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Abstract

This paper examines if experience from entry in one market can potentially enhance profitability
at a future market opportunity for a related product. We formulate and estimate a dynamic
game of entry in which forward looking firms make decisions not just based on present benefits
of past entry but also anticipating potential future benefits of current entry. Dynamic spillovers
of entry are incorporated through a firm specific unobservable (to the researcher) cost that
depends on past entry decisions. The unobserved costs may also be serially persistent. Thus,
the model allows for firm specific unobserved heterogeneity that evolves based on firm actions.
The challenge of estimating a dynamic game with serially correlated unobserved state variables
subject to endogenous feedback is overcome by embedding a particle filter based technique in
a Nested Fixed Point Algorithm. Using an application to a stylized model of entry in the
generic pharmaceutical industry we underscore the motivation for the model specification and
the methodology developed. Our estimates imply positive spillover effects of entry. Moreover,
these spillovers suggest heterogeneity not just across firms but also within firms over time based
on their history of entry decisions. Our results illustrate that entry may potentially provide
firms with additional strategic advantage in later markets, and that entry spillovers may be an
important factor to consider in the equilibrium evolution of the generic drug industry.
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1 Introduction

One of the most significant decisions with long term implications for itself and its rivals that a

firm makes is whether or not to enter a new market. Moreover, this decision can be drastically

different in a dynamic setting when entry opportunities occur repeatedly over time from that in a

static environment. In such a setting there may be dynamic spillovers of entry on profitability in

related future markets, i.e., experience gained from entering a market could enhance profitability

when entering markets for related products in the future. In the presence of dynamic spillovers

a firm with a long term perspective may even enter a market when the current opportunity is

unprofitable. This can happen if the entry experience leads to greater cumulative profitability from

the markets that the firm enters subsequently. Consequently, a forward looking firm’s decision to

enter a product market may be determined not just by expected profits in that market but also by

the effect of the current entry decision on future profitability in related product markets.1

In this paper we analyze the dynamic spillover effects of entry decisions of firms on future

market performance. In order to do this we formulate and estimate a dynamic game that incorpo-

rates spillover effects of current entry on future latent (to the researcher) costs, and consequently

future entry decisions. Hence, spillovers imply that heterogeneity among firms arises based on

the history of their actions.2 Given the potential spillovers of entry on latent costs, the model

needs to accommodate unobserved state variables that are endogenous to firm actions and possibly

serially correlated. We address the methodological challenge of estimating such a model using a

particle filter based technique. Although, there have been substantial recent developments in the

empirical literature on estimation of dynamic games, incorporating unobserved (to the researcher)

state variables that are serially correlated and endogenous remains prohibitively difficult (see e.g.,

Aguirregabiria and Mira (2009)). We illustrate our method with an application to the generic

pharmaceutical industry.

In contrast to static entry models, our approach allows for, and distinguishes between the

dynamic long run and static short run incentives faced by forward looking strategic firms. It is

particularly important to incorporate both these incentives because the the entry threshold in the

1Consider for example the decision of Rupert Murdoch’s (then nascent) Fox network to enter the market for
broadcasting NFL football games on TV in 1993. At that time it was estimated by industry analysts that Fox
would lose between $500 and $700 million on its bid if it were successful in acquiring NFL broadcasting rights.
The conjectured rationale for this entry decision was that it helped Fox build a reputation and loyalty. As an
industry insider explained “Fox needed to establish that it was willing and able to compete with the three established
networks...Football gave them instant credibility in that area. It was through sports that a lot of viewers got their
first glimpses of Melrose Place or The Simpsons or 90120. From that standpoint it was worth it. We might not have
the X-Files if not for football on Fox (Anand and Conneely (2003a), p. 1).” Ex post, back-of-envelope calculations
suggest that the bid price was fair and even conservative; in other words, the anticipated cross-product spillovers
were large and relevant (Anand and Conneely (2003a; 2003b)). Another related example is in the M&A context of
learning in alliances by firms that enter multiple ones (Anand and Khanna (2000)). In this case there are some firms
that are serial acquirers with the strategy of entering a new sector by first acquiring a “platform” company with the
explicit intention of expanding with “bolt-on” acquisitions.

2See Shen and Villas-Boas (2010) for a recent theoretical paper that also explores entry decisions of forward looking
firms in dynamically evolving markets.
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dynamic context is very different from that in a static context. In a dynamic setting, firms have

an incentive to enter even if they make losses in the short run as long as entry raises the present

discounted value of the stream of expected future profits in the long run. Such dynamic incentives

are ignored by static models which require that a firm enter only if the current profits are non-

negative. In the absence of incorporating such dynamic long run incentives it would not be possible

to estimate the dynamic spillovers of entry if these existed.

Our research is related to the work of Keane (1994) that used particle filters or sequential

importance sampling to develop a computationally feasible simulation based estimator for limited

dependent variable panel data models in the presence of serially correlated errors. A special case

of that estimator is the well-known Geweke-Hajivassiliou-Keane (GHK) estimator (see e.g., Ha-

jivassiliou, McFadden, and Ruud (1996), Geweke and Keane (2001)) that arises for a particular

choice of importance sampling densities. Another strand of related research is the work on dynamic

linear models that has employed Kalman-Filters (e.g., Naik, Raman, and Winer (2005), Sriram,

Chintagunta, and Neelamegham (2006), Jap and Naik (2008), Bass, Bruce, Murthi, and Majum-

dar (2007), Bruce (2008)). The important difference is that Kalman-Filters require the dynamic

relationships to be linear and error terms to be Gaussian whereas our paper allows for non-linear

relationships and non-Gaussian error terms. The critical distinction is that the particle filter in our

research embeds the solution to a dynamic game.3 Moreover, the unobserved state variable (i.e.,

cost) allows for endogenous feedback in contrast to most particle filter models in which unobserved

variables evolve exogenously.

There is a long history of research on spillovers of experience and broadly speaking learning

curves in various contexts and disciplines, e.g., Ebbinghaus (1913), Wright (1936), Arrow (1962),

Bass (1980) and Dolan and Jeuland (1981). However, it has been difficult to estimate spillovers

in a dynamic oligopolistic context that explicitly accounts for strategic interaction between firms.

An exception is the work of Benkard (2004) who incorporates learning by doing in a dynamic

oligopoly model to examine such experience spillovers in the manufacture of aircraft, specifically,

the Lockheed L-1011.

There is an extensive literature on estimating discrete games. Static games of entry and strategic

firm interaction have been estimated among others by Bresnahan and Reiss (1991b), Bresnahan

and Reiss (1991a), Berry (1992), Scott-Morton (1999), Mazzeo (2002), Seim (2006), Zhu and Singh

(2009), Orhun (2013), Vitorino (2008), Datta and Sudhir (2009) and Ellickson and Misra (2008). In

this literature the paper most closely related to ours is the work of Jia (2008) who examines entry

spillovers across multiple markets in a static duopoly context.4 Dynamic models of entry have been

analyzed by, e.g., Hitsch (2006), Ching (2010a), and Shen (2010). However, to our knowledge there

3This is through the measurement or observation equation which in our case is the decision to enter and requires
the solution of the dynamic game to compute. Details are provided in Section 5.

4As Jia (2008) states, her paper, “is not applicable to oligopoly games with three or more chains (pp. 1265-1266)”
because the model requires that one firm’s gain is the other firm’s loss, an assumption which cannot be satisfied in
an oligopoly model like ours with more than two firms. The market chains in the context of Jia’s model correspond
to firms in our model.
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is no empirical work on incorporating the dynamic spillovers of entry and the consequent serial

correlation in the underlying pay-off relevant state variables in game theoretic oligopoly models.

Analysis of supply side decisions in the generic pharmaceutical firm industry has been a topic

of considerable empirical research (e.g., Reiffen and Ward (2005), Ching (2010a)). The benchmark

paper in modeling entry in to multiple markets remains Scott-Morton (1999) that estimates a static

entry model to show that entry can be predicted by a firm’s organizational experience, size of the

market and whether the entry opportunity is similar to the firm’s existing portfolio of drugs.5

Our work extends this research along three significant dimensions. First, we recognize linkages

across different markets because entry into one market may provide an advantage in later markets.

Second, if such linkages exist then firms may anticipate such advantages and incorporate this into

their decision making, i.e., make decisions not just based on present benefits of past entry but also

anticipating future benefits of current entry. Third, we allow for firms to be asymmetric and their

unobserved type to evolve over time. A recent paper by Amisano and Giorgetti (2013) also analyzes

the dynamics of entry by pharmaceutical firms. Using a “reduced-form discrete-choice panel data

framework (p. 667)” they estimate a dynamic probit model to examine the determinants of entry

such as firm size, intensity of competition, demand conditions, and proxies for sunk cost in multiple

markets. Like our model the paper allows for linkages between past and current entry, and across

the markets for different products. However, an important distinction is that in contrast with

our work the strategic nature of repeated and dynamic oligopolistic competition between forward

looking rival firms in not explicitly incorporated in the model.

Our research also contributes to the wider literature on the estimation of games. There is

a growing literature on estimating static6 and dynamic7 games of incomplete information. This

literature has mostly relied on a two step estimation strategy building on the Conditional Choice

Probability (CCP) estimator of Hotz and Miller (1993). The two step estimation strategy requires

the assumption that there is no market or firm level unobserved heterogeneity other than a random

shock that is distributed IID across both time and players. This assumption is restrictive because it

rules out unobserved dynamics in the latent state variables. It also rules out any private information

5Although, specific examples are hard to find (presumably due to firms not wanting to publicize these for propri-
etary reasons), there exists corroborating anecdotal evidence in the empirical literature on the existence of spillovers
in the pharmaceutical industry (e.g., Scott-Morton (1999), Amisano and Giorgetti (2013), Conti and Berndt (2013)).
Such spillovers may arise on the supply side due to fixed costs of investments that may have to be made as part of the
regulatory approval process. For example, some drugs are controlled substances that require a large and sophisticated
security infrastructure to be in place before a firm is allowed to manufacture the drug. However, once this infras-
tructure is in place it can be used in the manufacture of any other drug that is classified as a controlled substance.
Another example is liquid active pharmaceutical ingredients (APIs) that have to be sterilized using filtration. The
packaging of these into a final “fill and finish” product requires aseptic and automated filling in to vials and syringes
by keeping human intervention to a minimum. Such automated aseptic “fill and finish” infrastructure is a fixed cost
but can be used across various liquid APIs once in place. “Specialized expertise and automated, aseptic fill and finish
procedures likely provide ANDA holders significant cost advantages in injectable drug production due to economies
of scope (Conti and Berndt, p. 5, 2013).”

6See e.g., Rysman (2004), and Bajari, Hong, Krainer, and Nekipelov (2010).
7See e.g., Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007),

Pesendorfer and Schmidt-Dengler (2010), Bajari, Chernozhukov, Hong, and Nekipelov (2007), and Shen (2010).
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that a player might have about competing firms that the researcher does not have. Aguirregabiria

and Mira (2007) and Arcidiacono and Miller (2011) have extended the literature on two step

CCP estimation of dynamic discrete models using finite mixture methods to allow for discrete

forms of unobserved heterogeneity. However, these methods are are tractable only for market level

unobserved heterogeneity. In contrast, our method is applicable even when the unobserved variable

is continuous, and specific to the agent and not just at the market level. Furthermore, our method

allows for the unobserved variable to be endogenous to past actions, i.e., endogenous feedback. As

far as we know, games of complete information have only been estimated in a static context, e.g.,

Tamer (2003), Ciliberto and Tamer (2009) and Bajari, Hong, and Ryan (2010). The complete

information assumption allows substantial unobserved heterogeneity at the level of the firm. These

games typically require the use of a combinatorial algorithm to search for an equilibrium instead of

the continuous fixed point mapping used in incomplete information models to compute equilibria.

We believe we are the first to estimate a dynamic game of complete information.

Our paper also contributes to the literature on incorporating unobserved heterogeneity in the

estimation of discrete dynamic programming models. In the single agent framework, there is a well-

developed literature that allows for time invariant unobserved heterogeneity, e.g., Keane and Wolpin

(1997), and a smaller literature that allows for serially correlated unobserved endogenous state

variables (e.g., Erdem and Keane (1996), Khwaja (2010)). A Bayesian approach for single agent

discrete dynamic programming models with unobserved state variables that are serially correlated

over time has been developed by Imai, Jain, and Ching (2009), and extended by Norets (2009).

These papers use MCMC for integrating out the unobserved state variables. In contrast, we use

particle filters (or sequential importance sampling) to integrate out the unobserved state variables

and use MCMC to iterate through the parameter space in estimating the model. In addition we are

the first to apply this method to estimate a discrete dynamic game with multiple agents whereas

the previous literature has focused on single agent models. Incorporating such strategic interactions

poses a substantial computational burden in solving and estimating the model.

In related work (Gallant, Hong, and Khwaja (2014)), we address several issues not analyzed in

this paper. We build on the current paper to examine theoretical properties of a Bayesian approach

using a particle filter to estimate dynamic models with small and large number of players. More

specifically, we derive an unbiased estimate of the likelihood within a MCMC algorithm which

verifies that the method is exact for Bayesian inference. A key variation in the MCMC algorithm

in Gallant, Hong, and Khwaja (2014) is that at each repetition of the chain the initial seed that

determines all random draws within the filter is proposed along with the parameter values. This

has the computational advantage that it reduces the number of simulation draws that are required

in order to evaluate the likelihood. The algorithm in Gallant, Hong, and Khwaja (2014) is closer

to the work of Flury and Shephard (2010). In contrast, these aspects are not present in this

paper, which uses instead an algorithm similar to that also found in Fernandez-Villaverde and

Rubio-Ramirez (2005). In addition, Gallant, Hong, and Khwaja (2014) shows that the algorithm
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developed works not just for dynamic entry models but also for Ericson and Pakes (1995) style

models. In particular, when used in a setting with a large number of players with the solution

concept of Oblivious Equilibrium developed by Weintraub, Benkard, and Van Roy (2008).

We estimate the model using data from generic drug industry. The generic pharmaceutical

industry provides a good context for applying our model and method because of the following

characteristics: (i) there is a high frequency of new entry opportunities that arise in sequence, (ii)

there are potential economies of scope, e.g., due to working with a particular ingredient, therapeutic

class, or form of drug (e.g., oral liquid or liquid injectable), possibly leading to dynamic spillovers of

experience (see e.g., Scott-Morton (1999), Amisano and Giorgetti (2013)), (iii) it is an oligopolistic

industry with firms that ostensibly take a strategic and long-term perspective in making decisions8

and (iv) pay-offs are relatively big as are the fixed costs of entry so entry decisions have important

consequences. Our estimates imply positive spillover effects of entry. Moreover, these spillovers

lead to heterogeneity not just across firms but also within firms over time based on their history

of entry decisions. Our spillover estimates underscore the motivation for the model specification

and the methodology developed, and illustrate that entry spillovers may be a potentially important

factor to consider in the equilibrium evolution of the generic drug industry.

In summary, two important contributions of our paper that we highlight through the empirical

application to real data are: (1) developing a framework to estimate dynamic discrete games

in which unobserved firm states evolve based on past actions, and (2) bridging the literatures

on estimation of linear models with latent states using a Kalman-Filter (which is a special case

of particle filters) and dynamic structural models. More generally, our method is applicable to

estimating dynamic games in which (i) the choice set is discrete in nature, e.g., entry and exit,

expansion or reduction of product categories, introduction of new or discontinuation of old brands,

technology adoption or upgrades, relocation, start up or shut down decisions of stores, firms, or

factories etc., (ii) when there are serially correlated unobserved endogenous state variables (either

discrete or continuous), and (iii) an algorithm to solve the game is available.

2 Data and Background

The generic drug industry is a very big and important part of the U.S. pharmaceutical market, e.g.,

it comprised about 65% of all prescriptions and about $58.5 billion in sales in 2007. In this paper

we use the unique data assembled by Scott-Morton (1999) on the entry decisions of generic drug

manufacturers from 1984 to 1994.9 This time period is particularly interesting because of a big

change in regulation, i.e., the 1984 Waxman-Hatch Act which lowered barriers to entry for generic

firms by permitting Abbreviated New Drug Applications (ANDAs). This vastly increased entry in

8It is possible that there may be exceptions to this, e.g., among fringe firms. However, given that our focus is on
dominant firms this framework may be a plausible place to start. Moreover, we have also estimated a version of the
model for boundedly rational firms given the alternative possibilities.

9We are grateful to Fiona Scott Morton for providing us with her data, and to Derek Gurney for answering our
questions about the data.
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to the generic market as it relaxed the requirements for generic firms to gain FDA approval. Generic

firms did not have to repeat all the tests that the manufacturer of the pioneer branded product

had undertaken but instead were only required to show that the generic product was bioequivalent

and had identical characteristics in strength, dosage form and route.

We refer the reader to Scott-Morton (1999) for details of the data set and the institutional

environment and just summarize the facts relevant for our study here. In particular we emphasize

the features of the industry that make it attractive for applying our model. (i) The preparation of

an ANDA takes months to years because it requires the existence of manufacturing facilities that

need to be inspected and approved by the FDA prior to launch of full scale operations. (ii) The

costs of submitting an ANDA can range from $250,000 to $20 million while the average revenues

for generic firms in one-firm markets are $10 million. Thus, the cost of submitting an ANDA is

very heterogeneous and high, even though it is much less than that for a new drug invention. (iii)

Furthermore, the size and heterogeneity of entry cost relative to the size of market revenue lead to a

small number of entrants supported by each market. (iv) In addition, the FDA does not reveal when

and from whom it receives ANDA applications. (v) Announced entry is very rare, because firms

do not want to signal the common market value. They also fear that the delay in the approval

will invite competition. (vi) There are few late sequential movers who withdraw in response to

rivals’ approvals. (vii) Simultaneous moves in a dynamic context are an important feature of

this industry. These characteristics of the data are consistent with our modeling assumption of a

dynamic simultaneous entry game among a small number of competing pharmaceutical firms in

which firms have to face substantial competition after they incur the cost of entry.

In constructing our estimation sample we use the following information for each market op-

portunity: ANDA submission date, ANDA approval date, characteristics of drug (i.e., ingredient,

concentration, route, form), characteristics of drug markets (i.e., drug therapeutic class, patent

expiration date, revenue of brand name drug the year before expiration), characteristics of firms

(i.e., parent or subsidiary firm, whether firm was indicted in a bribery scandal). Also of note is that

in 1989 there was a “generic scandal” in which some FDA reviewers were caught accepting bribes

to expedite ANDAs, and some firms were found to have used the original branded drug in place of

their own in the FDA review process. Hence, in estimating the model we focus on the period after

the FDA bribery scandal in 1989 because of the general upheaval and uncertainty in the generic

drug industry surrounding the scandal period.

We only study ANDAs for generic drugs that are orally ingested in the form of pills. Thus, we

focus on spillovers from experience in producing drugs in the form of oral solids. In this category,

for the sample period 1990-94, there are 40 market openings for which there is no missing revenue

information and 51 firms who entered at least once. We order markets according to the date when

the first ANDA was received by the FDA for a particular market opportunity. Each market category

is defined as a unique combination of primary ingredient, patent expiration date and total revenue
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for the branded drug for the last year before patent expiration.10 The top ten dominant firms in the

sample after 1989 are (in descending order of dominance): Mylan, Novopharm, Lemmon, Geneva,

Copley, Roxane, Purepac, Watson, Mutual and Lederle. The top firm, Mylan, entered 45% of the

markets, the top two 48%, the top three 55%, the top four 60%, the top five 65%, and the top ten

73%. Individually, Novopharm entered 28%, and Lemmon and Geneva entered 25% of the markets.

On average 3.3 firms enter a market, with the minimum being one and the maximum being nine

firms. More relevant in the context of our model to be described below, on average 1.2 dominant

firms enter a market. The mean revenue in thousands of dollars is 126,901, the std. dev. is 161,580,

the minimum is 72, and maximum is 614,593. In our estimation we use the log of revenue and in

that case the mean is 10.47, std. dev. is 2.1, minimum is 4.3, and maximum is 13.3.

Table 1 about here

3 Model

In this section we formally describe the dynamic oligopolistic game of entry. Our dynamic model

represents a sequence of simultaneous entry games that are inter-linked because the costs of firms

evolve based on their past entry decisions. Firms maximize profits over an infinite horizon t =

1, . . . ,∞, where each time the market is open counts as one time increment. A market opening is

defined to be an entry opportunity that becomes available to generic manufacturers each time a

branded product goes off patent. Since a time period uniquely identifies a market opening, in what

follows t is used interchangeably to denote a market opening or the time period associated with it.

In the tradition of the literature on dynamic games, the model we formulate is very stylized and

abstracts from a number of rich institutional details described in the previous section.11

The actions available to firm i when market t opens are to enter, Ait = 1, or not enter Ait = 0.12

10Some amount of hand editing was required in constructing the sample, e.g., when the revenue number was
different due to rounding error or there was a spelling error in the primary ingredient of the drug.

11For example, we do not model the diffusion of a product in the market over time due to consumer learning (see
e.g., Ching (2010b)). Modeling the diffusion of a product over time would lead to two time indices, one for the
sequence of product markets opening over time and the other for profits over time within a product market. For
computational feasibility, we abstract from this and assume that once a firm enters a market it realizes all the payoffs
associated with that product market as a lump sum at the date of entry. Moreover, our data is not conducive to an
analysis of such diffusion of a product over time. Similarly, we do not model the decision of branded manufacturers
to introduce new drugs and create markets, or to pre-empt entry from generics (see e.g., Ching (2010a)). As is also
the convention in this literature, we assume entry decision for each firm are sequential and abstract from multiple
simultaneous decisions or a portfolio of decisions made by a firm because that would make the model computationally
intractable. We discuss this more below in Section 6. Also, as in Scott-Morton (1999) we don’t model the decisions
of pioneer brands to pre-empt entry of generics in different ways, e.g., by using legal means such as “patent thickets”
or by introducing its own generic version or partnering with another generic manufacturer. Our model is primarily
motivated by our focus on estimating the spillover effects of entry on future profitability and we leave enriching it
with such additional features to future work.

12It should be noted that we are modeling entry in to product categories, not firm entry in to an industry. As
stated by Scott-Morton (1999, p. 423), “...entry by a particular firm is a fairly irreversible decision; the costs that
can be recovered upon exit from one drug (and not a factory) are close to zero.” Moreover, there are no exits in
our data, which is a sub-sample of the Scott-Morton (1999) data. Our dynamic model builds on her static set up
and she does not model exits either. Furthermore, even if a firm were to exit a category it could presumably still be
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Empirically this is determined by whether a firm submits an ANDA or not. There are I firms in

total so that the number of entrants in market t is given by

Nt =

I∑
i=1

Ait (1)

The primary source of dynamics is through the evolution of (latent) firm costs with endogenous

feedback from past actions. The firm specific total costs for the current entry opportunity, Cit, are

unobserved to the researcher. These are determined in part by past entry decisions and random

shocks that may affect each firm’s costs. The past entry decisions account for spillovers of past

industry experience on costs at the current entry opportunity. We will follow the standard conven-

tion that a lower case quantity denotes the logarithm of an upper case quantity, e.g., cit = log(Cit).

The log cost of a firm is assumed to follow a stationary autoregressive process of order one to allow

for serial persistence in firm level costs. The equation governing the log cost of firm i at market t is

cit = µc + ρc(ci,t−1 − µc)− κcAi,t−1 + σceit, (2)

where eit is a normally distributed shock with mean zero and unit variance, σc is a scale parameter,

κc is the entry spillover or immediate impact on cost at market t if there was entry in market t− 1,

µc is a location parameter that represents the overall average of the log cost over a long period

of time. It should be noted that a priori the model allows for both positive (κc > 0) or negative

spillovers (κc < 0). In contrast with the positive spillovers discussed earlier, negative spillovers

may arise due to capacity or resource constraints. As the resources required for entry are stretched

beyond their limits it may not be possible to expand the pool of resources that can be devoted to

additional projects easily. For example, a team that is working on formulating a particular drug

or guiding it through the FDA approval process may only be able to work on a small number of

projects at a given time and it may not be easy to hire additional members for the team or expand

the number of teams.

The autoregressive parameter ρc represents the degree of persistence between the current cost

and its long run stationary level. The cost process exhibits state dependence on lagged entries, and

also accumulates heterogeneous random cost shocks σceit over time. The model allows for unob-

served heterogeneity between firms through the effects of current decisions on future latent costs.

Alternatively put, heterogeneity arises in the model based on endogenous feedback of past actions

of the firms. Instead of specifying unobserved heterogeneity as a time invariant firm specific fixed

effect we employ a more general model that allows for serially persistent unobserved heterogeneity

in cost that varies over time based on past actions.13

operational in other product categories. Also, if modeling another empirical setting in which exits are observed then
extending our framework to allow for exits would be potentially feasible and interesting.

13In an even richer specification not reported here we estimated a version of the model that allowed for firm
specific µi,c. A statistical test could not reject the equality of the µi,c. We demonstrate why this may be the case
in Section 6 below. Thus, we estimate the more parsimonious version in the paper with µc. However, in estimating
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We assume, as in Berry (1992) and Scott-Morton (1999), that this is a game of complete

information. As far as the researcher is concerned the log cost can be decomposed into a sum of

two components, a known component (or observable to the researcher based solely on past actions),

ck,i,t, and a component unobservable to the researcher, cu,i,t, as follows:

ci,t = cu,i,t + ck,i,t (3)

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (4)

ck,i,t = ρc ck,i,t−1 − κcAi,t−1 (5)

From these equations it is seen that the location parameter µc can be interpreted as the stationary

long run mean of the unobservable portion of log cost and that the total impact of entry spillover

at market t of a firm’s past entry decisions is ck,i,t = −
∑∞

j=0 ρ
jκcAi,t−j−1. The classification of

the known (or observed) and unobserved components of the cost process is convenient for the

implementation of the particle filtering algorithm described below in Section 5.14 This convention

avoids insurmountable computational difficulties in solving for the equilibrium of the model that

would arise if unequal spacing between market openings were assumed. Furthermore, in view of

the excellent fit to the data that we are able to achieve (see Section 7 below) this timing convention

appears reasonable a posteriori.

The total (lump sum) revenue to be divided among firms who enter a market at time t is

Rt = exp(rt), which is realized from the following independent and identical distribution,

rt = µr + σreI+1,t , (6)

where eI+1,t is normally distributed with mean zero and unit variance. In equation (6), µr is

a location parameter that reflects the average total revenue for all the firms across all market

opportunities, and σr is a scale parameter. In our data the measure we have for total revenue is

from the last year the brand name drug was on patent. We interpret this value as being exogenously

determined solely by the firm manufacturing the branded product prior to the entry decisions of the

the model we do allow for heterogeneity in the initial costs ck,i,−1 of firms based on the history of their actions
using a pre-estimation sample. Section 4 provides details. We find firm specific heterogeneity in the initial cost is
sufficient to capture the key features of the data as described in Section 7. In addition, we incorporate structural
state dependence through the lagged entry decisions. We account for state dependence and unobserved heterogeneity
directly by incorporating both in our model explicitly. The difference in capabilities for each firm can arise from
either endogenous path-dependent unobserved heterogeneity or time invariant firm fixed effects. Given that we could
not reject the equality of firm specific µi,c our approach emphasizes the former in favor of the latter. Although, our
approach does accommodate some degree of time invariant firm fixed effects through the heterogeneity in the initial
conditions (see Equations (3), (4), and (5)).

14In modeling the dynamic cost process (equation (2)) we focus on the sequence of market openings and not
duration between the openings. An extension would be to model this duration. An implication of our specification in
equations (3)-(5) is that irrespective of the calendar time that has elapsed between any two adjacent market openings,
the cost changes are of the same magnitude. Such an assumption is implicit and common in much of the literature
on structural entry models. Moreover, this is a plausible assumption in our context as in our estimation sample
(described earlier in Section 2) there are 40 openings in the period 1990-94, i.e. on average a market opens every 1.5
months. For the ANDA dates shown in Table 1 the mean interval is 42 days and the standard deviation is 37. In
fact, the time interval between each two adjacent entries appears to be close enough to six weeks to use six weeks as
an approximation for the true interval between entries.
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generic firms, and being proportional to the total discounted value of the revenue flows to generic

drugs after patent expiration. Firms have rational expectations about revenues at future market

opportunities.15

A total of fifty one firms entered the market after the 1989 FDA bribery scandal. Computing a

solution to a dynamic game of strategic interactions between fifty one players is not computationally

feasible.16 Therefore, we consider only the dominant firms. We consider two cases where the

potential entrants are either: (1) the top three or (2) top four dominant firms, i.e., I = 3 or I = 4.

In each case the remaining firms are combined into a category referred to as “other” as described

below. The function that relates the entry decisions of the dominant firms to the fraction of the

market allocated to the other firms is taken as given and is anticipated by the dominant firms when

considering entry. The procedure we use to implement this is described in detail next.

In the spirit of the literature on entry games (e.g., Scott-Morton (1999), Mazzeo (2002), Seim

(2006), Zhu and Singh (2009)) we define a reduced form profit function for a dominant firm i at

time t which takes the following form,

Ait (R
γ
t /Nt − Ci,t) . (7)

15Following the Scott-Morton (1999) set up we take the revenue in the last year before patent expiration for a
branded product as a proxy of the size of the market for the generic entrants after patent expiration. As discussed
below our model allows for the share of revenues to be determined by the number of generic entrants in equilibrium.
Our assumption that firms can anticipate how much revenue a given entry opportunity offers is reasonable if the
following are valid: (i) firms are not observed exiting in the data, and (ii) the markets tend not to come to an
unanticipated end. These conditions are plausibly true in our empirical setting. We do not observe any exits in our
data as stated above. Typically, manufacturers of branded products develop the market (e.g., through advertising
or detailing to physicians) prior to patent expiration. After the patent has expired the incentives for a branded
manufacturer to continue such promotional activities is substantially reduced. Furthermore, generic entrants also do
not tend to carry out such promotional activities after patent expiration. It is also worth noting that FDA drug
approval process is quite long, taking multiple years, and once drugs are approved it is known when their patent will
expire. Additionally, the market for a particular generic product typically (with some exceptions) tends to have a
finite lifetime until a more newly developed branded substitute product goes off patent and is available in a generic
version. This can also be reasonably anticipated because the date a patent expires is publicly available. Thus, we
think it is reasonable to assume that firms can anticipate and form expectations about how much revenue an entry
opportunity offers based on the revenue of the branded product before patent expiration. We thank an anonymous
referee for pointing out these underlying conditions needed for our assumption about anticipation of revenues at an
entry opportunity to be plausible.

16See Weintraub, Benkard, and Van Roy (2008) for a discussion of the concept of Oblivious Equilibrium (OE) and
the associated method to compute the solution to dynamic games when the number of players is very large. In the OE
approach firms ignore the current states of their rivals and make decisions instead based on the long run equilibrium
aggregate state of the industry. Since we want to model strategic interaction between firms this makes using the OE
approach less appealing for us. Given the trade-off in allowing all 51 firms to interact strategically (which would
not be computationally feasible) or adopting the OE approach that abstracts from strategic interaction, we have
developed a model of strategic interaction between a subset of dominant firms that were more active and had greatest
number of entries, while treating the less active firms with lower number of entries as passive participants. Moreover,
as stated below, the top four firms enter 60% of the markets, the top five 65%, and the top ten firms 73%. Also, the
average number of firms that entered any market is 3.3, and the maximum number of firms that enter any market is
nine. Thus, including additional fringe firms does not seem to provide incremental information commensurate with
the additional computational burden that it imposes. See also the recent paper by Benkard, Jeziorski, and Weintraub
(2015) that introduces the concept of Partially Oblivious Equilibrium (POE), extending the OE concept to industries
with high concentration but many players to allow for strategic interaction between a few dominant firms. The POE
approach might be an excellent way to model the generic pharmaceutical industry in future research.
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The firm’s total discounted profit at time t is

∞∑
j=0

βjAi,t+j

(
Rγ

t+j/Nt+j − Ci,t+j

)
, (8)

where β is the discount factor, 0 < β < 1. The firm’s objective is to maximize the present

discounted value of its profit at each time period t taking as given the equilibrium action profiles

of other firms. In the above, Nt is used to denote the number of entering dominant firms. This

is to be differentiated from Na
t , which is used to denote the total number of entrant firms at time

t including both dominant and non-dominant firms. Regressions indicate that logNa
t = b logRt,

with b ≈ 0.092, is a reasonable approximation to the total number of firms that enter a market.

The idea of this regression dates back to Bresnahan and Reiss (1991b) who showed that there is a

close relationship between the number of entrants and the total market revenue. Therefore, when

one of the dominant firms is considering entry, it can anticipate that the revenue available to be

divided among all dominant firms should be larger than the average revenue available to each of

the entering firms, which is logRanticipated ≥ logR − logNa = logR − b logR = log
(
R1−b

)
. These

considerations suggest that a reasonable functional form for with 1− b = 0.908 being a reasonable

lower bound for γ. The upper bound is one.17

The Bellman equation for the choice specific value function, Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt), for

firm i′s dynamic problem at time t is given by

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) (9)

= Ait (R
γ
t /Nt − Cit)

+ β E
[
Vi(A

E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]
,

where by convention −i represents the other players. The choice specific value function represents

the sum of current and future payoffs to firm i from a choice Ai,t at time t explicitly conditioning on

the choices that would be made by other firms A−i,t at time t and with the expectation that firm i

and the other firms would be making equilibrium choices from period t+1 onwards conditional on

their current choices. The expectations operator here is over the distribution of the state variables

in time period t+1 conditional on the realization of the time t state variables and the action profile

at time t. Therefore Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) represents the expected payoff of firm i at stage

17In the reduced form profit function (7), we note that although we are calling the latent variable (Ci,t) firm “cost”
for expositional convenience, it represents any unobserved variable that could have dynamic spillover effects of entry
on profits. For example, the underlying sources of entry spillovers could be factors like learning by doing or economies
of scope or development of distribution networks. This is similar to the unobservable in the reduced form pay-off
function in the literature on discrete games of entry and location (e.g., Scott-Morton (1999), Seim (2006)). The
unobservable could result from either demand or supply side factors and is typically attributed to one or the other
depending on the context or convenience. As stated earlier, the spillover effect estimated in this paper pertains to
experience gained in producing drugs in the form of oral solids. Quantifying other forms of spillovers (e.g., in liquid
injectable drugs), or disentangling supply or demand side sources of these is beyond the scope of this paper and is
left for future research.
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t of the game. The state variables include the firm specific latent costs Ci,t signifying that the

identity of each firm i is relevant.

A stationary pure strategy Markov perfect equilibrium of the dynamic game is defined by a

best response strategy profile (AE
i,t, A

E
−i,t) that satisfies

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt) ∀ i, t, (10)

where AE
i,t is the entry decision of firm i for market t, AE

−i,t the vector of entry decisions of the

other dominant firms.

This is a game of complete information. Hence, if the state, which includes the current cost of

all firms (Ci,t, C−i,t) and total revenue (Rt), is known, then the equilibrium is known. Therefore,

an ex ante value function can be computed from the choice specific value function

Vi(Ci,t, C−i,t, Rt) = Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt). (11)

The ex ante value function satisfies the Bellman equation

Vi(Cit, C−i,t, Rt) (12)

= AE
it

(
Rγ

t /N
E
t − Cit

)
+ β E

[
Vi(Ci,t+1, C−i,t+1, Rt+1) |AE

i,t, A
E
−i,t, Ci,t, C−i,t, Rt

]
,

where NE
t is the number of firms that enter, which can be computed using equation (1), i.e.,

NE
t =

∑I
i=1A

E
it . Equation (12) is different from the Bellman equation associated with the choice

specific value function (equation (9)) as it represents the sum of current and expected future payoffs

to firm i from an optimal choice AE
i,t at time t explicitly conditioning on the equilibrium choices

that would be made by other firms AE
−i,t at time t, and with the expectation that all firms would be

making equilibrium choices from period t+1 onwards. In contrast to equation (9), the expectations

operator here is over the conditional distribution of the state variables in time period t + 1 with

the value function evaluated at the best response strategy profile.

A hurdle we face is multiplicity of equilibria.18 Multiple equilibria may take the form of a

situation where one firm or another can profitably enter but if both enter then each will incur

losses. However, if neither enters then one of them would have an incentive to deviate. To deal

with multiple equilibria we adopt an explicit equilibrium selection rule that is similar to that used

by Berry (1992) and Scott-Morton (1999). In particular, we pick the equilibrium that has the lowest

aggregate cost (C =
∑I

i=1AitCit), i.e., entrants are such that the most profitable production takes

place.19

18In practice we don’t find a large number of multiple equilibria, e.g., in the three firm game the frequency of
multiple equilibria is about 4%. See Section 7 for additional details.

19One justification for this approach is that a firm with lower costs of entry is also more likely to gain approval
from the FDA earlier although this is by no means certain, e.g., Scott-Morton (1999), Ching (2010a). Thus, the
equilibrium selection rule seems a plausible way to deal with the multiplicity issue.
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4 Likelihood Computation

In this section we describe how the likelihood is computed using the solution of the dynamic game

and the MCMC algorithm. The details of the solution method are provided in the Web Appendix.

In principle, we could use either frequentist or Bayesian methods in the analysis because an MCMC

chain can be used to compute the statistics that relate to either approach as shown by Chernozhukov

and Hong (2003). However, our likelihood is nonlinear and is not differentiable making it extremely

difficult to compute and to conduct frequentist inference. Conversely, Bayesian inference is both

theoretically justified and computationally attractive under these conditions. Therefore we apply

Bayesian methods in this paper.

Our estimation strategy is based on a nested approach wherein the solution of the dynamic game

is computed for each evaluation of a likelihood function that depends on both observable and latent

variables. To compute a likelihood that depends only on observable variables in the data, the latent

state variables are integrated out using a particle filter or sequential importance sampling. Using

the likelihood that depends only on observable data, an MCMC algorithm generates draws from

the posterior distribution of the parameters. The broad outline of the computational strategy is as

follows: (1) Generate a parameter value by means of an MCMC algorithm. (2) For that parameter

value, generate values for the latent variable over the sample period by means of the sequential

importance sampler. (3) Solve the dynamic game to compute the equilibrium outcome as function

of the observed and unobserved state variables and the parameter value. (4) Use the equilibrium

outcome generated from the solution to compute a likelihood that depends on the observed data

and latent state variables (at the given parameter value). (5) Integrate out the latent state variables

by averaging the log likelihood over repetitions of the importance sampler to obtain a log likelihood

that depends only observed variables (at the given parameter value). (6) Use the likelihood that

depends only on observed variables to make the accept/reject decision of the MCMC algorithm.

Cycling through steps (1) to (6) generates an MCMC chain that is a sample from the posterior

distribution of the parameters from which the posterior mean, mode, standard deviation, etc. can

be computed. We outline the details next.

Denote the part of the state vector that is unobservable to us by

Xt = (Cu,1,t, . . . , Cu,I,t). (13)

Also, denote the variables that we can observe by

Yt = (Ao
1t, . . . , A

o
It, Ck,1,t, . . . , Ck,I,t, Rt). (14)

As previously, a lower case variable denotes the logarithm of an upper case variable with the

exception that at = At. With these conventions in place, we can write xt = (cu,1,t, . . . , cu,I,t), and

yt = (a1t, . . . , aIt, ck,1,t, . . . , ck,I,t, rt).

We have data for both the pre- and post-scandal periods. The pre-scandal period is indexed

by t = −n0, . . . , 0 and the values of Yt over the pre-scandal period are denoted by Ypre. The
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post-scandal period is indexed by t = 1, . . . , n with values over it denoted by Ypost. While the

scandal changed the market structure thus rendering the pre-scandal data unsuitable for general

estimation, it can still be used for two purposes: First, the pre-scandal entries {Ao
it}0t=−n0

can be

used to compute the last two pre-scandal values ck,i,−1 and ck,i,0 of the observable part of log cost

for each firm. We compute the last two pre-scandal values ck,i,−1 and ck,i,0 for each firm by running

the recursion (5) started at −n0 over the observed choices {Ao
it}0t=−n0

. This gives us the vectors

y−1 and y0 because (R−1, A
o
−1) and (R0, A

o
0) are also in Ypre. Thus, the pre-scandal data allow

for us to control for firm specific heterogeneity in initial costs. This firm specific cost then evolves

endogenously conditional on the entry decisions of the firm. Hence, our approach allows for both

path-dependent unobserved heterogeneity as well firm fixed effects based on initial costs.

Second, the scandal log revenues {rt}0t=−n0
can be used to help identify the parameters µr and

σr. From Ypre we can compute a normal likelihood for log revenue over the period −n0, . . . , 0.

Although this likelihood actually only depends on two elements (µr, σr) of θ, we denote it as

p(Ypre | θ) for convenience. We discuss estimation of this likelihood below in Section 5.

Since we are estimating a game of pure strategy, a density for the strategy profile At is a

deterministic function of (xt, rt, yt−1) and model parameters. The implication is that a likelihood

that depends only on these parameters and {(xt, rt, yt−1)}nt=1 would be one if we predict every entry

decision perfectly and zero otherwise. Estimation of such a likelihood with a particle filter would

be computationally difficult as each particle with positive weight would have to predict all decisions

perfectly.20

We resolve this problem by introducing a probability that allows for additional uncertainty in

the ex-post decision, qa = 1 − pa, 0 < pa < 1. This yields the following likelihood for an observed

ex-post action profile Ao
t

p(Ao
t | rt, xt, yt−1, θ) =

I∏
i=1

(pa)
I(Ao

it=Ait)(1− pa)
I(Ao

it ̸=Ait) (15)

where Ait is the predicted entry decision computed from the model given (xt, rt, yt−1) and

θ = (µc, ρc, σc, κc, µr, σr, γ, β, pa) . (16)

The full likelihood for the data is the product
∏n

t=1 p(A
o
t | rt, xt, yt−1, θ).

Although, this statistical approach is computationally useful it may not be very appealing

from the perspective of economic interpretation. In our view the most plausible interpretation

is that there is a small probability qa that planned entry decisions are not realized. This could

20It is worth noting that such a problem hasn’t arisen in the existing literature on estimating static games of
complete information with pure strategies, e.g., Berry (1992). One reason is that these models don’t allow for any
unobserved heterogeneity. Hence conditional on observables the identity of a firm is irrelevant. The implication being
that estimation can be based on the total number of entrants rather than which particular firms entered a market.
Moreover, often the choice probabilities of entry (or the probability of the number of entrant firms) do not require
solving the game numerically and can be computed in part based on expressions describing the optimal decisions of
firms.
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come about, e.g., because a decision to enter is thwarted by disapproval of an ANDA application or

because a decision not to enter is effectively reversed by an acquisition or management at the parent

company of a subsidiary or by a change in firm leadership. Less plausible interpretations are that

(15) represents measurement error either on the part of the econometrician or the firm due to, e.g.,

clerical error or firms not being able to observe competitors’ entry decisions before a decision must

be made on the next drug coming off patent. The various interpretations have different likelihood

implications. We shall adopt the first interpretation that there is a small probability that plans are

not realized.

A firm can either take the probability qa that plans will not be realized into account or not in

making its entry decision. Because ignoring qa dramatically reduces the cost of computing a decision

and because, as seen later, ignoring qa for small pa has little effect on decisions, solving the game

with qa ignored can be viewed as a boundedly rational solution strategy.21 The boundedly rational

likelihood is given by (15) with At computed as described in the Web Appendix which provides

additional details on computation and estimation. Conversely, taking qa into account can be viewed

as a fully rational strategy which confers the additional benefit that qa has a clear structural

interpretation. Although, the fully rational model is computationally much more burdensome we

estimated both boundedly rational and fully rational versions of the model. The results, however,

turned out to be qualitatively similar so we only report and discuss the results for the boundedly

rational model.22 In a related paper Gallant, Hong, and Khwaja (2014), we analyze the fully rational

model as part of a Monte Carlo exercise examining the statistical properties of the estimator.

5 Parameter Estimation

Douced, de Freitas, and Gordon (2001) present a concise description of the particle filter or se-

quential importance sampler that we follow in describing our analysis. The densities relevant to a

sequential importance sampler are the transition density of the hidden state vector

p(xt |xt−1, θ), (17)

which is defined by recursion equation (4), the initial density

p(x0 | θ), (18)

which, from equation (4), is normal with mean µc and standard deviation σc/
√

1− ρ2c , and the

observation density

p(yt | yt−1, xt, θ) = p(Ao
t | rt, yt−1, xt, θ) p(rt | yt−1, xt, θ), (19)

where, from equation (6), p(rt | yt−1, xt, θ) is normal with mean µr and standard deviation σr.

The sequential importance sampler is as follows:

21See Che, Sudhir, and Seetharaman (2007) for another example of a model of forward looking firms that are
boundedly rational.

22Results for the fully rational model are available from the authors on request.
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1. For t = 0

(a) Start N particles by drawing x
(j)
0 for j = 1, . . . , N from the initial density equation (18).

(b) Compute

p(y0 | θ) =

∫
p(y0 | y−1, x0, θ) p(y−1, x0 | θ) dx0

.
=

1

N

N∑
j=1

p(y0 | y−1, x
(j)
0 , θ).

2. For t = 1, . . . , n

(a) For each particle, draw x̃
(j)
t from the transition density equation (17) and set

x̃
(j)
0:t = (x

(j)
0:t−1, x̃

(j)
t ).

(b) For each particle compute the particle weights ŵ
(j)
t using the observation density equa-

tion (19); i.e.

w̃
(j)
t = p(yt | yt−1, x̃

(j)
t , θ).

The parametrization in equation (15) eliminates the problem that the weights could all be

zero. It is at this stage that the game needs to be solved in order to be able to compute

the weights ŵ
(j)
t . This adds to the computational burden considerably. Hence, it is

at this step that our work differs significantly from the literature on dynamic models

using sequential importance sampling (e.g., Naik, Raman, and Winer (2005), Sriram,

Chintagunta, and Neelamegham (2006), Bruce (2008)) or the research using MCMC to

incorporate serially correlated unobserved variables in single agent models (e.g., Imai,

Jain, and Ching (2009), Norets (2009)).

(c) Normalize the weights so that they sum to one

ŵ
(j)
t =

w̃
(j)
t∑N

j=1 w̃
(j)
t

.

(d) For j = 1, . . . , N sample with replacement the particles x
(j)
0:t from the set {x̃(j)0:t} according

to the weights {ŵ(j)
t }. (Note the convention: Particles with unequal weights are denoted

by {x̃(j)0:t}. After resampling the particles are denoted by {x(j)0:t}.)

(e) Compute

p(yt | y1:t−1, θ, pa) =

∫
p(yt | yt−1, xt, θ) p(yt−1, xt | y1:t−1, θ) dxt

.
=

1

N

N∑
j=1

p(yt | yt−1, x
(j)
t , θ).
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Note that p(yt | yt−1, x
(j)
t , θ) does not have to be recomputed here if the weights w̃

(j)
t are

associated to x
(j)
t in the resampling step and saved. If each firm’s entry decisions are

similarly associated, then classification error rates can be computed at this step.

3. The likelihood is

L(θ) = p(y0:t | θ) = p(Ypre | θ, pa)p(y0 | θ)
n∏

t=1

p(yt | y0:t−1, θ).

We use the Metropolis-Hastings algorithm to estimate the model. Briefly, the method is as

follows.23 The proposal density q(θo, θ∗) defines a distribution of potential new values θ∗ given an

old value θo. Denote the likelihood by L(θ) and the prior by π(θ). Given the value θo at the end

of the MCMC chain, one moves the chain forward one step to θ′ as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Let α = min
(
1, L(θ

∗)π(θ∗) q(θ∗, θo)
L(θo)π(θo) q(θo,θ∗)

)
.

3. With probability α, set θ ′ = θ∗, otherwise set θ′ = θo.

For our particular q, one randomly chooses an element j of θo to move and then proposes a new

value by replacing θoj with a draw from the normal distribution with mean θoj and scale σj , where σj

is chosen such that acceptance at Step (3) occurs with a frequency of about 30% (see e.g., Gelman,

Roberts, and Gilks (1996), Roberts and Rosenthal (2001)).

The likelihood is hierarchical in that given model parameters and conditional upon the latent

cost variables, it can be evaluated by solving the game. Given this structure, estimation can be

viewed as a double-layer nesting of the conditional likelihood within an outer MCMC loop and

an inner importance sampling loop. The MCMC proposal density fixes θ in the outer loop. The

sequential importance sampler generates a sequence of cost draws within the inner loop. Solving the

game both evaluates the conditional likelihood along this trajectory of cost draws and provides the

importance sampler with the information needed to adjust costs sequentially along the trajectory

to take into account the effect of entry decisions on the trajectory. When one falls through the inner

loop, the likelihood has been averaged over costs thereby averaging out the latent cost distribution.

At this point the MCMC accept/reject decision is made and the MCMC chain is moved forward.

One iterates through the outer loop to obtain the complete MCMC chain.

In estimating parameters we use flat, noninformative priors that impose these support condi-

tions: −1 ≤ ρc ≤ 1, 0 ≤ κc, 0 < σc, and 0 < σr. A value of κc < 0 would imply negative spillovers

or an indication of resource or capacity constraints. We allowed for this when we initially started

estimating the model but did not find any evidence of this in our preliminary work. Hence we

adopted a prior that restricts spillovers to be non-negative.

23Additional details are provided in a companion Web Appendix that is not meant for publication and is available
online and from the authors directly.
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The firm’s discount factor β is extremely difficult to estimate in studies of this sort (see e.g., Rust

(1994), Magnac and Thesmar (2002) and Ching, Erdem, and Keane (2013)). Hence, the literature

on structural estimation often does not estimate such parameters but rather fixes these.24 Similarly,

we do not attempt to estimate the discount factor but set β = 0.96875 after rounding it to a nearby

fractional power of two (in order to speed computation). A common rule of thumb in business is

not to undertake a project whose internal rate of return is less than 20%. Grabowski, Vernon, and

DiMasi (2002) state that estimates of internal rates specific to the drug industry range “from 13.5%

to over 20%.” Theoretically, a firm should not undertake a project whose rate of return is less than

its cost of capital. The historical risk premium in the drug industry is 12.55%, (e.g., Gebhardt, Lee,

and Swaminathan (2001)). Adding to this a nominal borrowing rate of 5% one arrives at the value

17.55%. Grabowski, Vernon, and DiMasi (2002) arrive at a nominal cost of capital of 14% using a

CAPM method that they regard as biased downward. There are 40 market entry opportunities in

our five years of data. That implies an expected time increment of 0.125 years between prospective

projects for the firms in our data. Therefore, using an annual internal rate of 20%, allowing for

compounding, we arrive at the value of the discount factor reported above.

Just as for the discount factor we do not attempt to estimate the parameters γ and pa for the

reasons discussed below. Examination of equation (9) indicates that were γ to enter as a linear

factor then γ would not be identified. That in fact it enters to the first order as (1 + γ logR) does

not help matters much. Attempts to estimate γ yield estimates that are about 0.93. Therefore,

based on the plausible lower bound of 0.908 derived in Section 3 and our experience from trying to

estimate γ, we take 0.93 to be a reasonable value. Rounding to a nearby fractional power of two

(in order to speed computation), we set γ = 0.9375.

The parameter pa can either be estimated or be fixed at various values. We tried values from

0.75 to 0.95. We find that estimates of the other elements of θ are hardly affected. What we do

find is that varying pa affects the rate at which particles “die out” at Step (2d) in the sequential

importance sampler. A particle is considered to “die out” if its importance weight {ŵ(j)
t } is zero

or very close to zero. This happens if the observation density p(yt | yt−1, x̃
(j)
t , θ) for a particular

particle trajectory tends to zero. Since we are not using the sequential importance sampler as a

smoother, the rate at which particles die out is of no concern. We always have a large number of

points available at Step (2e) of the sequential importance sampler; we experimented with different

number of particles till the results were not sensitive to the choice of number of particles. When

pa is treated as a parameter to be estimated, the performance of the MCMC algorithm is degraded

somewhat. We think that fixing pa is preferred because doing so improves performance and permits

a cleaner comparison of results across the cases I = 3, 4 that we consider in Section 7.

24See Kasahara and Shimotsu (2008) and Hu and Shum (2008) for more results on nonparameteric identification
of single agent dynamic discrete choice models.
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6 Identification Analysis

Non-parametric identification of dynamic games of complete information is an area of ongoing

research with few conclusive results. The main hurdles for establishing identification come from

the potential for multiplicity of equilibria and because the information set of the agent is much

richer than what is typically observed by the researcher. In this spirit it is beyond the scope of this

paper to establish non-parametric identification of our model. However, in this section we discuss

the basis for identification in our model that relies on a mix of data variation, economic modeling

and statistical assumptions.25

There are three groups of parameters in our model. The first group consists of the discount

factor β, the market share parameter for dominant firms γ and the probability parameter pa for

uncertainty in ex-post decisions. These parameters are difficult to identify (see e.g., Rust (1994),

Magnac and Thesmar (2002)). As discussed above in Section 5 we follow the literature on structural

estimation and do not attempt to estimate these parameters but rather calibrate these based on

preliminary analysis of the data. Our preliminary analysis shows that the estimation results do

not seem to be sensitive to small differences in these parameters. The second group of parameters

consists of the mean and the variance of the normal distribution of revenues. Since we observe

revenue data, they are identified directly by the sample average and the sample variance of the

revenue data.

The key parameters in our model that the estimation procedure aims to identify are the third

group of parameters, which include the stationary mean µc of the latent cost distribution, the

variance σ2
c of the innovation of the cost process, and most importantly, the autoregressive coefficient

ρc of the cost process and the coefficient of lagged entry or spillover effect κc. These parameters

jointly determine the cost evolution of firms and hence their entry behavior. In the data set,

however, we observe the entry pattern of the firms over time, revenues and the number of entrants,

and do not observe the latent cost directly. At a very intuitive level identification of cost parameters

25We estimate the model using Bayesian methods and the particle filter algorithm is also a Bayesian procedure
that computes the posterior of the unobservable costs conditional on the data. Hence, the notion of classical “non-
parametric” identification is not directly applicable in our case. Although, ideas related to (non-parametric) identifi-
cation of distribution of unobservables are broadly relevant (e.g., Heckman and Singer (1984)). Simlarly the notions
related to the identification of hyper-parameters in hierarchical Bayes models are relevant in our case. Briefly, in
Bayesian settings the focus is on (parametric) identification (Hurwicz (1950), Zellner (1971)), i.e., a parameter value
θ1 is identified if there is no other value θ2 such that p(y|θ1) = p(y|θ2) ∀ y ∈ Y. If all parameter values are identified
then the model p(y, θ) is identified, and the parameter θ is identified (Lancaster (2004)). Furthermore, as stated
by Lancaster (2004), “Flat spots at the top of the likelihood pose a problem for maximum likelihood inference since
there will never be unique maxima and second derivative matrices will typically be singular at non-identified points.
It is of no special significance from the Bayesian point of view because Bayesians do not maximize likelihoods–they
combine them with priors and integrate them. A qualification to this is that if all values of a parameter on, say the,
real line are unidentified then an (improper) flat prior distribution on that line would lead to a flat posterior and
this is not allowed (p. 26).” The main identification concern in Bayesian settings is that (1) MCMC algorithms can
be constructed even when a posterior does not exist or (2) a posterior distribution may exist for a parametrically
unidentified model given a proper prior (Geweke (2005)). Alternatively put, with a properly specified prior it is
always possible to conduct Bayesian analysis of a parametrically unidentified model, i.e., the prior and posterior may
be identical for non-identified parameters. For more on identification in Bayesian settings see Poirier (1998).
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may be thought of in a way similar to the identification of such paramters in Berry, Levinsohn, and

Pakes (1995). By inverting the first order condition for profit maximization Berry, Levinsohn, and

Pakes (1995) are able to relate the parameters describing the unobservable costs to the observables

in their data, e.g., product characteristics (see Section 3, pp. 853-854). The analogous optimality

condition in our case comes from the Bellman equation (9). This provides a way to relate the

unobservable cost parameters to the observables, i.e., revenues, entry decisions and total number of

entrants. The main difference is that because we solve a highly non-linear dynamic programming

problem there is no simple way to invert this optimality condition to and represent it analytically

as in Berry, Levinsohn, and Pakes (1995) (see Equation 3.6, p. 854). However, it is through

exploiting the relationship generated by the optimality condition between the observed data and

unobserved cost that we are able to pin down the parameters of the cost process. Alternatively

put, these parameters are identified based on (i) variation in the choices of a given firm over time

and (ii) variation in choices in a given market across firms, with these being used to infer the

unobserved cost. Since, we are dealing with unobservable costs, we need to make some parameteric

distributional assumptions in order to infer these from the optimality conditions and then project

these on the observables in our data to estimate the cost parameters. It should be noted however

that the distributional assumptions we need to make to implement the particle filter to integrate

our the unobserved costs from the likelihood are sufficient to guarantee the identification of cost

parameters, and no extra parameteric assumptions are required. Next we discuss in detail how this

is done.

The (unobserved) cost process incorporates dependence on one period lag cost and lagged entry

that have to be inferred from the observed data on entry and revenue. This is related to the issue

of unobserved heterogeneity in pay-offs versus state dependence. We address this in multiple ways.

In a pioneering paper Heckman (1981) pointed out that one can use the panel structure of data to

exploit within agent variation in states to identify state dependence from unobserved heterogeneity.

In particular for us this requires that we observe each of the four possible transitions At−1 ∈ {0, 1}
to At ∈ {0, 1} for every (dominant) firm in our data set. As can be seen in Table 1 this is indeed the

case. Identification is aided by this source of variation with the particular exclusion restriction that

the total size of the market or revenue affects entry decisions but conversely the entry decisions of

generic manufacturers don’t affect the total market size. This would be plausible if the market size

for a drug is primarily developed by the pioneer branded product and generic manufacturers take

this market size to be pre-determined in making their decisions. Alternatively stated, the total

market revenue is determined prior to the entry of the generic firms and does not depend on the

costs of entry for generic firms. This helps to identify the parameters associated with the costs of

generic manufacturers.

Another approach to this problem is to directly incorporate firm fixed effects. As stated above

in Section 3, we estimated an alternative version which directly allowed for firm specific fixed effects

µi,c in the cost process (Equation 2) along with state dependence from lagged entry. However, we
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could not reject the statistical equality of these firm specific µi,c. This would be the case if the time

varying specification that we adopt soaks up most of the unobserved heterogeneity leaving little for

the firm fixed effects to capture. We demonstrate below how this might happen. The difference in

costs for each firm can arise from either endogenous path-dependent unobserved heterogeneity or

time invariant firm fixed effects and our approach emphasizes the former over the latter.26 To our

knowledge, we estimate one of the most general specifications of a game with asymmetric firms.

For example, the literature on estimating games largely treats players as symmetric and without

firm specific unobserved heterogeneity, but allowing for market level heterogeneity.27 In contrast,

our approach goes beyond an ad-hoc time invariant firm specific fixed effect by allowing for even

ex-ante identical firms to become heterogeneous over time as their cost evolves based on endogenous

feedback from past actions (Equation 2).28

The model assumes that firms make entry decisions sequentially across markets over time and

know the market size, i.e., the revenue of the patented drug at each market opening. The firms

also form expectations about the market size at future entry opportunities. These assumptions

play crucial roles in the identification of the model. An alternative specification might be that

firms make a portfolio of decisions for a set of entry opportunities at a time. However, we do

not adopt this specification for a number of reasons. Our analysis is at the level of subsidiary

firms which is similar to the primary specification in Scott-Morton (1999), where there is no co-

ordination over a set of entry decisions. If the analysis was at the level of parent firms it could be

that the parent firm might co-ordinate entry decisions for multiple subsidiary firms simultaneously.

Scott-Morton (1999), however, shows that “the choice of organizational level from which to analyze

entry does not drive the results (p. 434)” and so co-ordination of entry decisions over a set of

opportunities is not a concern. Furthermore, the assumption about entry opportunities being

sequential is common in the literature on estimating entry games.29 In our context assuming entry

opportunities are sequential is more plausible than assuming that firms make entry decisions on

future market openings simultaneously, despite the fact that the patent expiration dates of drugs are

well known in advance. This is because market conditions and latent firm heterogeneity variables

typically vary over time, and a decision that was ex ante optimal prior to the market opening may

no longer be optimal closer to when the market opens and new information becomes available to

firms. In addition, a model of simultaneous entry in to a group of markets will induce a much larger

set of endogenous variables due to a potential portfolio of choices, and there will not be sufficient

26Moreover, a specification with unobserved cost as a time invariant fixed effect seems less interesting to us than a
story of the dynamic evolution in unobserved cost based on past actions.

27For example, Ellickson and Misra (2008) control for unobserved heterogeneity at the market level but not at the
level of the firm. As they state on pp. 820-821, they have a two-fold approach, “The first incorporates a fixed effect
at the MSA level, while the second incorporates a random effect at the level of the cluster.”

28A structural learning model can also generate a similar implication by endogenously generating heterogeneity
across consumers in perceived quality even though if they started from identical priors. This is because the perceptions
of agents evolve based on their heterogeneous experiences, e.g., Ching, Erdem, and Keane (2013).

29As an example, Hitsch (2006) models entry and exit in the breakfast cereal industry where 78 new products
were launched between 1985 and 1992 at the rate of 10 products per year (p. 28). The paper models launch of each
product as a sequence of entry decisions.
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exclusion restrictions to identify the coefficients on all the endogenous variables.30

Another assumption we make for identification is that the revenue process (Equation (6)) evolves

with an i.i.d. error term and firms do not know the exact realization of revenues at future entry

opportunities. If firms do have more information about the future realization of revenues then

the dimension of the state space of the model will necessarily become larger and the computation

will be substantially more costly. Typically, while firms might have some information about future

market profitability than implied by the i.i.d assumption, if revenue evolves according to a first

order Markov process, then the current revenue will still be a sufficient statistic for the observed

state variable of the Bellman equation. The i.i.d assumption, can be a cause for concern of model

misspecification. Although, this assumption is common in the literature on estimating games (see

e.g., Aguirregabiria and Mira (2009)). In our case, given that the misclassification rate is small in

the current model,31 the amount of model misspecification is likely to be small.

Next, we demonstrate how with our time varying specification of path dependent unobserved

heterogeneity the fixed effects might be negligible. We have 163 market entries from 1984 through

1989 that can be used to provide additional information on certain parameters (see Section 4) but

not others due to a structural break in the data. In particular we recurse the observable part of

cost (Equation 2) through these 163 observations for each MCMC draw of θ to generate the initial

heterogeneity in firms in 1990 for that θ. Suppose, instead, that we introduce initial homogeneity

by estimating an initial condition cµ,i,1984 for each firm rather than starting these recursions in 1984

at zero, which is what we actually do. The dominant firm enters 45% of the markets; ρc and κc

of Equation (2) are about 0.99 and 0.07, respectively, which implies that the long run steady state

value for the dominant firm would be about 0.07×0.45/0.01 = 3.15. Thus, draws of cµ,i,1984 for this

firm would be about 3.15. By the time the recursion reaches 1989 the magnitude has been reduced

to 0.99163 times that value or 0.658, which is about the most that cµ,i,1990 can differ from the value

that we compute. Particles are started by adding a draw to cµ,i,1990 from the unobserved cost

component that has stationary mean µc of about 10 and stationary variance σc/(1− ρ2) of about

0.37/0.02 = 18.6. The value of 0.658 is going to be negligible with respect to this draw. Similar

arguments apply to all firms. For instance, the smallest firm enters 25% of the markets so that its

possible magnitude at 1989 can differ from what we use by at most 0.145. One can conclude from the

foregoing that attempting to introduce initial heterogeneity and estimate it would add three or four

poorly identified parameters without changing results substantively. This is exactly what we find in

our alternative specification as discussed above. An intuitive way to think about this is that since

the estimated serial correlation is lower than 1 (see Section 7 below) a model with time invariant

unobserved heterogeneity would fit the data worse than one that allows for time varying unobserved

30Hypothetically speaking, if one attempts to model the 40 entry decisions as a simultaneous portfolio choice then
this would become a combinatorial problem of dimension 240 for each firm. With 4 such firms, this problem has a
dimensionality of 2160. A model that allows for strategic interaction among firms that simultaneously make entry
decisions about 40 markets and moreover allows for spillovers across time from previous entry is both empirically
infeasible and computationally intractable.

31See discussion of classification error rates (CER) in Table 2 in Section 7 below.
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heterogeneity. Alternatively put, the unobserved cost variable plays the role of a serially correlated

firm specific “error term” which soaks up most of the unobserved heterogeneity. We return to

address this issue in yet another way in Section 7 below in our discussion about potential reverse

causality.

Additionally, we consider a numerical verification of identification local to our parameter esti-

mates as an analytical demonstration of identification for a model of this complexity is not available.

Figure 5 of the Web appendix plots the profile likelihoods for the three firm model and Figure 7 is

the same for the four firm model. In each panel of these plots, the indicated parameter is moved

and all others are fixed at the values that maximize the likelihood. The sharp peaks suggest local

identification in that a change to the parameter must reduce the likelihood. Profile likelihoods do

not eliminate the possibility that two or more parameters can be moved together in such a way

as to leave the likelihood invariant. A check on this is to compute the condition number of the

Hessian of the log likelihood or the condition number of its inverse, these being the same number.

If the log of the condition number is a good deal smaller than the log of machine precision, that

indicates a well conditioned Hessian and suggests that a simultaneous movement of the parameters

that leaves the likelihood invariant is impossible. The variance matrix of the MCMC chain is a

consistent estimator of the inverse of the Hessian (Chernozhukov and Hong (2003)). For the three

firm model the log (base 10) of the condition number of the variance matrix is 3.75 and for the four

firm model it is 3.85. The log of the precision of a “double” on the computing equipment we use is

15.7. Hence, the Hessians are well conditioned.

7 Results and Robustness

We estimate the mode for the cases of three or four dominant firms, i.e., the top three (four)

dominant32 firms are the only potential entrants that are strategic competitors and the actions of

the remaining firms are accounted for by the parameter γ. The mode and standard deviations of the

posterior distribution are reported in Table 2. We focus on the mode of the multivariate posterior

distribution because it actually corresponds to a value at which the model has been evaluated.

Other measures of central tendency of the posterior distribution can be misleading when studying

the behavior of a structural model because they may have never appeared in the MCMC chain

and could give a distorted view of the model were it to be evaluated at such a point. We next

discuss the estimates with the caveat that our model is a stylized representation of oligopolistic

competition in the generic pharmaceutical industry, and therefore the results should be assessed

with appropriate prudence.

Table 2 about here

32Recall that Mylan, Novopharm, and Lemmon are the potential entrants in the three firm case. Geneva is the
additional potential entrant in the four firm case. There are 51 firms in total, so 48 firms are put in the “other”
non-dominant category in the three firm case and 47 in the four firm case.
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The parameters are tightly estimated33 and, as seen from the extremely low classification error

rates (CER), model fit is quite accurate.34 We begin by discussing the revenue parameters. The

mean of (log) revenue is estimated to be about 10 and the standard deviation about 1.6. As a

reality check we find that these numbers are very similar to the numbers reported in Scott-Morton

(1999). The long run mean of cost µc is also about 10. Given the caveat above we provide some

interpretation next. Since the means of revenue and long run cost are similar it implies that in a

static sense on average each market will not be able to support too many entrants.35 Interestingly,

in our sample the number of dominant firms that enter a market on average is 1.2. As a consequence

firms that enter will need to decrease their cost based on experience (Equation 2) in order to stay

profitable in the long run (Equation 8). Modeling entry decisions in a static one shot entry game

framework would suggest that in the generic drug industry firms are not very profitable on average

or that only low cost firms would enter a market. However, such a model would treat cost as

an exogenous firm characteristic. In contrast, our model by connecting the markets through the

spillovers of entry and modeling an inter-linked series of entry games is suggestive of an additional

insight that firms that do enter and lower their cost through past experience can gain additional

strategic advantage to survive these tight markets. Indeed, two firms with initially similar costs

might have very different long run trajectories if one enters a very tight market and becomes

successful based on past experience whereas the other stays out and loses the opportunity to learn

from the experience of entering a market. Put an another way, our model indicates an additional

long run reward from experience gained from entry over and above the short run profits from entry.

We further compare our work with static entry models below.

We next discuss the parameters of the cost process with the same due caution as above. The

autoregressive parameter ρc represents the degree of persistence in the cost process. The value of

ρc is quite large. This indicates that unobserved firm specific costs can be persistent and highly

path dependent. A potential implication is that the strategic effects of entry spillovers on firm

heterogeneity will be magnified in the long run. Moreover, it suggests that firm heterogeneity will

not be a fixed characteristic but will evolve over time given the history of entry decisions. The

spillover effect of entry is κc which is estimated to be 0.07. This implies a potential immediate

cost improvement of 7% going into the next market opening conditional on entry in to the current

market. Recall, in our data there are on average eight entry opportunities a year or about one

every six weeks. To gain a sense of the probable long run implications of this spillover effect we do

a thought experiment and compute the average annual cumulative improvement using the AR(1)

33Despite the small standard deviations shown in Table 2, we find that the profile likelihoods suggest that the
MCMC chain adequately explored the posterior density. See Figures 5 and 7 in the Web Appendix. The likelihood
is proportional to the posterior because priors are flat.

34The cost spillover κc is estimated to be a little larger in the case with the larger number of dominant firms. On
the other hand, as might be expected, the classification error rate is also a little larger in the game with the larger
number of dominant players.

35It should be noted that in our context this statement is really about the “dominant” firms, which are the potential
entrants in the model.
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cost process (Equation (2)). It is seen that a firm that enters all possible markets in a year will

decrease its cost by 51% (relative to a firm that did not enter at all that year). Thus, the dynamic

spillovers of entry could possibly be very large cumulatively. However, the standard deviation of

the cost process σc is also large, i.e., about 0.37. This means that although spillovers of entry can

persistent and path dependent they could potentially also be eliminated by a cost shock.Modeling

the sources of such shocks is beyond the scope of this paper and we leave that to future work.

Figure 1 about here

Figure 2 about here

Figure 3 about here

We further examine the implications of the dynamics of the cost process by plotting the log cost

of the dominant firms in the three firm model. This is done in the upper three panels of Figure 1.

The circles indicate that the firm entered that market.36 It is seen that the top firm, Mylan, has a

clear cost advantage over its competitors but the broad trends in cost are about the same for all

firms. These plots also suggest heterogeneity in cost across firms and additionally heterogeneity

within firms over time. Cost evolves, waxing and waning with entry or lack of it. It is seen that a

sequence of entries usually leads to cost decreasing. On the other hand periods of inactivity lead

to cost increasing. It is notable the firms enter the market both when their cost is relatively low

and high. One reason for this could be spillovers of current entry on future costs which may help

overcome the adverse current payoff from entry that high current cost implies. This is in contrast

with what a static model would predict. In the static case firms would not enter a market when

their cost was high. The bottom panel shows log total revenue. The numbers at the bottom of this

panel are the number of dominant firms who entered the market at that time point. This panel

also shows that entry tends to coincide with markets that have larger revenues but not always.

There are instances when market revenue is very high yet not all three dominant firms enter (e.g.,

markets 37, 38, 39 as indicated by the x-axis of the bottom panel). Again, this is a feature that

would be difficult to rationalize using a static entry model.

We next compare our estimates of cost and the implied cost trajectories for the three and four

firm models. Figure 2 plots together the log cost of the three dominant firms from both the three

and four firm models. The circles at the bottom of the upper panel indicate which markets Mylan

entered, the crosses in the middle panel are the same for Novopharm, and the asterisks in the lower

panel are the same for Lemmon. The construction of the plots is the same as for Figure 1. The

salient feature of this plot is that costs for the three dominant firms are estimated as being about

the same in the three and four firm models. The recovered cost trends are consistent with entry

patterns. Mylan has the most entries and the lowest cost. It’s cost trajectory is also smoothest

36The logarithm of cost is computed by averaging at Step (2e) of the importance sampler.
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because it has the least fluctuations between periods of activity and inactivity. This suggests that

its sequence of entries also manages its cost trajectory.

Using Figure 3 we examine the fit of our model. This figure displays the entry decisions of

the dominant firms, period by period, as circles and the model’s average prediction of their entry,

period by period, as crosses.37 The classification error rates shown in Table 2 can be viewed as

the errors that would obtain if decisions were predicted by using a threshold of 0.5 to predict entry

(i.e., entry if predicted probability ≥ 0.5; no entry otherwise) for the average predictions shown

in Figure 3. We find that although our entry model is highly stylized and parsimonious it does a

fairly good job of predicting entry patterns and fitting the data.

So far, we have tried to directly infer the importance of the estimate of the entry spillover κc by

examining the implications of this for cost and entry dynamics. Another way to assess our results

is to directly explore the possibility that the firms play a different game than the game we propose.

Consider two other games that might be played instead of the game with payoffs (9).They could

play a game with payoffs

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) = Ait (R
γ
t /Nt − Cu,i,t) , (20)

where no attention at all is paid to the dynamic spillovers of entry (κc = 0) and firms ignore the

continuation value of the game (β = 0). We call this the myopic game (β = 0, κc = 0). Or they

could play a game with payoffs

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) = Ait (R
γ
t /Nt − Cit) (21)

where they take cognizance of the dynamic spillovers of entry but ignore the continuation value of

the game, i.e., β = 0. We call this the static game (β = 0, κc > 0).

For the three firm game, the myopic game (β = 0, κc = 0) has an equilibrium that agrees with

the solution of the game we propose (i.e., the game with payoffs (9)) in 49% of the cases. The game

that ignores the continuation value (β = 0, κc > 0) has an equilibrium that agrees in 81% of the

cases. For the four firm game, these values are 31% and 68%, respectively.

These values were computed by using the posterior modes shown for the game in Table 2 and

finding all equilibria for the three games for all cost trajectories that obtained at Step (2b) of

the sequential importance sampler. Incidentally, we can also compute the incidence of multiple

equilibria for these three games. For the three firm game they are 5% (β = 0, κc = 0), 5% (β = 0,

κc > 0), and 4% (β > 0, κc > 0), respectively. For the four firm game they are 5%, 7%, and 4%,

respectively. As discussed earlier, we adopt an explicit equilibrium selection rule, i.e., we pick the

equilibrium with the lowest aggregate cost.

These computations suggest that the myopic and static games would do a poor job of rational-

izing the data.38 To check, we use our parameter estimates, impose β = κc = 0, and find that the

37The average prediction is computed by averaging game solutions at Step (2e) of the importance sampler at the
mode of the posterior density.

38In performing these calculations we did not completely re-estimate the model with the parameters constrained.
Instead we re-solved the model at the estimated parameter values with the parameters constrained as specified above.
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overall classification error rate for the myopic game exceeds the overall value in Table 2 by a factor

of 3.8 for the three player game and 3.6 for the four player game. Similarly, imposing β = 0, we

find that the classification error rate for the static game exceeds the values in Table 2 by a factor

of 2.0 for both the three and four player games.

Given our stylized and parsimonious model, it is worth asking the question whether what is

recovered is the dynamic spillover effect of entry, i.e., entry makes firms more capable or whether

the causality is reversed and it is more capable firms that enter. In the latter case one could think

of a situation where there is persistent heterogeneity in costs across firms and the more capable

firms always enter and the less capable firms stay out. Recall that in our model heterogeneity in

costs arises endogenously based in part on past actions. Stated differently, one might surmise that

the effect of the random shocks on costs (operating through σc) is larger than that of the dynamic

spillovers of entry (through κc), or that σc and κc are correlated in some way. If this was the case

then it would be difficult to identify each separately from the other. One way to check this is to set

σc to different values and re-run the MCMC chain to see whether it affects the values of κc. Setting

σc to 0.25, 0.125, and 0.0625 has very little effect on κc although it does dramatically reduce the

likelihood evaluated at the mode. Thus, we have statistical evidence that we are able to identify

σc from κc. Hence, we conclude that we are most likely estimating the effect of entry on costs and

not vice versa.

8 Conclusions

Our paper contributes to the literature on estimating entry spillovers and also extends the literature

on estimating dynamic discrete games to allow for endogenously arising unobserved heterogeneity

between players. We illustrate our method with an application to the generic pharmaceutical

industry. Our stylized model fits the data well with small classification error rates. Our results

are suggestive of positive spillovers of past entry on future profitability and indicate that dynamic

spillovers may play a role in the equilibrium path of the industry structure. Moreover, our results

indicate possibility of heterogeneity in the cumulative effects of these spillovers not only across

firms but also within firms over time based on the entry decisions. A potential implication is

that firms may be able to manage their success through sequencing their entry in to new markets

in order to maximize the potential for learning from experience. We develop a procedure based

on particle filters to estimate a dynamic discrete game that includes firm specific unobserved state

variables that evolve based on past actions, i.e., endogenous feedback. Our method is more generally

applicable to estimating dynamic games in which (i) the choice set is discrete in nature, e.g., entry

and exit from industry, expansion or reduction of product categories, introduction of new brands,

technology adoption, relocation or shut down of stores etc., (ii) when there are serially correlated

unobserved endogenous state variables (either discrete or continuous), e.g., models which allow for

Thus, these computations are suggestive of our preferred specification being better at rationalizing the data. A more
thorough test would be to re-estimate the model for the three model specifications.
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accumulation or depreciation of goodwill of brands, and (iii) an algorithm to solve the game is

available.

Before concluding, we outline some limitations which provide opportunity for future research.

The spillover effect estimated in this paper is related to experience gained in producing drugs in

the form of oral solids. It may be worthwhile in future work to quantify spillovers for other kinds

of drugs and the sources (e.g., demand or supply side) of such spillovers. This is beyond the scope

of this paper due to the prohibitive computational burden it would impose by expanding the state

space. Another important extension would be to allow for estimation of dynamic games where

the strategy set is mixed discrete-continuous, e.g., introduction of a new brand and the associated

decision about advertising expenditure. We leave such analysis for future research. Yet another

interesting and challenging issue to examine in future might be the role of price competition in

the generic drug market especially because institutional features such as health plan co-pays and

formulary lists at hospitals etc., may lead to ambiguous effects on revenues.39 Future research

could also examine the role of multi-market contact in these entry decisions, e.g., it could analyze

whether any collusive practices exist due to this repeated contact in different product categories.

Similarly, another rich area for future research might be to analyze marketing mix activities (see

e.g., Manchanda and Chintagunta (2004), Manchanda, Rossi, and Chintagunta (2004), Narayanan,

Manchanda, and Chintagunta (2005)) in the generic pharmaceutical industry that complement

these entry decisions, and their joint effects on entry spillovers. Furthermore, even though we

focus on a game of complete information, the methods we exposit may also provide a procedure to

incorporate time varying unobserved heterogeneity with endogenous feedback in estimating dynamic

games of incomplete information. We hope our paper will provide a foundation to address some of

these issues in future.

Finally, even though our dynamic framework has limitations as discussed we believe it enriches

the literature. Our focus has been to extend the literature on dynamic games to allow for time

varying unobserved heterogeneity that accounts for the evolution of a firm based on its strategic

actions. The goal has been to account for the the dynamic implications of the nature of such

competition. This is important for two reasons: (a) firms change over time in terms of getting

stronger or weaker based on their experience, and (b) similarly, firms recognize that their rivals’

competitiveness depends on the experience of their rivals. The existing literature largely abstracts

from this kind of heterogeneity. In the interest of making headway in this direction we have

abstracted away from observed heterogeneity in other dimensions that the previous literature has

considered. Our hope, of course, is to ultimately allow for both kinds of heterogeneity in future

work.

39We thank an anonymous referee for this suggestion.
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Table 1. Data

Dominant Firms
(enter = 1, not enter = 0)

Drug / Active Ingredient ANDA Date Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

Sulindac 03 Apr. 90 1 0 1 1 7 189010
Erythromycin Stearate 15 May 90 0 0 0 0 1 13997
Atenolol 31 May 90 1 0 0 0 4 69802
Nifedipine 04 Jul. 90 0 1 0 0 5 302983
Minocycline Hydrochloride 14 Aug. 90 0 0 0 0 3 55491
Methotrexate Sodium 15 Oct. 90 1 0 0 0 3 24848
Pyridostigmine Bromide 27 Nov. 90 0 0 0 0 1 2113
Estropipate 27 Feb. 91 0 0 0 0 2 6820
Loperamide Hydrochloride 30 Aug. 91 1 1 1 1 5 31713
Phendimetrazine 30 Oct. 91 0 0 0 0 1 1269
Tolmetin Sodium 27 Nov. 91 1 1 1 1 7 59108
Clemastine Fumarate 31 Jan. 92 0 0 1 0 1 9077
Cinoxacin 28 Feb. 92 0 0 0 0 1 6281
Diltiazem Hydrochloride 30 Mar. 92 1 1 0 0 5 439125
Nortriptyline Hydrochloride 30 Mar. 92 1 0 0 1 3 187683
Triamterene 30 Apr. 92 0 0 0 1 2 22092
Piroxicam 29 May 92 1 1 1 0 9 309756
Griseofulvin Ultramicrocrystalline 30 Jun. 92 0 0 0 0 1 11727
Pyrazinamide 30 Jun. 92 0 0 0 0 1 306
Diflunisal 31 Jul. 92 0 0 1 0 2 96488
Carbidopa 28 Aug. 92 0 0 1 0 4 117233
Pindolol 03 Sep. 92 1 1 0 1 7 37648
Ketoprofen 22 Dec. 92 0 0 0 0 2 107047
Gemfibrozil 25 Jan. 93 1 0 1 0 5 330539
Benzonatate 29 Jan. 93 0 0 0 0 1 2597
Methadone Hydrochloride 15 Apr. 93 0 0 0 0 1 1858
Methazolamide 30 Jun. 93 0 0 0 1 3 4792
Alprazolam 19 Oct. 93 1 1 0 0 7 614593
Nadolol 31 Oct. 93 1 0 0 0 2 125379
Levonorgestrel 13 Dec. 93 0 0 0 0 1 47836
Metoprolol Tartrate 21 Dec. 93 1 1 0 1 9 235625
Naproxen 21 Dec. 93 1 1 1 1 8 456191
Naproxen Sodium 21 Dec. 93 1 1 1 1 7 164771
Guanabenz Acetate 28 Feb. 94 0 0 0 0 2 18120
Triazolam 25 Mar. 94 0 0 0 0 2 71282
Glipizide 10 May 94 1 0 0 0 1 189717
Cimetidine 17 May 94 1 1 0 0 3 547218
Flurbiprofen 20 Jun. 94 1 0 0 0 1 155329
Sulfadiazine 29 Jul. 94 0 0 0 0 1 72
Hydroxychloroquine Sulfate 30 Sep. 94 0 0 0 0 1 8492

Mean 0.45 0.28 0.25 0.25 3.3 126901

Shown is the post-scandal data used in the study. The entry decisions of the four dominant firms
are indicated by 1 for entry and 0 for no entry. Total Entrants are how many of the fifty-one
potential entrants entered, including the dominant firms. Revenue is in thousands of dollars, and
is the revenue of the branded product in the year before patent expiration.

35



Table 2. Model Estimates: Posterior Distribution

Number of Potential Entrants
(excluding “other” firms)

Parameter 3 firms 4 firms

Cost: long run average (µc) 10.05 10.07
(0.017) (0.0014)

Cost: persistence (ρc) 0.9866 0.9873
(0.00086) (5.6e-05)

Cost: std. dev. (σc) 0.3721 0.3675
(0.026) (3.0e-04)

Cost spillover (κc) 0.06655 0.07067
(0.0015) (1.1e-04)

Revenue: mean (µr) 9.906 10.008
(0.083) (0.0037)

Revenue: std. dev. (σr) 1.591 1.682
(0.060) (0.0023)

Market share parameter (γ) 0.9375 0.9375

Discount factor (β) 0.9688 0.9688

Misclassification prob. (pa) 0.9375 0.9375

CER firm 1 0.0857 0.1208
CER firm 2 0.0788 0.0876
CER firm 3 0.1038 0.1061
CER firm 4 0.1374

CER all firms 0.0894 0.1130

MCMC Reps 3000000 3000000

stride 375 375

Shown is the mode of the multivariate posterior distribution not the modes
of the marginal posterior distributions. The multivariate posterior mode does
correspond to a set of parameter settings that actually occur in the MCMC
chain whereas other measures of central tendency such as the mean or marginal
medians might not. Standard deviations are shown in parentheses. CER is
the classification error rate when the parameters are set to the posterior mode.
They are computed at Step 2e of the importance sampler. At that point in the
algorithm the predicted actions Ai,t,j are known for each firm i at each time t
for each particle j and can be compared to the observed actions Ao

it. The CER
is the proportion of the cases where Ao

it ̸= Ai,t,j computed both by firm and
overall.
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Figure 1. Cost, Revenue, and Entry Decisions. Plotted as a solid line in the first

three panels is the logarithm of cost for the three dominant firms in the three firm model.

The logarithm of cost is computed by averaging at Step 2e of the importance sampler at

the maximum likelihood estimate. The circles in these plots indicate that the firm entered

the market at that time point. The bottom panel shows the logarithm of total revenue. The

numbers at the bottom are the count of the number of dominant firms who entered the market

at that time point.
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Figure 2. Cost and Entry Decisions of the Dominant Firms. Plotted is the logarithm

of cost for the three dominant firms. The dashed line is under the three firm model, and the

solid under the four firm model. The circles indicate the markets that Mylan entered, crosses

the same for Novopharm, and the asterisks for Lemmon. The logarithm of cost as described

in the legend of Figure 1.
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Figure 3. Actual and Predicted Entry Decisions. Plotted as circles are the entry

decisions of the three dominant firms in the three firm model. The crosses are the average

predictions of the three firm model computed by averaging game solutions at Step 2e of the

importance sampler at the maximum likelihood estimate.
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A Web Appendix

This is a Web Appendix to

“The Dynamic Spillovers of Entry: An Application to the Generic Drug
Industry,”

It is not meant for publication and is provided for review purposes. It will also be

made available online and from the authors directly.

A.1 Solving the Model

When the state space can only take on a finite set of values, Theorem 3.1 of Dutta and Sundaram

(1998) implies that the game described in Section 3 has a stationary Markov perfect equilibrium

in mixed strategies. An intermediate step of the proof shows that the Bellman equation (12) has

a fixed point. This result motivates our computational strategy because it implies that a solution

to the game can be found by value function iteration. Solution methods that rely on computing a

value function are discussed in Rust (1996).

Parthasarathy (1973) showed that Theorem 3.1 of Dutta and Sundaram (1998) holds for a

countably discrete state space. Theorem 5.1 of Dutta and Sundaram (1998) is the extension to a

continuous, bounded, state space. The equilibrium strategy profiles provided by Theorem 5.1 may

depend on periods t and t−1 of the state vector. That does not exclude the possibility of a solution

that depends only on the state at period t but does, in principle, obligate one to look over a larger

domain if one cannot be found.

We could modify our problem to meet the requirements of Theorem 3.1 that the state space be

finite and countable. However we rely on Theorem 5.1 instead as we do not have trouble computing

pure strategy equilibria for the problem as posed with a continuous state space by iterating the

Bellman equation (12) using a locally affine, step function to approximate the value function. This

type of approximation can approximate any L2 function to within arbitrary accuracy by taking the

grid fine enough.

Strictly speaking, we do not have a finite state space that Theorem 3.1 of Dutta and Sundaram

(1998) requires but we have never failed to compute an equilibrium due to nonconvergence. This

is because the consequence of failure is that a particle gets killed. Based on the properties of the

sequential importance sampler that particle is replenished at the resampling step of the particle

filter algorithm described in Section 4. It is extremely rare that any of the N particles used to

integrate the likelihood are killed. When it happens, there are no more than a few others, if any.

We have never encountered a case where all N particles are killed. For a discussion of similar issues

related to the complexity of guaranteeing existence and uniqueness of equilibrium in static games

see Berry, Levinsohn, and Pakes (1995).40

40On p. 853, footnote 12 they state, “We assume that a Nash equilibrium to this pricing game exists, and that the

1



Let the entry decisions of all i = 1, . . . , I firms for a market opening at time t, i.e., the strategy

profile of the dynamic game, be denoted by

At = (A1t, ..., AIt) . (22)

As discussed in Section 3, the strategy profile At at time t of the dynamic game is a function of

the current period state variables (C1t, ..., CIt) and Rt. The vector of the log of the state variables

at time t is

st = (c1t, ..., cIt, rt) . (23)

In particular, equations (9) and (12) can be expressed in terms of st using Cit = exp(sit) for

i = 1, . . . , I and Rt = exp(sI+1,t). We describe the solution algorithm for a given parameter vector

and a given state st at time t.

We begin by defining a grid on the state space which determines a set of (I + 1)-dimensional

hyper-cubes. The grid increments are chosen to be (fractional) powers of two.41 The centroid of

the hyper-cube that contains a state vector s can be computed, element by element, by dividing

by the increment, rounding to an integer, multiplying by the increment, and dividing by two. We

use the centroid of each hyper-cube as the index K to the affine function whose domain is that

hyper-cube. The rounding rules of the machine resolve which centroid a state on a grid boundary

gets mapped to, although lying on a boundary is a probability zero event in principle. The entire

grid itself is never computed because all we require is the mapping s 7→ K, which is determined by

the increments.

Let the vector VK(st) have as its elements the ex ante value functions Vi,K(st), i.e., VK(st) =

(V1,K(st), . . . , VI,K(st)) (see equations (11) and (12). To each K associate a vector bK of length I

and a matrix BK of dimension I by I + 1. A given state point st is mapped to its centroid K and

the value function at state st is represented by the affine function VK(st) = bK + (BK)st. A value

function VK(st) whose elements satisfy equation (12) is denoted V ∗
K(st) = b∗K + (B∗

K)st.

The game is solved as follows:

1. Given a state point s, get the centroid K that corresponds to it (we suppress the subscript t

for notational convenience).42

2. Check whether the fixed point V ∗
K(s) of the Bellman equations (12) at this centroid has

already been computed, i.e., whether the (b∗K , B∗
K) for the K that corresponds to s has been

computed. If not, then use the following steps to compute it.

equilibrium prices are in the interior of the firms’ strategy sets (the positive orthant). While Caplin and Nalebuff
(1991) provide a set of conditions for the existence of equilibrium for related models of single product firms, their
theorems do not easily generalize to the multiproduct case. However, we are able to check numerically whether our
final estimates are consistent with the existence of an equilibrium. Note that none of the properties of the estimates
require uniqueness of equilibrium, although without uniqueess it is not clear how to use our estimates to examine the
effects of policy and environmental changes.”

41As described below, this is done so that the centroid has an exact machine representation. This facilitates efficient
computation through compact storage of objects indexed by the centroid.

42In fact, because it is a stationary game, the subscript t does not really matter
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3. Start with an initial guess of the ex ante value function V
(0)
K (s). An initial guess of the value

function is represented by the coefficients (b
(0)
K , B

(0)
K ) being set to 0.

4. Obtain a set of points sj , j = 1, . . . , J , that are centered around K. The objective now is

to obtain the ex ante value functions associated with these points to use in a regression to

recompute (or update) the coefficients (b
(0)
K , B

(0)
K ).

5. Ex ante value functions are evaluated at best response strategies. In order to compute these

we must, for each sj , compute the choice specific value function (9) at as many strategy profiles

A as are required to determine whether or not the equilibrium condition in equation (10) is

satisfied. In this process we need to take expectations to compute the continuation value

β E
[
V

(0)
K,i (st+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]
that appears in equation (9), where we have used

equation (11) to express equation (9) in terms of V
(0)
K (s). To compute expectations over

the conditional distribution of the random components of next period state variables, we use

Gauss-Hermite quadrature. To do this, we obtain another set of points centered around each

sj , i.e., sjl , l = 1, . . . , L. These points are the abscissae of the Gauss-Hermite quadrature rule

which are located relative to sj but shifted by the actions A under consideration to account

for the dynamic effects of current actions on future costs (see equation (5)). Expectations

are computed using a weighted sum of the value function evaluated at the abscissae (more

details are provided below).

6. We can now compute the continuation value at sj for each candidate strategy A. We

compute the best response strategy profile AE
j corresponding to sj by checking the Nash

equilibrium condition (equation 10). As just described, the choice specific value func-

tion evaluated at (AE
i , sj) is computed using V

(0)
K (s) and equation (9), and denoted by

V
(1)
K (AE , sj) = (V

(1)
1,K(AE , sj), . . . , V

(1)
I,K(AE , sj)).

7. Next we use the “data” (V
(1)
K (AE , sj), sj)

J
j=1 to update the ex ante value function to V

(1)
K (sj).

This is done by updating the coefficients of its affine representation to (b
(1)
K , B

(1)
K ) via a

multivariate regression on this “data” (as described in detail below).43

8. We iterate (go back to step 5) over the ex ante value functions V
(0)
i,K (s), V

(1)
i,K (s), . . . by finding a

new equilibrium strategy profileAE for each sj until convergence is achieved for the coefficients

(b
(0)
K , B

(0)
K ), (b

(1)
K , B

(1)
K ), . . . ,(b

(∗)
K , B

(∗)
K ). This gives us V ∗

K(s) = b∗K + (B∗
K)s for every s that

maps to centroid K.

To summarize, the process of solving for the equilibrium begins with a conjecture (b
(l)
K =

0, B
(l)
K = 0) for the linear approximation of the value functions at a given state at iteration l = 0.

These guesses are then used in computing the choice specific value functions at iteration l+1 using

equation (9). This computation involves taking expectations over the conditional distribution of

43V
(1)
K (AE , sj) will not equal V

(1)
K (sj) because the former is “data” and the later is a regression prediction.
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the future state variables, which is accomplished using Gaussian-Hermite quadrature. Once we

have the choice specific value functions we compute the equilibrium strategy profile at iteration

l + 1 using equation (10). The best response strategy profile at iteration l + 1 is then used to

compute the iteration l+1 ex ante value functions via a regression that can be viewed as iterating

equation (12). The iteration l + 1 ex ante value functions are then used to compute the iteration

l + 2 choice specific value functions using equation (9), and the entire procedure is repeated till a

fixed point of equation (12) is obtained. This iterative procedure solves the dynamic game. We

next provide additional details about the steps of the algorithm described above to solve the model.

To describe the Gauss-Hermite quadrature procedure used in Step 5, note that if one conditions

upon st and At, then the elements of st+1 are independently normally distributed with means

µi = µc + ρc(cit − µc) − κcAit for the first I elements (see equation 2), mean µI+1 = µR for the

last element (see equation 6), standard deviations σi = σc for the first I elements, and standard

deviation σI+1 = σR for the last. Computing a conditional expectation of functions of the form

f(st+1) given (At, st) such as appear in equations (9) and (12) is now a matter of integrating

with respect to a normal distribution with these means and variances which can be done by a

Gauss-Hermite quadrature rule that has been subjected to location and scale transformations. The

weights wj and abscissae xj for Gauss-Hermite quadrature may be obtained from tables such as

Abramowitz and Stegun (1964) or by direct computation using algorithms such as Golub and

Welsch (1969) as updated in Golub (1973). To integrate with respect to sj,t+1 conditional upon At

and st the abscissae are transformed to s̃t+1,j = µj +
√
2σjxj , and the weights are transformed to

w̃j = wj/
√
π, where π = 3.142.44 Then, using a 2L+ 1 rule,

E [f(st+1) |At, st] ≈
L∑

j1=−L

· · ·
L∑

jI=−L

L∑
jI+1=−L

f(s̃t+1,j1 ,· · · , s̃t+1,jI , s̃t+1,jI+1)w̃j1 · · ·w̃jI w̃jI+1 . (24)

If, for example, there are three firms and a three point quadrature rule is used, then

E [f(st+1) |At, st] ≈
1∑

i=−1

1∑
j=−1

1∑
k=−1

1∑
l=−1

f(s̃i, s̃j , s̃k, s̃l)w̃iw̃jw̃kw̃l.

We use three point rules throughout. A three point rule will integrate a polynomial in st+1 up to

degree five exactly.45

Step 7 involves updating the ex ante value function using a regression. We next describe how we

do this. As stated above, we have a grid over the state space whose boundaries are fractional powers

44These transformations arise because a Hermite rule integrates
∫∞
−∞ f(x) exp (−x2)dx. Hence we need to do a

change of variables to get our integral
∫∞
−∞ g(σz+µ)(1/

√
2π) exp (−0.5z2)dz to be of that form. A change of variables

puts the equation in the line above in the form
∫∞
−∞ g(

√
2σx+µ)(1/

√
π) exp (−x2)dx, which is where the expressions

for s̃t+1,i and w̃i come from.
45If the s̃t+1 cross a grid boundary when computing (9) in Step 5, we do not recompute K because this would

create an impossible circularity due to the fact that the value function at the new K may not yet be available. Our
grid increments are large relative to the scatter of abscissae of the quadrature rule so that crossing a boundary will
be a rare event, if it happens at all.
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of two over the state space.46 We approximate the value function V (st) by a locally indexed affine

representation as described above. For the grid increments that determine the index of hyper-cubes

we tried a range of values from 4 to 16 times the standard deviation of the state variables rounded

to a nearby fractional power of two to scale the grid appropriately. The results are effectively the

same. Hence in estimating the model we set the grid increments at 16 times the standard deviation

of the state variables.47 We compute the coefficients bK and BK as follows. They are first initialized

to zero. We then generate a set of abscissae {sj} clustered about K and solve the game with payoffs

(9) to get corresponding equilibria {AE
j }. We substitute the (AE

j , sj) pairs into equation (9) to get

{V (AE
j , sj)}Jj=1. Using the pairs {(V (AE

j , sj), sj} as data, we compute bK and BK by multivariate

least squares. We repeat until the bK and BK stabilize. We have found that approximately twenty

iterations suffice for three firms and thirty for four firms.48 The easiest way to get a cluster of

points {sj} about a centroid is to use abscissae from the quadrature rule described above with s

set to K and A set to zero. However, one must jiggle the points so that no two firms have exactly

the same cost. Of importance in reducing computational effort is to avoid recomputing the payoff

(equation (9)) when checking equilibrium condition (10). Our strategy is to (temporarily) store

payoff vectors indexed by A and check for previously computed payoffs before computing new ones

in checking condition (10).

A.2 Estimation Details

In this subsection we provide additional details about the estimation procedure that were not

provided in the main paper. We begin by showing the log likelihood surface plotted on a fine grid

in Figure 4 and on a coarse grid in Figure 5 for the three firm model. Figures 6 and 7 are for the

four firm model. The endpoints of the horizontal axes are tenth of a standard deviation to the left

and right of the maximum in Figure 4 and 24 standard deviations to the right and left in Figure 5.

For Figures 6 and 7 they are a tenth and 48. These are profile likelihoods; i.e., in each panel the

indicated parameter is moved and all others are fixed at the values that maximize the likelihood.

As seen from Figures 4 and 6, the surface is, basically, a step function so that curvature at the

maximum will not provide a reliable basis for inference. The reason, of course, is that small changes

in the parameters do not cause the decisions of the firms to change. In this situation, accurate

frequentist inference would be difficult and would be prohibitively computationally intensive if

bootstrapping were involved. On the other hand, Bayesian inference in this situation is conceptually

straightforward and computationally feasible.

46Recall that grid increments are chosen to be fractional powers of two so that the centroid has an exact machine
representation. This facilitates efficient computation through compact storage of objects indexed by the centroid.

47The set of centroids that actually get visited in any MCMC repetition is about the same for grid increments
ranging from 4 to 16 times the standard deviation of the state variables in our data. For a three firm game the
number of hyper-cubes that actually are visited in any one repetition is about six.

48An alternative is to apply a modified Howard acceleration strategy as described in Kuhn (2006); see also Rust
(1996) and Howard (1960). The idea is simple: The solution {AE

t } of the game with payoffs (9) will not change much,
if at all, for small changes in the value function V (s). Therefore, rather than recompute the solution at every step of
the (bK , Bk) iterations, one can reuse a solution for a few steps.
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Figure 4 about here

Figure 5 about here

Figure 6 about here

Figure 7 about here

However, Figures 5 and 7 do suggest that implementing a Bayesian strategy that explores the

surface well will be a challenge. They also suggest that the standard deviations of the posterior will

be extremely tight. The horizontal line is at three orders of magnitude below the maximum. If an

MCMC chain is near the maximum, the chance that it will move to a point below the horizontal

line line is less than 0.001.

An MCMC chain that uses a move-one-at-a-time random walk proposal density will usually do

a good job of exploring surfaces such as seen in Figures 5 and 7; see Gamerman and Lopes (2006).

However this comes at a cost because an MCMC chain that uses a move-one-at-a-time random

walk proposal strategy is usually inefficient relative to those that use other proposal strategies.

The vertical lines in Figures 5 and 7 indicate the range of the MCMC chain’s excursions after the

transient elements of the chain have died out.

We implement our computational algorithm using code that is in the public domain and available

at http://www.aronaldg.org/webfiles/emm/. This code is based on Chernozhukov and Hong

(2003). Full details regarding the proposal density and other conventions are in the User’s Guide

distributed with the code. One needs enough draws to accurately compute averages such as standard

deviations, histograms, and other characteristics of the posterior distribution. Our chains are highly

correlated so that very long chains with a stride (sampling rate) of 375 are required to break the

dependence. As explained in the User’s Guide, computations can be accelerated if the values of θ

visited by the chain are restricted to (fractional) powers of two. We impose this restriction on the

chain.

Histograms of the marginal posterior distributions are displayed in Figures 8 and 9 for the three

and four firm cases, respectively.

Figure 8 about here

Figure 9 about here

Figures 10, 11, and 12 replicate Figures 1, 2, and 3 for the fully rational model, respectively.

Figure 10 about here

Figure 11 about here

Figure 12 about here
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Figure 4. Profile Log Likelihood, Three Firm Model. Shown is the logarithm of the

profile likelihood plotted for a tenth of the posterior standard deviation to the left and right

of the maximum of the likelihood.
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Figure 5. Profile Log Likelihood, Three Firm Model. Shown is the logarithm of

the profile likelihood plotted for 24 posterior standard deviations to the left and right of the

maximum of the likelihood. Points that violate support conditions and points below 10−6

of the maximum of the likelihood are not plotted. The horizontal line is at 10−3 of the

maximum. The vertical lines indicate the range of the MCMC chain’s excursions after the

transient elements of the chain have died out.
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Figure 6. Profile Log Likelihood, Four Firm Model. Shown is the logarithm of the

profile likelihood plotted for a tenth of a posterior standard deviations to the left and right of

the maximum of the likelihood.
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Figure 7. Profile Log Likelihood, Four Firm Model. Shown is the logarithm of the

profile likelihood plotted for 48 posterior standard deviations to the left and right of the

maximum of the likelihood. Points that violate support conditions and points below 10−6

of the maximum of the likelihood are not plotted. The horizontal line is at 10−3 of the

maximum. The vertical lines indicate the range of the MCMC chain’s excursions after the

transient elements of the chain have died out.
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Figure 8. Marginal Posterior Distributions, Three Firm Model. Shown are his-

tograms constructed from an MCMC chain for the three firm model with 3,000,000 repeti-

tions at a stride of 375 for 8000 net. The salient feature of this graphic is the contrast of the

histogram for the parameter κc compared to that shown in Figure 9.
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Figure 9. Marginal Posterior Distributions, Four Firm Model. Shown are histograms

constructed from an MCMC chain for the four firm model with 3,000,000 repetitions at a stride

of 375 for 8000 net. The salient feature of this graphic is the contrast of the histogram for the

parameter κc compared to that shown in Figure 8.
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Figure 10. Cost, Revenue, and Entry Decisions. Plotted as a solid line in the first three

panels is the logarithm of cost for the three dominant firms in the boundedly rational three

firm model. The logarithm of cost is computed by averaging at Step 2e of the importance

sampler at the maximum likelihood estimate. The circles in these plots indicate that the

firm entered the market at that time point. The bottom panel shows the logarithm of total

revenue. The numbers at the bottom are the count of the number of dominant firms who

entered the market at that time point.

14



0 10 20 30 40

7
8

9
10

11
12

13
14

MYLAN’s log cost

o o o o o o o o o o o o o o o o o o o

0 10 20 30 40

7
8

9
10

11
12

13
14

NOVOPHARM’s log cost

x x x x x x x x x x x x

0 10 20 30 40

7
8

9
10

11
12

13
14

LEMMON’s log cost

* * * * * * * * * * *

Figure 11. Cost and Entry Decisions of the Dominant Firms. Plotted is the logarithm

of cost for the three dominant firms. The dashed line is under the boundedly rational three

firm model, and the solid under the four firm model. The circles indicate the markets that

Mylan entered, crosses the same for Novopharm, and the asterisks for Lemmon. The logarithm

of cost as described in the legend of Figure 10.
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Figure 12. Actual and Predicted Entry Decisions. Plotted as circles are the entry

decisions of the three dominant firms in the boundedly rational three firm model. The crosses

are the average predictions of the three firm model computed by averaging game solutions at

Step 2e of the importance sampler at the maximum likelihood estimate.
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