection with the
example above is 
 \B = 
0; F \B = F0; and P (�jB) = P0(�).

Conditional probability makes it easy to work out the probabilities of some
of the multiple roll bets in craps. Consider a place bet on the 4. Conditional
on the game terminating, the last roll must be a 7 or a 4. Thus, the relevant
sample space is


0 =

8<:
(1; 3); (1; 6); (2; 2)
(2; 5); (3; 1); (3; 4)
(4; 3); (5; 2); (6; 1)

9=; :

The bet wins if the event A0 = f(1; 3); (2; 2); (3; 1)g occurs. Thus, the condi-
tional probability that a place bet on the 4 wins is P0(A0) = 3=9 = 1=3.

If we are convinced that the game terminates with unconditional probability
1, then the conditional probability is the unconditional probability, which may
be veri�ed as follows. If P (B) = 1; then P ( ~B) = 1 � P (B) = 0 so that
P (A \ B) = P (A) � P (A \ ~B) = P (A); because A \ ~B � ~B implies 0 �
P (A \ ~B) � P ( ~B) = 0. Then P (AjB) = P (A \B)=P (B) = P (A)=1.

The conditional argument above is a little slippery because, for instance,
it represents all in�nite sequences ! 2 
1p that have (1,3) before (1,6), (2,5),
(3,4), (4,3), (5,2), or (6,1) by the single point (1,3) (
1p is de�ned in Section 1.2).
Perhaps it could be made rigorous. It is certainly intuitively obvious and does
give the correct answer with a lot less bother than we were put to in Section 1.4.

Referring to Figure 1.8, we can use the conditional argument to deduce
quickly that a place bet on the 10 wins with probability 3/(3+6)=1/3; the 5
and 9 win with probability 4/(4+6)=2/5; and the 6 and 8 win with probability
5/11. These computations agree with the true odds from Table 1.1 of 3 for 1,
5 for 2, and 11 for 5, respectively.

Some useful relationships that follow from

P (A \B) = P (AjB)P (B)
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Figure 1.8. The Possible Outcomes of a Single Roll of a Pair of Dice.

are the following:

P (A \B \C) = P (AjB \C)P (B \C)

= P (AjB \C)P (BjC)P (C):

If B1; B2; : : : are mutually exclusive and exhaustive, then

P (A) =
1X
t=1

P (A \Bi)

=
1X
t=1

P (AjBi)P (Bi):

Obviously the relationship holds for a �nite sequence of events B1; : : : ; Bn as
well.

We can use it to work out the probability of a win on the pass line in craps.
The conditioning events are Bi = \i on the come out roll," for i = 2; 3; : : : ; 12.
The conditional probability that the pass line wins given a 4 on the �rst roll
is the same as the unconditional probability that a place bet on the 4 wins.
Similarly for points 5, 6, 8, 9, and 10. Thus

P (pass line wins) = 0� [P (B2) + P (B3) + P (B12)] + 1� [P (B7) + P (B11)]
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+
1

3
P (B4) +

2

5
P (B5) +

5

11
P (B6)

+
1

3
P (B10) +

2

5
P (B9) +

5

11
P (B8)

=
6

36
+

2

36

+
1

3
�

3

36
+
2

5
�

4

36
+

5

11
�

5

36

+
1

3
�

3

36
+
2

5
�

4

36
+

5

11
�

5

36
= 488=(2� 3� 3� 5� 11) = 244=495 � 0:492929:

1.7.1 A Digression

The theory of probability, which is a mathematical model, has a variety of
applications. When applied to a game of chance such as craps, most people,
if asked, would say that the statement \Pf(3; 3); (4; 4)g= 2=36" means is that
in many tosses of a pair of dice the fraction that will land hard six (3,3) or
hard eight (4,4) is approximately 2/36. They would expect the approximation
to improve as the number of tosses increases.

Restated in terms of our probability model (
1p ;F1p ; P ) for multiple roll
bets, described in Subsection 1.4.4, what this means that for each outcome

! = (!1; !2; : : : ; !n; : : :) 2 
1p

we expect that

lim
n!1

1

n

nX
i=1

IH(!i) =
2

36
;

where H = f(3; 3); (4; 4)g and IH (!i) denotes the indicator function, which is
the function that has the value 1 if !i is in the set H and has the value 0 if it is
not. Similarly, if A = f(2; 6); (3; 5); (4; 4); (5;3); (6;2)g; which is the event \any
eight," we expect that

lim
n!1

1

n

nX
i=1

IA(!i) =
5

36

lim
n!1

1

n

nX
i=1

IH\A(!i) =
1

36
:

If we have set up both our single roll model (
p;Fp; P ) and multiple roll model
(
1p ;F1p ; P ) correctly, this is how we expect them to relate to each other.

Jumping ahead, Theorem 4.1 implies that every outcome ! in 
1p exhibits
the desired behavior except for outcomes in events EH ; EA; EA\H � 
1p that
occur with probability zero. This result, coupled with the fact that there are
only a �nite number of events in the single roll �-algebra Fp and therefore only
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a �nite number of events that can cause trouble, would allow us, if desired, to
modify the multiple roll probability space by deleting from 
1p all outcomes in
the union of these troublesome sets so that every outcome in the sample space
has the requisite behavior (Problem 31).

The interpretation of our probability model just described is a bit odd be-
cause the meaning attached to the probability of an event in the single roll
probability space (
p;Fp; P ) is derived from behavior that the single roll space
induces in the multiple roll space (
1p ;F1p ; P ). Nonetheless, this is the most
common interpretation of probability when applied to games of chance and our
model is consistent with this interpretation.

What most people would say that the statement \P (HjA) = 1=5" means in
the single roll model is that in many tosses of a pair of dice the fraction that will
land hard eight (4,4) of those that land eight f(2,6), (3,5), (4,4), (5,3), (6,2)g
is approximately 1/5. They would expect the approximation to improve as the
number of tosses increases.

In terms of our multiple roll model (
1p ;F1p ; P ); this means that for each
outcome

! = (!1; !2; : : : ; !n; : : :) 2 
1p

we expect that

lim
n!1

Pn

i=1 IH\A(!i)Pn

i=1 IA(!i)
=

1

5
:

However,

lim
n!1

Pn

i=1 IH\A(!i)Pn

i=1 IA(!i)
=

limn!1(1=n)
Pn

i=1 IH\A(!i)

limn!1(1=n)
Pn

i=1 IA(!i)
=

1=36

5=36
=

1

5
:

Therefore, the multiple roll probability model (
1p ;F1p ; P ) does exhibit the
desired behavior and the formula P (HjA) = P (H \ A)=P (A) does give the
desired answer for the single roll model (
p;Fp; P ).

This digression provides another justi�cation for the formula for conditional
probability introduced in De�nition 1.2. The formula produces answers that
are consistent with most people's interpretation of probability when applied to
games of chance.

1.8 Independence

Suppose that P (A) > 0 and P (B) > 0. If P (AjB) = P (A); then we learn
nothing about A from observing B. Figure 1.9 is an illustration: We learn
nothing about the �rst toss by observing that the second is a four or a �ve.
Not only that, if P (AjB) = P (A); then P (A \B) = P (A)P (B); which implies
P (BjA) = P (B). Therefore, P (AjB) = P (A) not only implies that we learn
nothing about A from observing B but also that we learn nothing about B from
knowing A. Actually, this argument has shown that if P (A) > 0 and P (B) > 0;
then

P (AjB) = P (A) , P (BjA) = P (B) , P (A \B) = P (A)P (B):
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Figure 1.9. Independence. The unconditional probability of A is 12/36=0.33. The
conditional probability of A is 4/12=0.33.

In this situation, the events A and B are called independent. We shall adopt the
last of the three equivalent statements above as the de�nition because it also
covers the case when P (A) = 0 or P (B) = 0.

DEFINITION 1.3 Two events A and B are independent if P (A \ B) =
P (A)P (B).

If the events A and B are independent, then the events A and ~B are inde-
pendent and the events ~A and ~B are independent (Problem 18).

The requirements for more than two events are more stringent than mere
pairwise independence.

DEFINITION 1.4 A sequence A1; A2; : : : of events from F are mutually in-
dependent if, for any subsequence Ai1 ; : : : ; Aik ; we have

P

0@ k\
j=1

Aij

1A =
kY

j=1

P (Aij ):

1.9 Problems

1. For each of the following experiments, describe the sample space. (i) Toss
a coin �ve times. (ii) Count �sh in a pond. (iii) Measure time to failure
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of a memory chip. (iv) Observe the number of defectives in a shipment.
(v) Observe the proportions of defectives in a shipment.

2. Prove DeMorgan's laws for countable unions and intersections.

3. Prove that union and intersection are commutative, associative, and dis-
tributive.

4. Let Fi where i = 1; 2; : : : be an in�nite sequence of events from the sample
space 
. Let F be the set of points that are in all but a �nite number of
the events Fi. Prove that F =

S
1

k=1

T
1

i=k Fi. Make sure that the proof
is done carefully: First, take a point ! from F and show that it is inS1
k=1

T1
i=k Fi. Second, take a point ! from

S1
k=1

T1
i=k Fi and show that

it is in F .

5. Find the supremum and in�mum of the following sets: ;; (�10; 10);
(�1;1);

T
1

i=1f1=ig;
S
1

i=1f1=ig;
T
1

i=1[1=i; 1];
S
1

i=1[1=i; 1]; fx : x =
1=i; i = 1; 2; : : :g; fx : x = �1=i; i = 1; 2; : : :g; fx : x = i; i = 1; 2; : : :g;
and fx : x = �i; i = 1; 2; : : :g.

6. Show that F = f;;
g is a �-algebra.

7. Show the collection of all subsets of 
 is a �-algebra.

8. Show that if F1; F2; : : : ; FN are mutually exclusive and exhaustive, then
the collection of all �nite unions plus the empty set is an algebra.

9. Show that if F1; F2; : : : are mutually exclusive and exhaustive, then the
collection of all countable unions plus the empty set is a �-algebra.

10. Show that the intersection of two �-algebras is a �-algebra.

11. Let A be some collection of subsets of 
. Problem 7 implies that there
exists at least one �-algebra that contains A (Why?). Let F be the in-
tersection of all �-algebras that contain A. Show that F is a �-algebra.
Show that F is not empty. Why is F the smallest �-algebra that contains
A?

12. Show that if F is a �-algebra, then F \ B = fF \ B : F 2 Fg is a
�-algebra.

13. Show that P (;) = 0; P (A) � 1; P (A) + P ( ~A) = 1; and that if A � B;
then P (A) � P (B).

14. If P (A) = 1
3 and P ( ~B) = 1

4 ; can A and B be disjoint?

15. Find formulas for the probabilities of the following events: (i) either A or
B or both, (ii) either A or B but not both.
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16. A pair of dice are thrown and the sum is noted. The throws are repeated
until either a sum of 6 or a sum of 7 occurs. What is the sample space
for this experiment? What is the probability that the sequence of throws
terminates in a 7? Be sure to include an explanation of the logic that you
used to reach your answer.

17. In a shipment of 1,000 transistors, 100 are defective. If 50 transistors are
inspected, what is the probability that �ve of them will be defective. Be
sure to include an explanation of the logic that you used to reach your
answer.

18. Show that if two events A and B are independent, then so are A and ~B
and ~A and ~B.

19. Assume that P (A) > 0 and P (B) > 0. Prove that if P (B) = 1; then
P (AjB) = P (A) for any A. Prove that if A � B; then P (BjA) = 1.

20. Assume that P (A) > 0 and P (B) > 0. Prove that if A and B are mutually
exclusive, then they cannot be independent. Prove that if A and B are
independent, then they cannot be mutually exclusive.

21. Prove that if P (�) is a legitimate probability function and B is a set with
P (B) > 0; then P (�jB) also satis�es the axioms of probability.

22. Compute the probability of a win for each of the one roll bets in craps.

23. Compute the probability of a win for each of the place bets in craps. Work
the problem two ways: (i) Compute the probability of the union of the
events \win on roll i." (ii) Compute the probability of a win conditional
on termination.

24. How many di�erent sets of initials can be formed if every person has one
surname and (i) exactly two given names; (ii) either one or two given
names; (iii) either one, two, or three given names?

25. If n balls are placed at random into n cells, what is the probability that
exactly one cell remains empty?

26. If a multivariate function has continuous partial derivatives, the order in
which the derivatives are calculated does not matter (Green's theorem).
For example, (@3=@x2@y)f(x; y) = (@3=@y@x2)f(x; y). (i) How many third
partial derivatives does a function of two variables have. (ii) Show that a
function of n variables has

�
n+r�1

r

�
rth partial derivatives.

27. Suppose that an urn contains n balls all of which are white except one
which is red. The urn is thoroughly mixed and all the balls are drawn
from the urn without replacement by a blindfolded individual. Show that
the probability that the red ball will be drawn on the kth draw is 1=n.
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28. Two people each toss a coin n times that lands heads with probability
1/3. What is the probability that they will each have the same number
of heads? What is the probability if the coin lands heads with probability
1/4?

29. For the game of craps, compute the probability that a shooter coming out
will roll the �rst 7 on the kth roll.

30. For the two dimensional coin tossing experiment described in Subsec-
tion 1.4.2, let A = (0; 1=2]� (0; 1]; B = (0; 1]� (0; 1=2]; and C = f(x; y) :
x < yg. Show that P (C) = 1=2 and that P (A \C) = 1=8. Are A and B
independent? Are A and C independent? Compute P (A) and P (AjC).

31. Let (
;F ; P ) be a probability space. Show that if P (E) = 0; then P (F \
~E) = P (F ) for every F inF . Why are the two probability spaces (
;F ; P )
and (
 \ ~E;F \ ~E;P ) equivalent? See Problem 12 for the de�nition of
F \ ~E.
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smallest, 17{19, 35

�-�eld, see �-algebra

algebra, 16
associative law, 13

Borel �eld, see �-algebra

choose, 26
coin tossing

experiment, 8
probability function
n dimensions, 21
one dimension, 16{17
two dimensions, 17{19

sample space, 11
commutative law, 13
countable subadditivity, 22
countably additive, 17
craps

bets de�ned
come, 3
don't come, 3
don't pass, 3
free odds, 2
hardway, 3
pass, 1
place, 3

events, 13
experiment, 1{4
odds
pass bet, 31{32
place bet, 21, 30
table of, 1

probability function
multiple roll bets, 19{21

single roll bets, 19
sample space, 10{11
terms de�ned
come out roll, 2
craps, 2
point, 2

DeMorgan's laws, 14
distributive law, 13

event
complement of, 13
containment, 12
de�ned, 11
disjoint, 15
equality, 12
exhaustive, 15
in�nitely often, 15
intersection, 13
mutually exclusive, 15
occurs, 11
subset of, 12
union, 12

experiment
de�ned, 11

factorial, 26
�nitely additive, 17

independent
events, 33{34

indicator function
de�ned, 9, 32

inf, see in�mum
in�mum, 17

keno
experiment, 4{5
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probability function, 27{28
sample space, 11
terms de�ned
catch, 5
draw, 5

probability
axioms, 17
conditional, 28{30
function, 16{17
space, 15{21
de�ned, 17, 22
properties, 22

sample space
de�ned, 10

set function, 17
sup, see supremum
supremum, 17

triangular map, 9
sample space, 11


