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“Reply to Comment on Reflections” (Gallant, 2015b) constructed the dominating mea-

sure for Chris Sims’s continuous example (Sims, 2015). This addendum does the same for

his discrete example, which is Table 1 of Sims (2015).

The issue addressed here is that standard Bayesian computing methods assume that like-

lihoods are with respect to either Lebesgue measure or counting measure whereas the density

p∗(x | θ) constructed in “Reflections” (Gallant, 2015a) may not be. Explicit construction of

the dominating measure is required to use these computing methods or, more correctly, ex-

plicit construction of the Radon-Nikodym derivative adj(x, θ) of the dominating measure

with respect to either Lebesgue or counting measure is required.

One can regard the adjustment adj(x, θ) as a partial specification of the prior or a com-

pletion of the definition of the likelihood, depending on one’s point of view. It is a matter

of how one groups terms. The grouping

p(θ | x) ∝ p∗(x | θ)
[

adj(x, θ)π∗(θ)
]

suggests a data dependent prior. Or, more precisely, this grouping suggests that the absence

of adj(x, θ) implies a data dependent prior. The grouping

p(θ | x) ∝
[

adj(x, θ)p∗(x | θ)
]

π∗(θ)

suggests a particular choice of likelihood. Above, p∗(x | θ) is defined by equation (17) of

“Reflections” and the prior π∗(θ) by the second paragraph of Section 3 of “Reflections.”

Repeating a definition from “Reflections”, let

C(θ,z) = {x ∈ X : Z(x, θ) = z}. (15R)

Constructing adj(x, θ) for Sims’s discrete example amounts to choosing some distribution on

each C(θ,z).
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We will give two constructions of the posterior for Sims’s example. The first is an

intuitive construction based on the the principle that probability for the dominating measure

adj(x, θ) is distributed uniformly over C(θ,z). Following this construction we will repeat the

construction using the notion of a representer from “Reflections,” which, as we shall see,

amounts to enforcing the principle that probability for the dominating measure adj(x, θ) is

distributed uniformly over C(θ,z).

Tables 1 through 5 display the intermediate steps in the first construction of the posterior

for Sims’s discrete example. Table 1, Table 2, Table 3, Table 6, Table 7, and Table 5, in that

order, display the intermediate steps in the second construction of the posterior for Sims’s

discrete example

His example does not satisfy EZ = 0 but this does not matter for what follows. Also, in

what follows, set π = π∗.
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Table 1. Preimages and Probabilities for Z(x, θ) Defined by Table 1 of Sims (2015).

P (Z = z |Λ = θ)

Preimage z P (Z = z) θ = 1 θ = 2 θ = 3

C1 = {(1, 1), (3, 3), (4, 2), (4, 3)} 1 Ψ1 Ψ1 Ψ1 Ψ1

C2 = {(1, 2), (2, 1), (2, 3), (3, 2), (4, 1)} 2 Ψ2 Ψ2 Ψ2 Ψ2

C3 = {(1, 3), (2, 2), (3, 1)} 3 Ψ3 Ψ3 Ψ3 Ψ3

The sets that can occur when it is known that Λ = θ has occurred are those preimages Cz

that contain (x, θ) for some x in the support X of X. Let Oθ be the union of the sets that

can occur when it is known that Λ = θ has occurred. Conditional probability is computed as

P (Z = z |Λ = θ) = P (Cz ∩ Oθ)/P (Oθ). In this instance, Oθ is the support Θ of Λ so that

P (Cz ∩Oθ) = Ψz and P (Oθ) = 1.

Table 2. Conditional Probabilities Implied by Table 1

P (X = x |Λ = θ)

x θ = 1 θ = 2 θ = 3

1 Ψ1 Ψ2 Ψ3

2 Ψ2 Ψ3 Ψ2

3 Ψ3 Ψ2 Ψ1

4 Ψ2 Ψ1 Ψ1

P (X = x |Λ = θ) is the probability of the preimage

in Table 1 that contains (x, θ), which is C1 for P (X =

1 |Λ = 1), divided by the probability of the union of

all sets that contain a point of the form (·, θ), which

is O1 = C1 ∪ C2 ∪ C3 for P (X = 1 |Λ = 1). Therefore

P (X = 1 |Λ = 1) = P (C1)/P (O1) = Ψ1/1. The

column probabilities do not sum to one, which is an

issue that the adjustment adj(x, θ) resolves.
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Table 3. The Sets C(θ,z) Implied by Table 1

z θ = 1 θ = 2 θ = 3

1 {1} {4} {3, 4}

2 {2, 4} {1, 3} {2}

3 {3} {2} {1}

C(θ,z) is defined by equation (15R).

Table 4. Dominating Measure for Table 2

adj(x, θ)

x θ = 1 θ = 2 θ = 3

1 1 1
2 1

2 1
2 1 1

3 1 1
2

1
2

4 1
2 1 1

2

When C(θ,z) given in Table 4 has more than one element,

probability is split evenly among the points. E.g., C(1,2) =

{2, 4}; therefore, adj(2, 1) = adj(4, 1) = 1
2 When C(θ,z) is a

singleton set, adj(θ, z) = 1; therefore adj(1, 1) = 1.
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Table 5. Normalizing Factors

x Normalizing Factors

1 D1 = Ψ1π1 +
1
2Ψ2π2 +Ψ3π3

2 D2 = 1
2Ψ2π1 +Ψ3π2 +Ψ2π3

3 D3 = Ψ3π1 +
1
2Ψ2π2 +

1
2Ψ1π3

4 D4 = 1
2Ψ2π1 +Ψ1π2 +

1
2Ψ1π3

For prior πθ = P (Λ = θ), where θ = 1, 2, 3, the ta-

ble shows the normalizing factors for the posterior dis-

played in equations (1), (2), and (3). The rows of the

table are constructed from the rows of Tables 2 and 4

and the prior.
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From Tables 2, 4, and 5 we obtain the posterior:

P (Λ = 1 |X = 1) =
Ψ1π1

D1

(1)

P (Λ = 1 |X = 2) =
1
2
Ψ2π1

D2

P (Λ = 1 |X = 3) =
Ψ3π1

D3

P (Λ = 1 |X = 4) =
1
2
Ψ2π1

D4

P (Λ = 2 |X = 1) =
1
2
Ψ2π2

D1

(2)

P (Λ = 2 |X = 2) =
Ψ3π2

D2

P (Λ = 2 |X = 3) =
1
2
Ψ2π2

D3

P (Λ = 2 |X = 4) =
Ψ1π2

D4

P (Λ = 3 |X = 1) =
Ψ3π3

D1

(3)

P (Λ = 3 |X = 2) =
Ψ2π3

D2

P (Λ = 3 |X = 3) =
1
2
Ψ1π3

D3

P (Λ = 3 |X = 4) =
1
2
Ψ1π3

D4

We shall next repeat the derivation of equations (1) through (3) using the notion of a

representer. Recall the definition of representer given in “Reflections:” Assume that C(θ,z)

is not empty for any (θ, z) pair. Then for each θ ∈ Θ and z ∈ Z we may choose a point

x∗ ∈ X for which

Z(x∗, θ) = z.

The point x∗ is the representer of C(θ,z). Define

Υ(z, θ) = x∗. (16R)
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Table 6. A Representer for Table 1

x∗ = Υ(z, θ)

z θ = 1 θ = 2 θ = 3

1 1 4 3

2 2 1 2

3 3 2 1

Constructed from Table 3 by taking the first element

of every set.

Table 7. The Dominating Measure for Tables 2 and 6

adj∗(x∗, θ)

x∗ θ = 1 θ = 2 θ = 3

1 1 1
2 1

2 1
2 1 1

3 1 1
2

4 1

Probabilities are given by 1
#C(θ,z) , where #C(θ,z) is the num-

ber of points in C(θ,z). Entries are only required for points

(x∗, θ) that satisfy x∗ = Υ
[

Z(x, θ), θ
]

for some x, x =

1, 2, 3, 4. Note that adj(x, θ) = adj∗
(

Υ
[

Z(x, θ), θ
]

, θ
)

, where

adj(x, θ) is defined by Table 4.
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The formula for a posterior is

P (Λ = θ |X = x) ∝ adj∗
(

Υ
[

Z(x, θ), θ
]

, θ
)

p∗
(

Υ
[

Z(x, θ), θ
] ∣

∣ θ
)

π(θ). (4)

This will give the same posterior as equations (1), (2), and (3) because the probabilities in

Table 4 were chosen to satisfy

adj(x, θ) = adj∗
(

Υ
[

Z(x, θ), θ
]

, θ
)

.
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