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AbstractConditions under which a regression estimate based on p regressors is asymptotically nor-mally distributed when the minimum eigenvalue of X 0X=n decreases with p are obtained.The results are relevant to the regressions on truncated series expansions that arise in neuralnetworks, demand analysis, and asset pricing applications.
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1 IntroductionThe p leading terms of a series expansion f�jg1j=1 are often used in regression analysis toeither represent or approximate the conditional expectation with respect to x of a dependentvariable y. Either explicitly or implicitly, p usually grows with the sample size n in theseapplications. The growth may follow some deterministic rule fpng or it may be adaptivewith p increased when a t-test rejects or some model selection rule such as Schwarz's (1978)criterion, Mallow's (1973) Cp; or cross validation suggests an increase.The most familiar examples of expansions viewed as representations are experimentaldesigns, which are Hadamard expansions in the levels of factors. In this case, which we referto as the �rst paradigm, the data are presumed to have been generated according to theregression yt = pXj=1 �oj�j(xt) + et t = 1; 2; :::; nPerhaps the most familiar examples of expansions viewed as approximations occur in re-sponse surface analysis when the observed response is regressed on a polynomial in thecontrol variables. In this case, which we refer to as the second paradigm, the data arepresumed to have been generated according to the regressionyt = go(xt) + et t = 1; 2; :::; nand gp(xj�) = Ppj=1 �j�j(x) is regarded as an approximation to go. While our analysis coversboth paradigms, the second provides the primary motivation.In fact, it is three speci�c applications that motivate this work, although our results obvi-ously have wider applicability. These three applications are: (i) the statistical interpretationof neural networks (White, 1989) as used in robotics, navigation aids, speech interpretation,and other arti�cial intelligence applications [feedforward networks can be viewed as seriesexpansion regressions (Gallant and White, 1988)], (ii) 
exible functional forms as used inconsumer and factor demand analysis (Barnett, Geweke and Yue, 1989), and (iii) Hermiteexpansions as used in asset pricing and sample selection applications (Gallant and Tauchen,1989; Gallant and Nychka, 1987). For a variety of reasons { mimicking biological structure,avoiding unrealistic boundary conditions, or appending a leading special case to the expan-1



sion either to improve the approximation or test hypotheses { these three applications sharea common feature: the eigenvalues of the p � p matrixX 0X=n = (1=n) nXt=1[�1(xt); � � � ; �p(xt)]0[�1(xt); � � � ; �p(xt)](or its �rst order counterpart if the analysis is nonlinear) decline as n and p increase together.In these applications, the independent variables fxtg are almost invariably obtained bysampling from some common distribution �(x) so that results are more usefully stated interms of the p � p matrixGp = Z [�1(x); � � � ; �p(x)]0[�1(x); � � � ; �p(x)]d�(x)If one tried to state results in terms of conditions on the eigenvalues of X 0X=n (or othercharacteristics such as the diagonal elements of the hat matrix) results would be conditionalupon the particular sequence fxtg that obtained of which, presumably, only the �rst n termsare known. Moreover, even if one were presumed to have the entire sequence fxtg1t=1 availablefor inspection, one would still be involved in the conceptual circularity of having to proposea rule pn; check the eigenvalues of X 0X=n as n tends to in�nity, and if that rule didn'twork, to try again. Without the results of this paper, which are re�nements of Andrews'(1988) results, one could not state a rule fpng a priori which would satisfy the conditionson X 0X=n for every sequence fxtg encountered in applications. Providing a more elegantproof that gives faster rates than Andrews (1988) in some cases is the main contribution ofthe paper. An extension to adaptive rules using results due to Eastwood (1987) is possible;see Eastwood and Gallant (1987) or Andrews (1988) for examples. (We cite one of the earlyversions of Andrews' work which is rich in history and examples; later versions improve theresults but have deleted some of this interesting material.)To help �x ideas, we illustrate the rates of decline one might encounter in applicationswith an example taken from Gallant (1984) regarding the log cost function of a �rm whenthe �rm's output is the only free variable. The log cost function of a �rm gives the logarithmof the cost to a �rm over a year, say, to produce x units of log output at speci�ed log pricesof the factors of production. Since we shall hold prices �xed, their arguments are suppressedand we write a log cost function as g(x). Units of measurement are irrelevant, and the capital2



stock of the �rm is �xed (thus bounding feasible output from above and below), so we canassume that 0 � x � 2� without loss of generality. Data is generated according toyt = go(xt) + et t = 1; 2; :::; nIf one approximated go(x) by the Fourier seriesgp(xj�) = u0 + 2 KXj=1[uj cos(jxt)� vj sin(jxt)] p = 2K + 1and � were uniform over [0, 2�] then the eigenvalues of Gp would be bounded from aboveand below for all p (Tolstov, 1962). But this would imply that the log cost function of a �rmis periodic so that conditions at the lowest feasible output are the same as at the highestfeasible output which is silly. (At the minimum, one would expect the �rst derivative of goto be negative at 0 and positive at 2�:)One could improve the approximation and have the means to test against the leadingspecial case by adding a Translog cost function (Christensen, Jorgenson, and Lau, 1975) tothe expansiongp(xj�) = u0 + bx+ cx2 + 2 KXj=1[uj cos(jxt)� vj cos(jxt)] p = 2K + 3By minimizing �0Gp�=�0� over all � in <p one gets the smallest eigenvalue of Gp. Forgiven b and c; the solution to this minimization problem is gotten by putting � =(��u0; b; c;��u1; �v1; : : : ;��uK; �vK) where �uj and �vj denote the Fourier coe�cients of bx + cx2(Tolstov, 1962). The minimum itself is P1j=K+1(�u2j + �v2j )=PKj=1(�u2j + �v2j ) which by directcomputation can be shown to decline at the rate K�1 when c 6= 0 and b 6= 2c� (bx+ cx2 issymmetric about � when b = 2c�). But this would imply that the log cost function of anarbitrary �rm has periodic second and higher derivatives which is implausible.This di�culty can be overcome by assuming that the support of � is [�; 2�� �] for somesmall � > 0. The minimumeigenvalue �min;K is gotten by: extending bx+cx2 from [�; 2���] to[0, 2�] such that the extension is periodic and in�nitely many times di�erentiable, computingthe Fourier coe�cients �uj and �vj of the extended function, and putting �min;K = P1j=K+1(�u2j+�v2j )=PKj=1(�u2j + �v2j ). In this case �min;K is rapidly decreasing; that is, (Km)(�min;K) tends tozero with K for every m. 3



In summary, as p increases one could have the minimum eigenvalues of Gp bounded frombelow, declining at a polynomial rate, or rapidly decreasing.In the literature related to our problem within the �rst paradigm, Huber (1973) gives thebasic result used to obtain asymptotic normality. Portnoy (1985) extends Huber's and Yohaiand Maronna's (1979) results and gives a rich discussion of the history of research relatingp to n so as to achieve asymptotic normality when the eigenvalues of X 0X=n are boundedfrom above and below. His methods of proof are related to ours in that metric entropy andan exponential inequality are used to get a uniform strong law with a rate. We use thesesame ideas but at a more macro level by citing results in the empirical process literature asfound, for instance, in Pollard (1984). Closely related work within the second paradigm isfound in Severini and Wong (1987) and Andrews (1988). Ours, Severini and Wong's, andAndrews' proof strategies are similar. Severini and Wong consider maximum likelihood andsimilarly structured sieve estimators. Their regularity conditions would basically require theeigenvalues of X 0X=n to be bounded above and below when their results are specialized toregression. Andrews (1988) provides an excellent history of work related to this problemand an extensive list of nonparametric estimation strategies encompassed within the secondparadigm. His regularity conditions are not as closely related to applications as ours, oper-ating at a level closer to the results; they cover the heteroskedastic case while ours do not.Andrews also extends his results to adaptive rules using results of Eastwood (1987). Thissame extension covers our results as well. The extension of our results to the multivariatecase, which is of special relevance to demand analysis, is in Gallant and Souza (1990).2 Asymptotic Normality Under the First ParadigmSETUP 1 We consider a regression model with p parametersyt = pXj=1 �j�j(xt) + ut t = 1; 2; : : : ; nPutting �(x) = [�1(x); �2(x); : : : ; �p(x)]0; the least squares estimator is�̂ = G�1np [ 1n nXt=1 yt�(xt)]4



where Gnp = X 0X=n = 1n nXt=1 �(xt)�0(xt):The objective of this section is to �nd rules relating p to n such that�0[�̂ � E(�̂jfxtg)]pV ar(�0�̂jfxtg)is asymptotically normally distributed when the data is generated according to yt = gon(xt)+et. fetg is an iid sequence with common distribution P (e) for which R edP (e) = 0 andR e2dp(e) = 1. fxtg is an iid sequence with common distribution �(x). fxtg is independentof fetg. � is an arbitrary vector in <p; and V ar(�0�̂jfxtg) = �0(X 0X)�1� = (1=n)�0G�1np �. 2The dependence of go on n is to include the �rst paradigm within the analysis. Underthe �rst paradigm, �0E(�̂jfxtg) is presumed to be an unbiased estimate of the parametricfunction of interest and the results of this section are all that is required for asymptoticnormality. Under the second paradigm, there is a bias term to deal with. An analysis of thebias term is deferred to the next section.Put B(p) = pXj=1 supx2X �2j(x):We assume that B(p) is �nite for each p. For instance, if yt = go(xt) + et and X = [0; 2�]then one might �t yt = a+ bxt + cx2t + 2 KXj=1[uj cos(jxt)� vj sin(jxt)] + utby least squares using�0�̂ = â+ b̂xo + ĉ(xo)2 + 2 KXj=1[ûj cos(jxo)� v̂j sin(jxo)]to estimate go(xo) in which case p = 2K + 3 and B(p) = 1 + 2� +4�2 + 2K. If insteadyt = (d=dx)go(xt) + et one might �tyt = b+ 2cxt � 2 KXj=1 j[uj sin(jxt) + vj cos(jxt)] + utby least squares, using �0�̂ = 2ĉ + 2 KXj=1 j2[�ûj cos(jxo) + v̂j sin(jxo)]5



to estimate (d2=dx2)go(xo) whence p = 2K + 2 and B(p) = 1 + 4� +K(K + 1).Note that, conditional on fxtg; the estimator is a linear function of the errors�0[�̂ � E(�̂jfxtg)]pV ar(�0�̂jfxtg) = nXt=1 (1=n)�0G�1np �(xt)p[(1=n)�0G�1np �] et = nXt=1 antetThe following result states a condition under which the estimator is asymptotically normal,conditional upon fxtg.THEOREM 1 Given sequences fxtg1t=1 and fpng1n=1;�0[�̂ � E(�̂jfxtg)]pV ar(�0�̂jfxtg)is asymptotically normally distributed iflimn!1 sup1�t�n j(1=n)�0G�1np�(xt)jp[(1=n)�0G�1np �] = 0:Proof The result will follow if we verify Lindeberg's condition (Billingsley, 1986, p. 369)limn!1 nXt=1(s2n)�1 Z I(jantej � �sn)(ante)2dP (e) = 0for every � > 0 where I(A) denotes the indicator function of a set A and sn = Pnt=1(ant)2.Note that Pnt=1[(1=n)�0G�1np �(xt)]2 = n�2�0G�1np [Pnt=1 �(xt)�0(xt)]G�1np � = (1=n)�0G�1np � so thatsn = 1. Put an = sup1�t�n jantj. Thenlimn!1 nXt=1 Z I(jantej � �)(ante)2dP (e)= limn!1 nXt=1(ant)2 Z I(jej � �=jantj)e2dP (e)� limn!1 nXt=1(ant)2 Z I(jej � �=janj)e2dP (e)= limn!1 Z I(jej � �=janj)e2dP (e)= 0since R e2 dP(e) is �nite and limn!1 an = 0. 2Letting �min(G) denote the smallest eigenvalue of a matrix G, and G�1=2 the Choleskyfactor of G�1 we have, using the Cauchy-Schwartz inequality,j(1=n)�0G�1np �(xt)jp[(1=n)�0G�1np �] � k�0G�1=2np k kG�1=2np �(xt)kpnk�0G�1=2np k� h B(p)n�min(Gnp)i1=26



Thus, any rule pn relating p to n such that limn!1 B(pn)=[n �min(Gn;pn)] = 0 will achieveasymptotic normality, conditional on fxtg. If the rule pn does not depend on knowledge offxtg; other than knowledge that fxtg does not correspond to some null set of the underlyingprobability space, then the unconditional distribution of �0[�̂�E(�̂jfxtg)]=pV ar(�0�̂jfxtg) isasymptotically normal as well.Our strategy for �nding pn depends on relating the eigenvalues of Gnp to the eigenvaluesof Gp = Z �(x)�0(x)d�(x)by establishing a strong law of large numbers that holds with rate �n uniformly over thefamily Fp = f[�0�(x)]2=B(p) : �0� = 1; � 2 <pgwhen p = pn. First, we need some additional notation and two lemmas.Let E denote expectation with respect to dP � d� or d�; as appropriate, and let Endenote expectation with respect to the empirical distribution of f(et; xt)gnt=1 or fxtgnt=1; asappropriate. That is, for f(e; x)Enf = 1n nXt=1 f(et; xt) Ef = Z Z f(x; e)dP (e)d�(x);and for f(x) Enf = 1n nXt=1 f(xt) Ef = Z f(x)d�(x):With this notation, Gnp = En��0 and Gp = E��0. Note, there is a � with �0� = 1 and�0Gnp� = �min(Gnp) so there is an f in Fp with �min(Gnp)=B(p) = Enf . Letting �min(G) and�max(G) denote the smallest and largest eigenvalues of a matrix respectively.LEMMA 1 The number of �-balls required to cover the surface of a sphere in <p is boundedby 2p(2=� + 1)p�1.Proof The proof is patterened after Kolmogorov and Tihomirov (1959). Let M be themaximum number of non-intersecting balls of radius �=2 and center on the surface of theunit sphere. If � is a point on the surface, then an �=2 neighborhood must intersect one ofthese balls; hence � is within � of its center. If V denotes the volume of a shell in <p with7



outer radius 1 + �=2 and inner radius 1� �=2 and v denotes the volume of an �=2-ball, thenM � V=v. V=v = 2�p=2[(1 + �=2)p � (1� �=2)p]=[p�(p=2)]2�p=2(�=2)p=[p�(p=2)]= [(1 + �=2)p � (1� �=2)p]=(�=2)p= [1 + p(1 + ��=2)p�1�=2 � 1 + p(1 � ���=2)p�1�=2]=(�=2)p[by the mean value theorem]� 2p(1 + �=2)p�1=(�=2)p�1 2LEMMA 2 Let pn !1 and �n ! 0 as n!1. ThenP� supf�Fpn jEnf � Ef j > 4�n� < 4pn(4=�n + 1)pn�1 exp(�12n�2n):Proof From Lemma 1, the number of �=2-balls required to cover the surface of the unitsphere in <p is bounded by N(�; p) = 2p(4=�+1)p�1. Let ~�j denote the centers of these ballsand put gj = (~�0j�)2=B(p). Since f = (�0�)2=B(p) must have � in some ball we haveminj jgj � f j = minj j(�0�)2 � (~�0j�)2j=B(p)= minj j�0(� � ~�j)jj�0�+ ~�0j�j=B(p)� minj k�k k� � ~�jk(k�k k�k+ k~�jk k�k)=B(p)� 2[k�k2=B(p)](�=2)� �:For each f in F let f� denote the gi from g1; : : : ; gN(�;p) that approximates it to within �.Note that both jEn(f � f�)j and jE(f � f�)j are less than �. ThenP (supf�F jEnf � Ef j > 4�)� Pfsupf�F [jEn(f � f�)j+ jE(f � f�)j+ jEnf� � Ef�j] > 4�g� P (supf�F jEnf� � Ef�j > 2�)= P (maxi jEngi � Egij > 2�)� N(�;p)Xi=1 P (jEngi � Egij > 2�)� N(�; p)maxi P (jEngi � Egij > 2�):8



Note that �2 � gi � Egi � 2 which permits application of Hoe�ding's inequality (Pollard,1984, p. 192)P (jEngi � Egij > 2�) � 2 exp[�2(2n�)2=[n(4)2]g = 2 exp[�(1=2)n�2]: 2Lemma 2 can be used to establish a uniform strong law with rate:LEMMA 3 Let pn � n� for some � with 0 � � < 1. If 0 � � � (1 � �)=2 thenP� supf�Fpn jEnf � Ef j > n��=2 in�nitely often� = 0:Proof IfP1n=1 P (supf2Fpn jEnf �Ef j > 4�n) <1 for �n = n��=8 then the result will followby the Borel-Cantelli lemma. By Lemma 2, we will have P1n=1 P (supf2Fpn jEnf � Ef j >4�n) <1 if pn(4=�n + 1)pn�1 exp(�12n�2n)n1+c � Bfor some B; c > 0. Taking the logarithm of the left hand side we have for large n thatlog pn + (pn � 1) log(4=�n + 1) � n�2n=2 + (1 + c) log n� log n� + (n� � 1) log(32n� + 1) � n1�2�=128 + (1 + c) log n� (1 + �+ c) log n+ n� log(33n�)� n1�2�=128= log(33)n� + (1 + � + c+ �n�) log n � n1�2�=128< 2�n� log n� n1�2�=128:The right hand side is negative for n large enough because 0 � � < 1� 2�. 2We can now state and prove the main result of this section; recall that B(p)=�min(Gp)will be a polynomial in p or rapidly decreasing in typical applications.THEOREM 2 If pn satis�esB(pn)=�min(Gpn) � n� 0 � � < 1=2pn � n� 0 � � < 1 � 2�then P [B(pn)=�min(Gn;pn) > 2n� in�nitely often] = 0:9



Proof Suppose supf2Fpn jEnf � Ef j � n��=2. There is an f = (�0�)2=B(pn) in Fpn suchthat �min(Gn;pn)=B(pn) = Enf whence�min(Gn;pn)=B(pn) = En(�0�)2=B(pn)� E(�0�)2=B(pn) � n��=2� �min(Gpn)=B(pn)� n��=2� n��=2:Thus, supf2Fpn jEnf�Ef j � n��=2 implies �min(Gn;pn)=B(pn) � n��=2. The contrapostitiveis B(pn)=�min(Gn;pn) > 2n� implies supf2Fpn jEnf � Ef j > n��=2. ThusP [B(pn)=�min(Gn;pn) > 2n� i.o.] � P� supf�Fpn jEnf � Ef j > n��=2 i.o.�:Apply Lemma 3. 2Asymptotic normality follows immediately.THEOREM 3 If pn satis�esB(pn)=�min(Gpn) � n� 0 � � < 1=2pn � n� 0 � � < 1 � 2�then �0[�̂� E(�̂jfxtg)]pV ar(�0�̂jfxtg) L! N(0; 1)both conditionally on fxtg and unconditionally.Proof By Theorem 2 PfB(pn)=[n �min(Gn;pn)] > n��1=2 i.o. g=0 whence limn!1 B(pn)=[n�min(Gn;pn)] = 0 except for realizations of fxtg that correspond to an event in the underlyingprobability space that occurs with probability zero. 2Under assumptions (i) 0 < b � �min(Gn;pn) < �max(Gn;pn) � B < 1; and (ii) 0 <b0 � B(p)=p � B0 < 1; which are often imposed in studies that relate p to n; asymptoticnormality will hold with pn growing as fast as pn=n! 0. When a strong law is invoked, therate typically deteriorates to p2n=n! 0 (Portnoy, 1985). Theorem 3 would require p3n=n! 0under these assumptions. (Andrews (1988) gets p4n=n ! 0; this is the case where our rates10



are faster.) The reason for this slower rate is the use of the bound maxj Eng2j � 1 in theproof of Lemma 2. Our method of proof will provide better rates when better bounds onEng2j are available. For example, under assumptions (i) and (ii) above, recalling that gj � 1;the bound on Eng2j is Eng2j � Engj � (B=b0)=pn and the conclusion of Lemma 2 would read:P� supf�Fpn jEnf � Ef j > 4�n� < 4pn(4=�+ 1)pn�1 exp[�12npn�2n=(B=b0)]The last line of the proof of Lemma 3 would have 0 � � < 1+��2� instead of 0 � � < 1�2�.Since 0 < b � �min(Gn;pn) implies 0 < b00 � �min(Gpn) (Lemma 3), B 0pn=b00 � n�; pn � n�;and 0 � � < 1 + �� 2� would imply asymptotic normality. That is, under assumptions (i)and (ii) our method of proof delivers asymptotic normality for p2n=n! 0.3 Asymptotic Normality Under the Second ParadigmIn the previous section we were able to �nd rates for pn such thatRelErr(�0�̂jfxtg) = �0[�̂ � E(�̂jfxtg)]pV ar(�0�̂jfxtg)is asymptotically normally distributed when the data is generated according toyt = gon(xt) + et t = 1; 2; : : : ; n:without putting conditions on gon or describing what �0�̂ is intended to estimate. Here wemust be more speci�c.In the applications that motivate this work, usually gon does not depend on n and hasdomain X which is a subset of <M . Usually an evaluation functional such asD�go(xo) = (@�1=@x�11 ) � :: � (@�M=@x�MM )go(xo)is the object of interest. Above, � = (�1; �2; : : : ; �M ) and the absolute value j�j = PMi=1 j�ijgives the order of the partial derivative; the zero order derivative is the function itself,D0g � g. The dependence of go on n does not make the proofs more di�cult and might beuseful if one wanted to consider a notion analogous to a Pitman drift, so we shall retain it.These considerations make it natural to regard gon as a sequence of points in a (weighted)Sobolev space and to assume that the sequence f�jg is a dense subset of that space.11



A Sobolev space is the set Wm;q;� of g with a �nite Sobolev norm kgkm;q;�. The Sobolevnorm is de�ned askgkm;q;� = hPj�j�m R jD�g(x)jq d�(x)i1=q 1 � q <1kgkm;1;X = maxj�j�m supx�X jD�g(x)j q =1:To avoid clutter, kgkm;1;� will be understood to represent kgkm;1;X in a statement such as\kgkm;q;� � B for some 1 � q � 1 "; in these instances X is the support of �. W1;q;� =T1m=0Wm;q;�. For many choices of X and � these norms are interleaved in the sense that foreach q with 1 � q <1 the inequality kgkm;q;� � ckgkm;1;X � ckgkm+M=q+1;q;� holds for somec that does not depend on g. Obviously, kgkm;q;� � kgkm;1;X holds if � is a P-measure. Fordetails see Adams (1975). Gallant and Nychka (1987) contains some results on interleavingfor weighted norms with X unbounded.By dense one means that for each g in Wm;q;� there exists a sequence of coe�cients f�jgsuch that limp!1 kg � gp(�j�)km;q;� = 0where gp(xj�) = pXj=1 �j�j(x):In this section, we shall take � to be the in�nite dimensional vector� = (�1; �2; :::)and we shall let the context determine when its truncation to a p-vector is intended, �0Gp�for instance. For given �; if gp(�j�) has limit g in �Wm;q;� in the sense above, write g1(�j�).g1(�j�) represents g and denseness implies that every g in Wm;q;� has such a representation;� is not necessarily unique. It would be unnatural to consider a regression on f�jg underthe second paradigm if these conditions were not in force for some choice of m; q; and �.If �0�̂ is to estimate D�go(xo) then�0�̂ = D�gp(xoj�̂)= pXj=1 �̂jD��j(xo):12



In the motivating examples it is the case thatD��j 2 spanf�1; � � � ; �pg:As an example, a typical term of a multivariate Fourier expansion is cos(k0x) where k is anM -vector with integer elements and(@2=@x21) cos(k0xo) = �(k1)2 cos(k0xo);similarly for most polynomial expansions such as the Hermite.Due to these considerations, we shall consider the case when�0� = D�gp(xoj�)for some xo in X and the elements �j of � are increasing at some known polynomial rate.The case when �j is decreasing with j is not of much interest because simpler methods ofproof would yield stronger results. This situation would arise, for example, if the functionalR fgo d� were the object of interest and f; go 2 Wm;q;�.Centering the estimate about the object of interest, rather than the conditional expecta-tion of �0�̂; we have�0�̂ �D�go(xo)pV ar(�0�̂jfxtg) = RelErr(�0�̂jfxtg) +RelBias(�0�̂jfxtg)where RelBias(�0�̂jfxtg) = E(�0�̂jfxtg)�D�g1(xoj�on)pV ar(�0�̂jfxtg) :Thus, a veri�cation of asymptotic normality requires both the results of the previous sectionand a determination of the rate at which the relative bias decreases.The behavior of the relative bias is intimately related to the truncation errorTp = kg1(�j�on)� gp(�j�on)km;1;Xinherent in the series expansion f�jg. To illustrate, if g mapping <M into < is in Wm;q;�where � puts its mass on X = �Mi=1[�; 2� � �] and gp(�j�) is a multivariate Fourier seriesexpansion of degree K then p � KM and for any q with 1 � q � 1; and any small � > 0the order of the truncation error is Tp = o(K�m+`+� ) (Edmunds and Moscatelli, 1977). If,13



instead, g 2 W1;q;� (which implies g is in�nitely many times di�erentiable) then Tp is rapidlydecreasing. In these two examples, there is no dependence of g on n. Tp does not dependon n which is to say that the condition above is uniform in n. Additional structure such asgn 2 �G = fg : kgkm+1;1;X � Bg would be required to obtain the requisite uniformity forthese examples when a dependence on n is permitted.We have considered two paradigms, the �rst where gon is put equal to gp(�j�on) so as to forcethe relative bias term to zero leaving the relative error as the only concern, and the secondwhere gon is put equal to g1(xj�o). As alluded to above, one might want to entertain a thirdparadigm where gon is moved slowly away from some leading special case as n increases. Forinstance, in demand analysis, one might want to let gon drift slowly away from the Translogmodel. The e�ect would be to move Tp to zero with p faster than the natural rate of the seriesexpansion. This is completely analogous to the use of Pitman drift to obtain asymptoticapproximations to the power of test statistics. It would also allow one to break free ofthe con�nes of Stone (1980) regarding the inherent limits of multivariate nonparametricestimation. Our results are general enough to accommodate this third paradigm.SETUP 2 To summarize, we shall study the limiting behavior of the relative bias termRelBias(�0�̂jfxtg) = E(�0�̂jfxtg)�D�g1(xoj�on)pV ar(�0�̂jfxtg)when �0� = D�gp(xoj�); the elements �j of � increase at some known rate with j; the dataare generated according to yt = gon(xt) + et t = 1; 2; � � � ; n:as described in Setup 1, and the sequence fTpg of truncation errorsTp = kg1(�j�on)� gp(�j�on)km;1;Xdeclines at a known rate with p for some m � j�j. 2We begin by establishing two results, a lemma and a theorem. The �rst relates the bias tothe truncation error and conditional variance. The second relates the maximum eigenvalue14



of Gnp to the maximum eigenvalue of Gp to get an upper bound on �max(Gnp). It derives itsrelevance from the inequalitynV ar(�0�̂jfxtg) = �0(G�1np )� � �0�=�max(Gnp) = [�0�=B(p)][B(p)=�max(Gnp)]which bounds the conditional variance from below.LEMMA 4 RelBias(�0�̂jfxtg) � pnTpn2 + 1=p[nV ar(�0�̂jfxtg)]o.Proof ��n = E(�̂jfxtg) minimizes kgp(�j�)� gonk0;2;�n over <p where �n denotes the empiricaldistribution of fxtgnt=1.jE(�0�̂jfxtg)�D�g1(xoj�on)j� jE(�0�̂jfxtg)�D�gp(xoj�on)j+ jD�gp(xoj�on)�D�g1(xoj�on)j= j�0(��n � �on)j+ jD�gp(xoj�on)�D�g1(xoj�on)j� j�0(G�1=2np )0(G1=2np )0(��n � �on)j+ Tp� n[�0G�1np �][(��n � �on)0Gnp(��n � �on)]o1=2 + Tp= p[nV ar(�0�̂jfxtg)]kgp(�j��n)� gp(�j�on)k0;2;�n + Tp:kgp(�j��n)� gp(�j�on)k0;2;�n� kgp(�j��n)� gonk0;2;�n + kgon � gp(�j�on)k0;2;�n� kgp(�j�on)� gonk0;2;�n + kgon � gp(�j�on)k0;2;�n� kgp(�j�on)� gonkm;1;X + kgon � gp(�j�on)km;1;X� 2Tp: 2We can now state and prove the main result of this section; keep in mind that in mostapplications B(p)=�max(Gp) will be a polynomial in p.THEOREM 4 If pn satis�esB(pn)=�max(Gpn) � n
 0 � 
 < 1=2pn � n� 0 � � < 1 � 2
then P [B(pn)=�max(Gn;pn) < (2=3)n
 in�nitely often] = 0:15



Proof Suppose supf2Fpn jEnf � Ef j � n�
=2. There is an f = (�0�)2=B(pn) in Fpn suchthat �max(Gn;pn)=B(pn) = Enf whence�max(Gn;pn)=B(pn) = En(�0�)2=B(pn)� E(�0�)2=B(pn) + n�
=2� �max(Gpn)=B(pn) + n�
=2� (3=2)n�
 :Thus, supf2Fpn jEnf � Ef j � n�
=2 implies �max(Gn;pn)=B(pn) � (3=2)n�
 . The contrapos-itive is B(pn)=�max(Gn;pn) < (2=3)n
 implies supf2Fpn jEnf � Ef j > n�
=2. ThusP [B(pn)=�max(Gn;pn) < (2=3)n
 i.o.]� P ( supf�Fpn jEnf � Ef j > n�
=2 i.o.):Apply Lemma 3. 2THEOREM 5 If pn satis�esB(pn)=�max(Gpn) � n
 0 � 
 < 1=2pn � n� 0 � � < 1 � 2
thenP�RelBias(�0�̂jfxtg) > pnTpn2 +p[(3=2)n�
 ]p[B(p)=�0�]o in�nitely often� = 0:Proof By Lemma 4 and the inequality immediately preceding Lemma 4RelBias(�0�̂jfxtg) � pnTpn2 +p[�max(Gnp)=B(p)]p[B(p)=�0�]oBy Theorem 4, for almost every realization of fxtg there is an N such that n > N impliesp[�max(Gn;pn)=B(pn)] � p[(3=2)n�
 ]. 2Note that B(p)=�max(Gp) � 1: Thus if [B(p)=�0�] is bounded 
 = 0 is the least stringentchoice in an application of Theorem 5. 16



4 ConclusionsWe conclude with an application. The most interesting case is rapidly decreasing �min(Gp)because it is representative of the motivating examples cited in Section 1. For speci�city,let the smallest eigenvalue of X 0X=n decrease exponentially as �min(Gp) = e�ap where a ispositive, which is a rapidly decreasing sequence. Also, let B(p) = �0� = p. With thesechoices, Theorem 3 admits rules of the formlog[B(p)=�min(Gp)] = ap+ log(p) = � log(n)with � in the interval 0 < � < 1=2. Since B(p)=�0� is bounded and B(p)=�max(Gp) � 1 forall p; the relevant value of 
 in Theorem 5 is 
 = 0. With this choice, the bound on therelative bias given by Theorem 5 is proportional to pnTp. Substituting for n using the rulefor p above we have pnTp = [pe�p]1=(2�)TpIf this term is to decrease, the truncation error of the series expansion Tp must decreaseexponentially with p.Within the second paradigm, this severely restricts the class of functions go that admitof asymptotically normal estimates. As seen from the examples, in many instances theimplication of this restriction is that go must be a very smooth function. However, in manyapplications this restriction may be more palatable than the boundary conditions one wouldhave to accept in order to slow the rate at which the smallest eigenvalue of X 0X=n decreases.Moreover, in some applications, notably neural networks, one does not have the option ofmodifying the expansion or assumptions and must accept the problem as posed.5 ReferencesAdams, Robert A. (1975), Sobolev Spaces, New York: Academic Press.Andrews, Donald W. K. (1988), \Asymptotic Normality of Series Estimators for VariousNonparametric and SemiparametricModels," Cowles Foundation Discussion Paper No.874, Yale University. 17
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