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1 Numerical methods

We use the collocation projection method with Chebyshev polynomials to solve asset pricing models
in the paper. See Judd (1992) for an introduction to projection methods and Pohl et al. (2018) for
applications to solving models with long-run risks.

We solve each model in two steps. In the first step, we use the projection method to solve the
functional equation for the value function V;(C) to obtain the wealth-consumption ratio. Suppose
that the vector of state variables for a model is denoted by z; (e.g., zx = {m:} in model AAMS).
By homogeneity, we have V; (C') = C,G (z;) where G (z;) is a function to be determined. As shown
by Epstein and Zin (1989), the wealth-consumption ratio W;/C; is given by
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In the second step, we apply the projection method to solve the Euler equation to obtain the price-
dividend ratio, given that we can determine the SDF M; ;1 from the solution in the first step. We

denote the current state of the economy by z and the next period’s state by 2’.

1.1 Solving the AAMS Model

This model is developed by Ju and Miao (2012). See “Ambiguity, Learning, and Asset Returns:
Technical Appendix” for details about the numerical method.
The functional equation for G (7) implied by the generalized recursive smooth ambiguity utility

function is given by
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The intertemporal marginal rate of substitution (or stochastic discount factor) is given by
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(B[ @) exp (1-7) Ac(s))
R (G () exp (Ac () 7)

G(m)=|(1-B)+p <E [(E G ()" exp (1= 7) Ac(s))

1 —(n—)

=
s’,WD

X

The price-dividend ratio ¢ (7) satisfies the Euler equation

o(m)=E[M (7',s'|r) (1+ ¢ (")) exp (Ad (5')) ‘ 7. (2)



The laws of motion of consumption and dividend growth are

Ac(s) = u(s)+ocee, €~ N(0,1)
Ad(s) = MAc(s)+gq+ daeq, €a~ N (0,1)

where the transition probabilities are
Pr (8/ =l|s= l) = py, Pr (3/ = hls = h) = Duh

and €. and €4 are two independent innovation shocks.

The (nonlinear) law of motion of the state variable 7 is

o punf (Ac(s')|s" = h)m+ (1 —py) f(Ac(s')|s"=1) (1 —7)
f(Ac(s)|s" =h)m+ f(Ac(s)|s"=1)(1—) '

We approximate the solution functions G(m) and ¢(7) by Chebyshev polynomials, namely,
Nx N
G (ma%) = afTy(ts), ¢(ma?) = afTy (tx)
k=0 k=0

where Ty, : [-1,1] = R, £ =0,1,...,n, are Chebyshev polynomials and the transformation of the

argument for the polynomial is given by

=9 <7T—7Tm) .
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with i, = 0 and mmax = 1. To implement the collocation method, we solve the two functional
equations (1) and (2) on a grid of m obtained by applying the inverse of the transformation to the
nx + 1 zeros of the Chebyshev polynomial 7}, 1.

Equations (1) and (2) define two residual functions that are to be minimized sequentially by
choosing the coefficients a® and a¥®. The collocation projection method leads to two square sys-
tems of nonlinear equations, which can be solved with a nonlinear equations solver (e.g., Powell’s

hybrid algorithm). Because the underlying innovation shocks are Gaussian, we use Gauss-Hermite

quadrature to calculate conditional expectations in the residual functions.

1.2 Solving the AAMSTYV Model

Compared to AAMS, the AAMSTV model has one additional state variable s{ indicating the
volatility state. It follows that G (7, s7) satisfies the equation

G (m,s7) = (1—/3>+5<E[(E[G(w',sv')l—vexp(u_y) Ac(sw,sm))’sugsgbi‘z WD




The SDF and Euler equation are given by
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and
p(m,s?)=E [M (77’, 57 sM|x, s”) (1 + (7r', s”')) exp (Ad (s’”, s"'))‘ T, s“] .

The laws of motions for consumption and dividend growth are

Ac(shs7) = p(s")+o(s7)e, e ~N(01)
Ad (Suv SU) = Mc (SM’ SU) +9a+ Ca€d, €4~ N (07 1)

where the transition probabilities for the two independent Markov chains of s# and s are given by

Pr(s” =1|s"=1) = pj, Pr(s” =h|s” =h)=pf,
Pr (s =1|s" =1) pl, Pr(s" =h|s" =h) =p,

The law of motion of the state variable 7 is given by the Bayes’ rule

~ Phf (Ac (s, s7) " = h, s7) m + (1= pjy) f (Ac (s, s7) [s" = 1,57) (1 — )
B f(Ac (s, s%) |s# = h,s?)m + f(Ac(s¥,s7)|s¥ =1,s7) (1 — )

!/

We approximate the solutions to G (7, s?) and ¢ (m, s7) by Chebyshev polynomials as

Nx Nx
G (7r, s7 =1; alG) = Zangk (tr), G (7r, s7 = h; af) = Zagth (tr)
k=0 k=0

N N
p(ms” =laf) = Y af Ti(tn), ¢(ms”=hiaf) =Y af,Ti(tr)
k=0 k=0

i.e., we seek four sets of coefficients (alG, ag, af, af) that minimize the residual functions.



1.3 Solving the AALRRSV Model

We consider the long-run risk model

Acip1 = fe + Tpgp1 + Or€cirl
Adiy1 = g+ A\oiy1 + Gaoieq i
Tiyl = PrTt+ PuOt€p i1
Ot = MEAps (Uf - Mg) + Ow€w,t+1

€ct+1s €dt+1, Ex,t+1, Cwt+1 ™ i-i-d~N(0,1)-

where the long-run risk component z; is unobservable. We define &, ), = F [141]Z¢] and vy e =

E |:($t+1 — £t+1|t)2 \It} where 7, denotes available information at time ¢. It immediately follows
that

. - 2 2 2
Ti41)t = Pty and Vi1t = Pzl + $z0% -

The Kalman filter implies the following updating equations
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Expressed as an intertemporal equation, the solution function G (&, v, o) satisfies

and the innovation vector [

ACt+1 — fe — Py
Adpy1 — pg — Apadt

G0 = |-+ (B] (B[]0 @00 e (- dcl)]ro]) 2] )




The SDF and Euler equation are given by

/ NI R ION - 1 / G(i",y’,o”)exp(Ac(xl)) i—'y
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(]E [G (@, 0") Texp ((1—7)Ac (x’))’ x, T, v, UD e

8 R(G (@, 0", 0") exp (Ac (@)| 7, v, 0)

and
o (zT,v,0) =E [M (w',x,i’, Vo2, v, a) (1 +o (;%’, v, U’)) exp (Ad (a:'))‘ T, v, 0] )

We approximate the solution functions G (&,v,0) and ¢ (Z,v,0) by three-dimensional product

Chebyshev polynomials, namely,

G (#v,05a%) = i S S 6 o T (1) T (8) Th, (1)

701@7% -0
¢ (2, v,0;a%) = Z Z Z ey Ths (82) Th, (80) Thy (L) -
kz=0 ky=0 kg=0

In constructing Chebyshev polynomials as basis functions, we obtain the lower and upper bounds
for each state variable by simulations. Because z; ~ N (Zy,14), we use Gauss-Hermite quadrature
to compute the conditional expectation involving state x;. To compute conditional expectations
with respect to the underlying shocks (e, €4, €4, €5), we apply the monomial method with degree
5, see Judd (1999) for details of the monomial method. If the dimension of underlying shocks
is d, the monomial method requires 2d? + 1 points to compute an expectation, whereas Gauss-
Hermite quadrature requires N¢ nodes with N being the number of nodes in one dimension. When
the dimension of underlying shocks is large, the monomial method is much more efficient than
quadrature methods. This gain in efficiency is particularly important for our structural estimation.
A number of simulations suggest that for our model the monomial method yields accurate results
compared with Gauss-Hermite quadrature.

To implement the collocation method, we solve the two square systems of nonlinear equations
derived from equilibrium conditions on a grid of dimension (nz + 1) x (n, + 1) X (ny + 1) for the
state variables. The grid is constructed from zeros of Chebyshev polynomials of all state variables.

An alternative approach is to discretize the AR(1) process of o7 into a n—state Markov chain
by the method developed in Tauchen (1986). Caldara et al. (2012) adopt this approach to solve
DSGE models with recursive preferences and stochastic volatility. To avoid negative volatility
states in the Markov chain, we keep positive values only and normalize transition probabilities
accordingly. As such, given each volatility state o;, the solution functions G (z, v, 0;) and ¢ (Z, v, o)
can be approximated by two-dimensional product Chebyshev polynomials in & and v. Through

simulations, we find that this approach yields results that are close to the approximation with



three-dimensional product Chebyshev polynomials.

1.4 Solving the EZLRRSV Model

The laws of motion of Ac, Ad, x and o are given by the long-run risk model

Ac = pe+x+ o€
Ad = pg+ A+ pgo€eq + ¢.o€.

= Pa® + Gr0€y

o” = /J'g + Ps (02 - M?) + Owew

€cy €dy €y €y~ 1.0.d.N (0,1).

The solution function G (x, 02) satisfies

G(z,0%) = [(1-8)+p8 (E [G ($',U2’)1_7 exp ((1 —v) Ac)| z,0

The SDF and Euler equation are given by

oin0?) = pep () (- Gt (a0 ¥
M (2, 0%z, 0%) = p< ¢A)(R(G(m,02’)exp(AC)|fEaf72)>

and
% (x, 0'2) =E [M (1", o? |z, 02) (1 + (:U, 02)) exp (Ad)‘ T, 02]

We approximate the solution functions G (:U, 02) and ¢ (x, 02) by two-dimensional product Cheby-

shev polynomials in = and o2

G(x,aQ;aG) = Z Zak Jeo Ty (t2) Tk, (to)

ke=0ks=0

@(w,a%a“”) = Z Zak ko Ty, (tz) Tk, (ts) .

ke=0ks=0

2 Numerical accuracy

We use the method proposed by Judd (1992) to assess numerical accuracy of our numerical solutions.
The numerical accuracy check is through computing the Euler equation error. Previous studies such
as Guerrieri and Iacoviello (2015) and Collard, Mukerji, Sheppard, and Tallon (2018) rely on this
approach to assess the accuracy of their numerical solutions. Note that instead of computing the

Euler equation error implied by calibrated parameters as previous studies do, we compute the error



based on the MCMC chain of parameter estimates for each asset pricing model. For each model,
we compute several metrics of the error on a chain of estimates (12,000 sets of estimates) obtained
from the GSM Bayesian estimation.

For the AAMS model, the Euler equation errors defined on the dividend claim and consumption

claim are respectively given by
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The errors are defined in a similar way for other models including AAMSTV, AALRRSV, EZL-
RRSV and EZMS. The differences are only with regard to the SDF and conditioning state variables.
This measure is expressed as a fraction of consumption goods, namely the residual of the Euler
equation normalized by consumption. EulerErrP (EulerErrS) quantifies the error the agent
would commit if he use the approximate solution for the price of the dividend (consumption) claim
to decide on marginal investment.

Following Judd (1992), we consider several metrics of the error to evaluate numerical accuracy:

eb = logyg (IE HEulerErrlPH) , EP = log;q (E [(EulerEm«tD)Q])

&Y = logy (E[|BulerErr{]]), &§ = logy, (E [(EulerErrtC)QD .

We report the mean, 5 percentile and 95 percentile of each metric evaluated on the MCMC chains
of estimates. It is important to note that we compute the Euler equation error outside the grid that
we use to implement the collocation projection method. This is done because we want to assess
whether our approximate solutions perform well for simulated data under each model, and because
in the GSM Bayesian estimation we use the simulated data to find the mapping recovery from
structural parameters to the auxiliary model parameters. We report all measures in log;, terms.
For example, a value of £ equal to -3 suggests that if an agent relies on the approximate solution
of the price of the dividend claim, he would expect to make a mistake of 1 dollar for each $1000

risky investment. The economic interpretation is similar for £°. The metric 6'2D © measures the
quadratic average of the error. Results reported in Table 1 show that our approximate solutions

are accurate.



Table 1: Numerical accuracy: Euler errors

Model EP &P E¢ ¢
AAMS

Mean -2.654 -5.281 -3.656 -7.282
95% -2.179 -4.334 -3.230 -6.437
5% -3.256 -6.480 -4.233 -8.420
AAMSTV

Mean -2.594 -4.940 -4.100 -7.985
95% -1.826 -3.282 -3.165 -6.120
5% -3.918 -7.679 5612 -11.072
AALRRSV

Mean -2.207 -4.083 -4.093 -7.550
95% -1.633 -2.956 -2.983 -5.551
5% -2.626 -4.951 -4.932 -9.297
EZLRRSV

Mean -2.877 -5.387 -2.820 -5.255
95% -2.724 -5.066 -2.690 -4.966
5% -3.126 -5.880 -3.044 -5.708
EZMS

Mean -3.751 -7.335 -4.572 -8.987
95% -3.251 -6.026 -3.979 -7.834
5% -4.621 -9.077 -5.444  -10.737
EZMSTV

mean -4.443 -8.710 5354  -10.522
95% -3.304 -6.532 -3.956 -7.824
5% 5342 -10.468  -6.849  -13.517




Table 2: Prior: the AAMS Model

Parameter Min Max " o
B 0.9 0.995 0.985 0.005
vy 0.1 100 5 1
P 0.1 10 1.5 0.2
n ¥ 200 8.87 2
pu 0.2 0.999 0.516 0.13
Dhh 0.2 0.999 0.978 0.24
] -0.08 0.00 -0.0678 0.017
Lh 0.00 0.08 0.022 0.006
A 1 6 2.74 0.8
O 0.004 0.06 0.03 0.0075
o4 0.03 0.3 0.13 0.03

3 Priors on structural parameters

We report support conditions (Min and Max), prior location and scale parameters for structural
parameters in models AAMS, AAMSTV, AALRRSV and EZLRRSV.! For each model, the prior
is the combination of the product of independent normal density functions and support conditions.
The product of independent normal density functions is given by

7l
2
£0) =TI N[0 (67, 03)]
i=1
where 7 denotes the number of parameters. Because this prior is intersected with support conditions
that are not all of product form, and because a support condition that rejects parameter values in
the MCMC chain implies extreme parameter values such that the solution method fails, this is not

an independence prior.

! The EZMS (EZMSTV) model has the same prior on parameters as the AAMS (AAMSTV) model does except for
the absence of the ambiguity aversion parameter 7.



Table 3: Prior: the AAMSTYV Model
Parameter Min Max " o
I} 0.9 0.995 0.985 0.005
v 0.1 100 5 1
Y 0.1 10 1.5 0.2
n ¥ 200 8.87 2
pu 0.2 0.999 0.516 0.13
Dhh 0.2 0.999 0.978 0.24
0] -0.08 0.00 -0.0678 0.017
L 0.00 0.08 0.022 0.006
Py 0.2 0.999 0.85 0.07
e 0.2 0.999 0.85 0.07
o} 0.004 0.06 0.015 0.0038
on 0.004 0.06 0.03 0.0075
A 1 6 2.74 0.8
o4 0.03 0.3 0.13 0.03
Table 4: Prior: the AALRRSV Model
Parameter Min Max I o
B 0.9 0.995 0.985 0.005
0% 0.1 100 5 1
P 0.1 10 1.5 0.2
n ¥ 200 25 5
Lhe 0.012 0.025 0.02 0.001
Pz -0.99 0.99 0.8 0.2
O 0.01 0.5 0.15 0.04
A 1 10 3 0.8
D4 0.5 10 3 0.8
s 0.001 0.1 0.02 0.005
Ps 0.3 0.99 0.8 0.2
Ow le-5 0.001 2.5e-4 6.25e-5
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Table 5: Prior: the EZLRRSV Model

Parameter Min Max I o
B 0.9 0.995 0.985 0.005
v 0.1 100 5 1
Y 0.1 10 1.5 0.2
Lhe 0.012 0.025 0.019 0.001
Pu -0.99 0.99 0.80 0.20
o 0.01 0.5 0.15 0.04
A 1 10 3 0.8
Pd 0.5 10 3 0.8
O 1 10 3 0.8
s 0.001 0.10 0.02 0.005
Ps 0.30 0.99 0.8 0.2
Ow le-5 0.001 2.5e-4 6.25e-5

4 GSM estimation results with augmented priors

We also perform the GSM Bayesian estimation with augmented priors taking into account moments
of asset returns and consumption and dividend growth. The aim of this estimation is to examine
whether our GSM estimation results reported in the paper are robust to the augmented priors.

The augmented prior on moments is specified to be the product of independent normal density

functions as ~
n

E(m) =[] N [ml (m}, 0m,)]

k=1
where m = (myq, mo, ..., mz) is a vector of moments under consideration. The location and scale pa-
rameters for the moment my, are mj; and oy, respectively. We use the following location parameter

values for eight moments to form the prior.

E(r!) =0.014, o(r{) =0.028, E(r) =0.068, o(r;) =0.18
E(Ac) = 0.018, o(Ac) = 0.021, E(Ad;) = 0.018, o(Ady) =0.14

The scale parameters are set at values such that the prior put 95% of its mass on being within 10% of
its location parameter. We simulate these moments from asset pricing models in the GSM Bayesian
estimation. The results reported below show that the GSM estimation with the augmented priors

yield similar results to those reported in the paper.
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Table 6: GSM Estimation Results: the AAMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%
I5] 0.991 0.991 0.989  0.991 0.980 0.980 0977 0.983

¥ 4.847 4.750 2.750 6.750 2.219 2.281 0.766 3.531

P 0.616 0.563 0.563 0.813 2.202 2.180 1.836 2.680

7 13.155 13.500 11.500 13.500 5.557 5.219 4594 7.922

pu 0.405 0.406 0.406 0.406 0.860 0.866 0.764 0.923
Phh 0.812 0.813 0.813 0.813 0.997 0.997 0.996 0.997

10 -0.043 -0.043 -0.043 -0.043 -0.048 -0.048 -0.054 -0.041

Uh 0.033 0.033 0.033 0.033 0.020 0.020 0.018 0.021

A 2.803 2.750 2.750 3.250 2.791 2.734 2.391 3.547

Oc 0.006 0.006  0.006  0.006 0.020 0.020 0.018 0.024

o4 0.130 0.133 0.117 0.133 0.135 0.136 0.124 0.146

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters
for the AAMS model. The GSM estimation imposes the augmented prior on moments of asset returns and
consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for both
the prior and posterior. Estimation results are for annual data 1941-2015.
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Table 7: GSM Estimation Results: the AAMSTV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%
15} 0.989 0.989 0.989 0.989 0.978 0.978 0.974 0.982

vy 4.982 5.250 3.250 6.250 0.848 0.844 0.219 1.531

P 0.450 0.438 0.438 0.438 1.779 1.715 1.434 2.199

n 9.496 9.500 9.500 9.500 10.232 9.281 8.531 15.500

p% 0.282 0.281 0.281 0.281 0.706 0.728 0.611 0.774
th 0.812 0.813 0.813 0.813 0.998 0.999 0.997 0.999

4 -0.066  -0.066 -0.066 -0.066 -0.055  -0.054 -0.060 -0.050

U 0.033 0.033 0.033 0.033 0.018 0.018 0.016 0.019

it 0.863 0.859 0.734 0.984 0.989 0.989 0.982  0.993
Phn 0.840 0.859 0.703 0.953 0.989 0.990 0.984 0.993

oy 0.006 0.005 0.005 0.009 0.013 0.013 0.006 0.021

op, 0.006 0.006 0.006 0.010 0.029 0.029 0.026 0.032

A 3.064 3.250 2.750 3.250 2.570 2.547 1.984 3.172

o4 0.107 0.102 0.086 0.117 0.134 0.134 0.122 0.146

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters
for the AAMSTYV model. The GSM estimation imposes the augmented prior on moments of asset returns
and consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for
both the prior and posterior. Estimation results are for annual data 1941-2015.
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Table 9: GSM Estimation Results: the EZMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%
15} 0.986 0.985 0.985 0.987 0.981 0.981 0978 0.984

¥ 10.221 10.250 10.250 10.250 4.013 3.953 3.469 4.672

P 0.421 0.438 0.313 0.438 2.397 2.359 1.859 2.984

pu 0.343 0.344 0.344 0.344 0.904 0.897 0.860 0.951
Dhh 0.812 0.813 0.813 0.813 0.996 0.997 0.992 0.997

I -0.059 -0.059 -0.059 -0.059 -0.039 -0.041 -0.052 -0.018

Lh 0.029 0.029 0.029 0.029 0.022 0.021  0.018 0.029

A 3.252 3.250 3.250 3.250 3.192 3.172 2.641 3.766

Oe 0.006 0.006  0.006 0.006 0.019 0.019 0.016 0.023

o4 0.105 0.102 0.102 0.117 0.132 0.133 0.117 0.145

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters
for the EZMS model. The GSM estimation imposes the augmented prior on moments of asset returns and
consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for both
the prior and posterior. Estimation results are for annual data 1941-2015.
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Table 10: GSM Estimation Results: the EZMSTYV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%
I3 0.991 0.991 0991 0.991 0.989 0.989 0.986 0.992

¥ 7.995 8.250  6.750  8.250 7.537 7.406 6.656 8.594

P 0.975 0.938 0.938 1.063 1.168 1.148 1.039 1.383

pﬁ 0.595 0.594 0.594 0.594 0.609 0.610 0.579 0.632
th 0.812 0.813 0.813 0.813 0.975 0.975 0971 0.978

7, -0.035 -0.035 -0.035 -0.035 -0.060  -0.060 -0.066 -0.056

L 0.037 0.037 0.037 0.037 0.022 0.022 0.020 0.024

Py 0.856 0.859 0.766 0.984 0.992 0.994 0979 0.998
Do 0.837 0.828 0.734 0.953 0.923 0.921 0.866 0.979

o} 0.006 0.005 0.005 0.009 0.014 0.014 0.010 0.016

op 0.006 0.006  0.006 0.006 0.030 0.029 0.023 0.038

A 3.271 3.250 3.250 3.750 2.205 2.242 1.711 2.836

o4 0.102 0.102 0.086 0.117 0.132 0.132 0.116 0.151

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters
for the EZMSTV model. The GSM estimation imposes the augmented prior on moments of asset returns
and consumption and dividend growth. MCMC repetitions after transients have dissipated are reported for
both the prior and posterior. Estimation results are for annual data 1941-2015.
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