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Abstract

The contribution of generalized method of moments (Hansen and Singleton, 1982) was to

allow frequentist inference regarding the parameters of a nonlinear structural model without

having to solve the model. Provided there were no latent variables. The contribution of this

paper is the same. With latent variables.
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Models, Particle Filter
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1 Introduction

We propose a generalized method of moments (GMM) estimator (Hansen and Singleton,

1982) for frequentist inference regarding the parameters of a nonlinear structural model that

has dynamic latent variables. By latent variables we mean all endogenous and exogenous

variables in the model that are not observed. Under the assumptions listed in Section 2, the

estimator is consistent and asymptotically normally distributed.

Intuitively the problem we address is this: GMM works by using data that can be viewed

as a draw (i.e., a sample) from the finite sample distribution implied by a model to ap-

proximate an unconditional expectation. We are missing the data on the latent variables.

One possible remedy is to draw the latent variables from the conditional distribution of the

latent variables given the observed variables. The particle filter is a standard method for

drawing from a conditional distribution. To use it one needs both to be able to draw from

the marginal distribution of the latent variables and to be able to evaluate the conditional

density of the observed variables given the latent variables. In this paper, we assume that we

can draw from the marginal and we show that, if the GMM criterion is asymptotically nor-

mally distributed, we can synthesize a conditional density that will generate a valid particle

filter.

In the literature to which we contribute (cf. Flury and Shephard (2010), Fernandez-

Villaverde and Rubio-Ramirez (2006)) the assumption that one can draw from the marginal

distribution of the latent variables is standard. Our contribution is to be able to draw

from the conditional distribution of the latent variables given the observed variables without

knowledge of the conditional distribution of the observed variables given the latent variables.

The specifics of the estimator we propose are as follows: We assume enough knowledge of

the transition density of the latent variables that we can draw a future latent variable given

the past and the model’s parameters. Under this assumption, we can define a Metropo-

lis within Gibbs algorithm with Chernozhukov and Hong’s (2003) Markov Chain Monte

Carlo (MCMC) algorithm as the Metropolis step and Andrieu, Doucet, and Holenstein’s

(2010, Subsection 4.1) conditional particle filter algorithm as the Gibbs step. The result

is an MCMC chain in the parameters. Parameter estimates and their standard errors are
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computed from this MCMC chain.

The main attraction of the method we propose is that one does not have to solve the

structural model. For partial equilibrium models this is crucial because, in general, there do

not exist practicable alternatives.

We also expect that an important application for our results will be statistical infer-

ence regarding general equilibrium models in macroeconomic applications such as dynamic

stochastic general equilibrium models (DSGE). For this class of models there are a variety

of methods one might consider.

For analytically intractable models there are alternatives to what we propose but they

all rely on being able to solve the model numerically. For instance, one can use perturbation

methods to approximate the model, use the approximation to obtain an analytical expression

for the likelihood, and then use some method of numerical integration such as particle filtering

to eliminate the latent variables along the lines proposed by Fernandez-Villaverde and Rubio-

Ramirez (2006). Or, one can solve the model only to the point of being able to simulate it

and then use either simulated method of moments (SMM) (Duffy and Singleton, 1993) or

efficient method of moments (EMM) (Gallant and Tauchen, 1996). These cites are the ones

that we think readers will find most useful. They are not attributions. For attributions see

the cited papers.

The main reason one might want to consider alternatives to these frequentist inference

procedures is that one has misgivings about the quality of the numerical methods one has

used to solve the structural model. For instance, perturbation methods such as linearization

cause loss of information: they typically require dealing with singularity issues and with

possible multiplicity of solutions (indeterminacy). Moreover, lower order expansions can

lose important features of a model such as stochastic volatility (Bloom, 2009; Benigno,

Benigno, Nisticó, 2012). A secondary reason is to avoid singularities in the measurement

equation that can arise when using a likelihood based approach with particle filtering; see,

e.g., Subsection 6.2.

The aforementioned frequentist strategies have Bayesian counterparts. A state-of-the-

art Bayesian counterpart to Fernandez-Villaverde and Rubio-Ramirez (2006) is Flury and

Shephard (2010). A Bayesian counterpart to EMM is Gallant and McCulloch (2009).
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There is a Bayesian counterpart to GMM with latent variables, namely Gallant and Hong

(2007). They exploit some differences between Bayesian and frequentist inference with the

consequence that their approach does not directly accomodate frequentist inference. In this

paper we extend their constructions, which can be traced back to fiducial inference (Fisher,

1930), to accomodate frequentist inference. The main issue is showing that the conditional

density we construct can be used to generate draws from the conditional density of the latent

variables given the observed variables. Once this is done, the remainder of the analysis can

be accomplished by applying standard results.

2 Assumptions

Our assumptions are high level. The exception is Assumption 6 below, which is both impor-

tant and easily checked. Our justification for avoiding low level detail is twofold. It would (i)

be a routine, lengthy, tedious repetition of standard arguments of the sort found in Gallant

and White (1987) and Chernozhukov and Hong (2003) and (ii) for interesting, nonlinear,

structural models regularity conditions are impossible to check and are largely irrelevant

in applications. While a negative implication, especially with respect to identification, is

useful because it saves one from performing computations in vain, a positive implication is

of little value. If one is using derivative-based hill climbing methods, then what matters is

that optimizations converge to a limited number of isolated maxima (or minima) from many

starts and the computed Hessian is well conditioned. If one is using MCMC based methods

then what matters is that the chain mixes for relatively easily determined choices of tuning

parameters.

ASSUMPTION 1 We require the existence of (but not complete knowledge of) a dynamic

structural model that has parameters θ, a vector, that lie in a parameter space Θ. We

denote the true but unknown value of the parameters by θo. We observe the history X =

(X1, X2, ..., XT ), a subset of the endogenous and exogenous variables in the model. We do

not observe the variables in the model that remain: Λ = (Λ1,Λ2, ...,ΛT ). These are the latent

variables. Partial histories are denoted X1:t = (X1, X2, ..., Xt) and Λ1:t = (Λ1,Λ2, ...,Λt). �

Denote the probability measure determined by the structural model by P o
θ and note
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specifically that here θ is not necessarily equal to the true value θo but rather can be any

value in the parameter space Θ. Define po(Λ |X, θ) to be the conditional density function of

Λ given X that corresponds to P o
θ . Let po(Λ, θ) and po(Λt+1 |Λt, θ) denote the marginal and

transition densities for Λ that correspond to P o
θ , respectively. When we wish to emphasize

that the observed data is meant and not some hypothetical value we write Xo and Xo
1:t.

ASSUMPTION 2 We assume that we can draw from the transition density of the dynamic

latent variables Λt+1 ∼ po(Λt+1 |Λt, θ). The transition density is assumed to be ergodic. �

Examples of latent variables that satisfy Assumption 2 and are routinely used in eco-

nomics models are time-varying parameters, structural shocks, state-dependent parameters,

and state-dependent factors.

Note that the functional form po(Λt+1 |Λt, θ) implies that we can draw from the stationary

density po(Λt | θ) by drawing from po(Λt+1 |Λt, θ) with an arbitrary start Λ0 and waiting for

transients to die out.

The model can exhibit state dependence; e.g., Markov switching. If necessary to ac-

commodate state dependence, one can modify the functional form of the transition density

provided that ergodicity is retained because the only use made of the transition density

is to propose a value of Λt+1 for the purpose of extending Λ1:t. Therefore, the transition

density could, e.g., be of the form po(Λt+1 |Λ1:t, X1:t, θ). However, in this case, one must

provide some means to obtain an initial draw. One approach would be to use the method

proposed by Gallant and Hong (2007, p. 536), which starts with a guess for Λ0, draws from

po(Λt+1 |Λ1:t, X
o
1:t, θ), recursively, and uses the draw at t = T as the start for estimation.

When working with DSGE models one is used to thinking in terms of observables and

states. That is not the dichotomy we have in mind here. Our division is into what is observed

and what is not observed. Thus, what we term latent variables can include unobserved states,

unobserved exogenous variables, and unobserved endogenous variables. The practical limit

on what is permitted is determined by Assumption 2 (and the preceding paragraph).

Throughout we rely on conventional asymptotics, e.g., Hansen (1982), Gallant and White

(1987), and Chernozhukov and Hong (2003), which rules out most unit root type behavior.

This may require that a parameter lie in an interval, which is a condition that is trivially
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easy to impose on one or more parameters at the Metropolis step of our proposed estimation

method.

ASSUMPTION 3 We are given a set of conditional moment conditions of the form

E [g(Xt+1,Λt+1, θ) | It] = 0,

where the information set is It = {X−∞, ..., Xt Λ−∞, ...,Λt}. We assume that the uncondi-

tional moment conditions

0 = E [g(Xt+1,Λt+1, θ)] = E
[
�

g(Xt+1,Λt+1, θ) p
o(Λ |X, θo) dΛ

]
(1)

would identify θ if both X and Λ were observed. Similarly, we assume that the unconditional

moment conditions

0 = E [ḡ∗(Xt+1, θ)] = E
[
�

g(Xt+1,Λt+1, θ) p
o(Λ |X, θ) dΛ

]
(2)

would identify θ if X were observed. �

Condition (1) is conventional, reasonably low level, and often not difficult to check. Its

use is partial justification of (6). It would be the same as (2) were it not that the last θ

appearing in (2) is evaluated at θo in (1). The reason for the extra condition (2) is that we

do not observe Λ that is a draw from po(Λ |X, θo) as with conventional GMM but must use

a draw from po(Λ |X, θ). This is entirely analogous to identification in maximum likelihood

estimation with latent variables where one obtains a likelihood for X alone by integrating

out Λ from the joint likelihood for X and Λ. It is the method of moments analogue of a

standard assumption in the state space literature. Its use is partial justification of (7).

To perform a rough check on condition (2) one could integrate g(Xt+1,Λt+1, θ) with

respect to the stationary distribution of po(Λt+1 | θo) for putative θo to get an approximation

to ḡ∗(Xt+1, θ). Alternatively, as mentioned above, one could rely on being able to get the

MCMC chain that we propose to mix.

The method we propose, described in more detail below, consists of two steps: a Gibbs

step that draws Λ given X, θ, and the previously drawn Λ; and, a Metropolis step that draws

θ given X, Λ, and the previously drawn θ. We shall show that the θ draws are a sample from
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the asymptotic distribution of the GMM estimator determined by (2) for large T . These

draws are the means by which statistical inference is conducted. The moment conditions for

the Gibbs and Metropolis steps can be different. For the Gibbs step the perfect moments

would be those that spanned the scores of the the conditional density of X given Λ and θ,

were they known. For the Metropolis step the perfect moments would be those that spanned

the scores of the density for X given θ, were they known. These moment selection rules are

not achievable in practice but they do provide guidance in applications. Another reason that

one might want to split the moments into two groups is to reduce computation time. If, say,

one can divide ten moment conditions into two groups of five each, then computation time

would more than halve.

GMM estimation results depend on the skill one uses in constructing moment conditions.

As just mentioned, by making sure that the moments used at the Metropolis step span the

scores of the likelihood for observables (i.e., the density of X after eliminating Λ by integra-

tion), GMM results can be made the same as those for the maximum likelihood estimator

(MLE), which are the best achievable. This is usually impossible without having an analytic

expression for the likelihood, in which case there is no point to using GMM. However, there

do seem to be some principles one can apply in selecting moments at the Metropolis step

that we have discovered in our experimentation. One should try to identify as many param-

eters as possible from the observed data alone and try to make the latent variables depend

as much as possible on quantities that can be computed from the observed data. If one is

successful at this, then estimation results will be satisfactory, in our experience, but draws

from the conditional distribution of the latent variables will not mimic the true (but unob-

served) trajectory of the latent variables very well. This can be corrected, in our experience,

by choosing the moments used in the Gibbs step so that observed variables depend on the

latent variables as much as possible without regard for identification of parameters. I.e., the

exact opposite of the goal for choosing moments for the Metropolis step. We illustrate these

principles in the DSGE example of Subsection 6.2.

Oddly enough, if our DSGE example is not misleading, a poor choice of moments at the

Gibbs step does not materially degrade the performance of the estimator for θ, as seen in

Subsection 6.2. This is probably for two reasons: (i) The amount of noise in an unbiased
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estimate of the likelihood in an MCMC chain affects the rejection rate of the chain and not

much else; on this see Flury and Shephard (2010). (ii) The Gibbs algorithm has memory so

that future draws will mimic the trajectory of the latent variables with high probability once

a particle that mimics the trajectory has been drawn. This intuition probably explains why

using a “likelihood” (cf., equation (10)) with g∗(Xt+1, θ) computed by averaging over a large

number of particles rather than by evaluation at one Gibbs draw did not work well when we

tried it. Averaging biases the estimate of the “likelihood” whereas our Gibbs strategy does

not. Also, the Gibbs strategy is much cheaper to compute.

Some parameters of a model, particularly a DSGE model, may not be identified even if

the correct likelihood involving only observables were known. This is a common problem

in frequentist inference. When it occurs, the unidentified parameters must be calibrated or

one must resort to methods for determining the boundaries of identified sets. Our DSGE

example in Subsection 6.2 exhibits this problem and we deal with it by calibration.

Sample moment conditions corresponding to (1) are

gT (X,Λ, θ) =
1√
T

T∑

t=1

g(Xt,Λt, θ) (3)

with weighting matrix

Σ(X,Λ, θ) =
1

T

T∑

t=1

g̃(Xt,Λt, θ)
′g̃(Xt,Λt, θ) (4)

g̃(Xt,Λt, θ) = g(Xt,Λt, θ) −
1√
T
gT (X,Λ, θ) (5)

If the moment conditions are serially correlated one will have to substitute a heteroskedastic

autoregressive consistent (HAC) weighting matrix (Andrews, 1991) for that shown as (4). If

a HAC matrix is used, the residuals used to compute it should be of the form shown as (5).

Define g∗T (X, θ), Σ∗(X, θ), and g̃∗(Xt, θ) the same as (3), (4), and (5), respectively, but

with a draw from po(Λ |X, θ) replacing Λ throughout. It is important to note that the same

draw is substituted for Λ in each of the equations (3), (4), and (5), not a different draw per

equation.

ASSUMPTION 4 We assume that the sample moment conditions normalized by the
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weighting matrix are asymptotically normal; i.e.,

Z = [Σ(X,Λ, θo)]−1/2 gT (X,Λ, θo)
d→ N(0, I) (6)

Z∗ = [Σ∗(X, θo)]−1/2 g∗T (X, θo)
d→ N(0, I), (7)

and that the parameter space Θ is compact. �

Regularity conditions such that asymptotic normality obtains are in Hansen (1982), Gal-

lant and White (1987), and elsewhere. Compactness of Θ is typically listed among these

regularity conditions. We impose compactness here to provide a presumption that particle

filter weights will be bounded and that the MCMC chain we propose will mix.

Define

p(X,Λ, θ) = (2π)−M/2 exp

{
−1

2
gT (X,Λ, θ)′ [Σ(X,Λ, θ)]−1 gT (X,Λ, θ)

}
(8)

p∗(X,Λ, θ) = p(X,Λ, θ) po(Λ, θ) (9)

Note that (9) implies p∗(X |Λ, θ) = p(X, Λ, θ). We show in Section 3 that (8) and (9)

can be regarded as density functions that correspond to probability measures Pθ and P ∗
θ ,

respectively. Also in Section 3, we show that the three measures assign the same probability

to preimages of Z.

The GMM estimator that we are targeting has objective function

S∗
T (θ) = g∗T (X, θ)′ [Σ∗(X, θ)]−1 g∗T (X, θ). (10)

When we wish to emphasize that the GMM estimator to which we refer has objective function

(10) we will use the notation GMM∗.

ASSUMPTION 5 The Chernozhukov and Hong (2003) result holds for the target S∗
T (θ);

that is, a sample
{
θ(i)

}R
i=1

from the density

p(θ |X, Λ) ∝ p(X, Λ, θ) (11)

with Λ a draw from po(Λ |X, θ) is a sample from the asymptotic distribution of the GMM∗

estimator for large T . �
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This is the most high level of our assumptions. Inspection of the proofs in Chernozhukov

and Hong (2003) suggests that Assumption 5 will be satisfied if the estimator that GMM∗

targets is strongly identified, consistent, and asymptotically normal. The method we propose

is as follows:

1. Initialization. Choose a reasonable start (θ(0), Λ(0)) and set i = 1.

2. Sample θ(i) from p(θ |X,Λ(i−1)) ∝ p(X, Λ(i−1), θ) knowing θ(i−1) using a Metropolis

chain that starts at θ(i−1). (Subsection 4.3).

3. Sample Λ(i) from p∗(Λ |X, θ(i)) ∝ p(X,Λ, θ(i))po(Λ, θ(i)) knowing Λ(i−1) using a particle

filter that conditions on Λ(i−1) (Subsection 4.2).

4. Increment i and repeat from Step 2 until i exceeds some preassigned value R.

It is of interest in the frequentist context to be able to generate counterfactuals for Λ

given some choice of X and θ. For this one needs the ordinary particle filter algorithm

(Subsection 4.1) that generates draws from p∗(Λ |X, θ) without conditioning on a previous

Λ draw. Actually, as we shall see in Section 5, it is only the ordinary particle filter algorithm

that we have to derive because the particle filter that draws from p∗(Λ |X, θ) conditional on

a previous draw of Λ obtains as a corollary.

Essentially what we propose is to use a Bayesian method, i.e., an MCMC chain, with

an uninformative prior over compact Θ as a frequentist estimator. By the result of Cher-

nozhukov and Hong (2003) the mode (or mean) of this chain is a consistent, asymptotically

normal estimator with variance matrix estimated consistently by the variance matrix of the

chain. This asymptotic distribution is that for target GMM∗.

Also, we shall have to come to grips with the issue that the actual small sample distri-

bution of Z is not the standard normal Φ on R
M but some other distribution ΨT , which

issue we shall address in Sections 3 and 5. Excepting those two sections we shall ignore the

distinction between Φ and ΨT because asymptotically it does not matter and we only use

densities defined in terms of Φ and its density φ in all other sections of the paper.

We impose an additional requirement that is critical:
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ASSUMPTION 6 Recall that X1:t = (X1, . . . , Xt), Λ1:t = (Λ1, . . . ,Λt), and define

Zt(X1:t,Λ1:t, θ) = [Σ(X1:t,Λ1:t, θ)]
−1/2gt(X1:t,Λ1:t, θ). (12)

For each pair (Λ1:t, θ) that the structural model permits, let X (Λ1:t,θ) be the set of permitted

X1:t. Let

C(Λ1:t,θ)
z = {X1:t ∈ X (Λ1:t,θ) : Zt(X1:t,Λ1:t, θ) = z}. (13)

We assume that C
(Λ1:t,θ)
z is not empty for any z ∈ R

M .

If C
(Λ1:t,θ)
z is not empty, then for each (Λ1:t, θ) and z we may choose a point X∗

1:t ∈ X (Λ1:t,θ)

for which

Zt(X
∗
1:t,Λ1:t, θ) = z.

Define

Υ(z,Λ1:t, θ) = X∗
1:t. (14)

Recall that Xo
1:t denotes the observed X1:t and define zo = Z(Xo

1:t,Λ1:t, θ). For z = zo

we shall choose the representer X∗
1:t of C

(Λ1:t,θ)
z to be Xo

1:t so that we always have Xo
1:t =

Υ(Zt(X
o
1:t,Λ1:t, θ),Λ1:t, θ).

If C
(Λ1:t,θ)
z is not empty, then the event

Cθ
λ1:t,z

= {(X1:t,Λ1:t) : Zt(X1:t,Λ1:t, θ) = z, Λ1:t = λ1:t}

can occur for every z ∈ R
M . Then the union of all sets that can occur when Λ1:t = λ1:t is

known to have occurred is

Oθ
λ1:t

= ∪z∈RMCθ
λ1:t,z

.

We assume P o
θ (O

θ
λ1:t

) = 1. �

As yet we have not encountered a practical application that violates Assumption 6.

Sufficient is that each element of gt is unbounded and continuous with respect to at least

one continuous element of Xt and that the residuals used to compute the weighting matrix

are centered as in (5).

12



3 The Likelihood Induced by GMM

Gallant and Hong (2007) introduced a method for Bayesian inference for dynamic models

with (possibly endogenous) unobserved variables building on ideas due to Fisher (1930)

and used it to estimate the monthly and annual pricing kernels from a panel of equity and

fixed income securities. In the course of this development they characterized the likelihood

induced by GMM. We describe their ideas mostly through examples because our experience

from comments on our work is that the ideas are easier to grasp from examples than by the

general development in Gallant and Hong (2007). Subsection 3.5 concludes with summary

of their ideas that relates directly to the examples couched in the notation of this paper.

This section makes the following points.

• A GMM criterion function induces a probability measure Pθ on a σ-algebra C containing

sets C that have elements (X,Λ). Typically C is coarse in the sense that it does not

contain all the Borel sets.

• Knowledge of the marginal distribution of Λ allows one to embed C within a σ-algebra

C∗ that contains the rectangles RB = R
dim(X)×B, where B is a Borel subset of R

dim(Λ)

and to define a probability measure P ∗
θ on C∗ that agrees with both Pθ on C and with

the true data generating process P o
θ on C.

• The expectation E(f) of a C-measurable function f(X,Λ) has the same value whether

computed under Pθ, P
∗
θ , or P o

θ .

In the examples θ is fixed so we can simplify by considering X and Λ only, leaving θ out

of the discussion. The abstraction in Subsection 3.5 reintroduces θ.

3.1 A Probability Distribution Induced by GMM

Consider a situation where the probability distribution of a GMM criterion function D is

known such as that shown in Table 1. In Table 1, D is the difference D = X − Λ between

tosses of two correlated, six-sided dice X and Λ. The expectation of D is zero.

(Table 1 about here)
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In general, for a discrete probability measure defined on a measurable space (R × R, C),

one conditions on knowing that a random variable Λ has the value λ by conditioning on the

union of all sets in C that contain the point (x, λ) for some x. Denote this union by Oλ.

Oλ is the union of all sets in C that can occur if Λ = λ is known to have occurred. For the

specific case shown in Table 1, the conditional probability density is

P (D = d |Λ = λ) =
P (Cd ∩Oλ)

P (Oλ)
, (15)

where Cd is the preimage of d under D, as displayed in Table 1, and C is the smallest σ-

algebra that contains the preimages {Cd : d = −5, . . . , 5}. In this instance C consists of the

empty set ∅ and all possible unions of the sets Cd.

One is accustomed to the case where Oλ is the rectangle R×{λ}, which in this example

would reduce to Rλ = D×λ with D = {1, 2, 3, 4, 5, 6}. But in this example, C does not include

the rectangles Rλ. If the σ-algebra over which probability is defined does not contain all the

rectangles then Oλ need not take the form R × {λ}. Nonetheless, the principle expressed in

(15) remains valid.

Because P (Cd ∩Oλ) =
∑6

x=1 ICd
(x, λ)P (D = d), an expression for P (D = d |Λ = λ) is

P (D = d |Λ = λ) =

∑6
x=1 ICd

(x, λ)P (D = d)
∑5

d=−5

∑6
x=1 ICd

(x, λ)P (D = d)
. (16)

The denominator of (16) can be regarded as a “marginal” distribution

Q(Λ = λ) = P (Oλ) =
5∑

d=−5

6∑

x=1

ICd
(x, λ)P (D = d). (17)

in the sense

P (D = d) =
6∑

λ=1

P (D = d |Λ = λ)Q(Λ = λ)

Any C-measurable f must be constant on the preimages. For such f the formula

E(f |Λ = λ) =
6∑

x=1

f(x, λ)
5∑

d=−5

ICd
(x, λ)P (D = d |Λ = λ) (18)

can be used to compute conditional expectation because f can be regarded as a function of

d and the right hand side of (18) equals

5∑

d=−5

f(d)P (D = d |Λ = λ).
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Equation (18) implies that we can view P (D = d) as defining a conditional density function

P (X = x |Λ = λ) =
5∑

d=−5

ICd
(x, λ)P (D = d |Λ = λ) (19)

that is a function of x as long as we only use it in connection with C-measurable f .

To get an expression that agrees with the expressions in Gallant and Hong (2007) note

that we can write equation (19) as

P (X = x |Λ = λ) =
P (D = x− λ)

∑6
x=1 P (D = x− λ)

. (20)

Note also that Q(Λ = λ) =
∑6

x=1 P (D = x− λ).

The main idea in the development above is that if Λ is fixed at λ then d can be put into

a one-to-one correspondence with x. Similar considerations define P (D = d |X = x),

P (Λ = λ |X = x) =
P (D = x− λ)

∑6
λ=1 P (D = x− λ)

.

and Q(X = x) =
∑6

λ=1 P (D = x− λ)

3.2 Dominating Measure

With respect to Table 1, consider the situation where X is itself a moment X = X1 + X2,

where the range of both X1 and X2 are the integers. Let,

Bs = {(x1, x2) : x1 + x2 = s; x1, x2 = 0,±1,±2, . . .}

for s = 1, 2, . . . , 6. Then the preimages Cd listed in Table 1 become, instead,

C ′
−5 = {(x1, x2, 6) : (x1, x2) ∈ B1}

C ′
−4 = {(x1, x2, 5) : (x1, x2) ∈ B1} ∪ {(x1, x2, 6) : (x1, x2) ∈ B2}

...

The difficulty we run into is that we do not have an obvious dominating measure with which

to integrate the conditional density P (X1, X2 = x1, x2 |Λ = λ). One way to circumvent the

difficulty is as follows. Given λ, for each s = 1, 2, . . . , 6 choose (x1, x2) ∈ Bs to label Bs.

The dominating measure puts mass one on these six representors and mass zero on all other

pairs of integers.
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The labeling of preimages by a representor X is one of the purposes of Assumption 6

although Assumption 6 is actually not satisfied this instance because we do not have P (Oλ) =

1. There are other ways to introduce a dominating measure so that P (X1, X2 = x1, x2 |Λ =

λ) can be regarded as a density. How one actually does it does not matter.

3.3 A Particle Filter for Distributions Induced by GMM

The particle filter is a recursive importance sampling scheme. Here we discuss the essential

elements of the recursive step and an extension of P to a measure P ∗ on a larger σ-algebra

using the example of the preceding subsection.

Assume that, in addition to the information in Table 1, the probability assigned to

rectangles is known to be P ∗(Rλ) = 1
6
. With this additional information we can augment

the σ-algebra over which P is defined to include the rectangles Rλ. Let C∗ denote the smallest

σ-algebra that contains both {Cd}5
d=−5 and {Rλ}6

λ=1. In principle the definition of P can be

extended to all sets in C∗. Let (D×D, C∗, P ∗) denote the extended probability space. In this

instance, the singleton sets {(x, λ)} are in C∗ so that under P ∗ conditional probability has

its conventional definition

P ∗(X = x |Λ = λ) =
P ∗({(x, λ)})
P ∗(Rλ)

P ∗(Λ = λ |X = x) =
P ∗({(x, λ)})
P ∗(Rx)

.

Consider

6∑

λ=1

f(x, λ)P ∗(X = x |Λ = λ)

P ∗(X = x)
P ∗(Λ = λ)

=
6∑

λ=1

f(x, λ)P ∗(X = x,Λ = λ)

P ∗(Λ = λ)P ∗(X = x)
P ∗(Λ = λ) (21)

=
6∑

λ=1

f(x, λ)P ∗(Λ = λ |X = x)

From equation (21) we observe that for C∗-measurable f we can estimate

E∗(f |X = x) =
6∑

λ=1

f(x, λ)P (Λ = λ |X = x)

16



by drawing a sample λ̃1, . . . , λ̃N from P ∗(Λ = λ) and estimating E∗(f |X = x) by

Ẽ∗(f |X = x) =
1

N

N∑

i=1

P ∗(X = x |Λ = λ̃i)

P ∗(X = x)
f(x, λ̃i)

Because the constant function f(x, λ) = 1 is C∗-measurable we have

1 = lim
N→∞

1

N

N∑

i=1

P ∗(X = x |Λ = λ̃i)

P ∗(X = x)
a.s.

from which it follows that if we do not know P ∗(X = x) then we can instead estimate

E∗(f |X = x) by the weighted sum

Ẽ∗(f |X = x) =
N∑

i=1

wif(x, λ̃i), (22)

where

wi =
w̃i∑N
i=1 w̃i

and

w̃i = P ∗(X = x |Λ = λ̃i).

We can replace (22) by a formula with equal weights by resampling. That is, we view

P̃ (Λ = λ̃i) = wi as defining a discrete probability distribution on the points {λ̃1, . . . , λ̃N}
and sample with replacement from P̃ to get λ̂1, . . . , λ̂N and estimate E∗(f |X = x) by

Ê∗(f |X = x) =
1

N

N∑

i=1

f(x, λ̂i). (23)

An implication of (23) is that we can view λ̂1, . . . , λ̂N as a sample from P ∗(Λ = λ |X = x).

These are the essential ideas behind the particle filter. A particle filter is a recursive algorithm

with equations (22) and (23) defining the recursive step.

A difficulty is that the information in Table 1 and the knowledge that P ∗(Rλ) = 1
6

is not

enough to deduce P ∗({(x, λ}) because that knowledge and the knowledge that only sixteen

P ∗({(x, λ}) can be non-zero (cf. Table 1), implies a singular system of nine equations in

sixteen unknowns. There is one linear dependency that reduces the effective number of

equations to eight.

4

18
=

5∑

i=1

P ∗({(i, i+ 1)}) (24)
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10

18
=

6∑

i=1

P ∗({(i, i)})

4

18
=

5∑

i=1

P ∗({(i+ 1, i)})

1

6
= P ∗({(1, 1)}) + P ∗({(2, 1)})

1

6
= P ∗({(1, 2)}) + P ∗({(2, 2)}) + P ∗({(3, 2)})

1

6
= P ∗({(2, 3)}) + P ∗({(3, 3)}) + P ∗({(4, 3)})

1

6
= P ∗({(3, 4)}) + P ∗({(4, 4)}) + P ∗({(5, 4)})

1

6
= P ∗({(4, 5)}) + P ∗({(5, 5)}) + P ∗({(6, 5)})

1

6
= P ∗({(5, 6)}) + P ∗({(6, 6)})

For some purposes all solutions will be observationally equivalent and the choice of solution

will not matter. Unfortunately the particle filter does depend upon choice of solution and

there appears to be no logic that would cause one to favor one solution over another. This

difficulty can be circumvented when P (Oλ) = 1 as seen in the next example, which is actually

a discretized variant of Fisher (1930).

3.4 An Example where P (Oλ) = 1

Consider the case

P [Z(X,Λ) = z] =
1 − p

1 + p
p|z|

Z(X,Λ) = X − Λ

X ∈ N

Λ ∈ N

N = { 0, ±1, ±2, . . . }

The preimages of Z(x, λ) are

Cz = {(x, λ) : x = z + λ, λ ∈ N} z ∈ N

which lie on 45 degree lines in the (x, λ) plane. Given λ, for every z ∈ N there is an x ∈ N

with (x, λ) ∈ Cz so every Cz can occur. Therefore Oλ = ∪z∈NCz and P (Oλ) = 1 for every
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λ ∈ N. Therefore,

P (Z = z |Λ = λ) =
P (Cz ∩Oλ)

P (Oλ)
= P (Cz) =

1 − p

1 + p
p|z|, (25)

which does not depend on λ. Consequently,

P (X = x |Λ = λ) = P (Z = x− λ)

using logic analogous to that leading to equation (20). The situation P (Oλ) = 1 seems to be

what occurs most often in applications because Z is usually (at least asymptotically) pivotal.

When probability P ∗(Rλ) is assigned to rectangles the extension of P to P ∗ is

P ∗(X = x,Λ = λ) = P (Z = x− λ)P ∗(Rλ)

P ∗(X = x |Λ = λ) = P (Z = x− λ).

The principal guiding this choice of solution to equations analagous to (24) is that the

conditional probability of X given Λ should be the same under P ∗
θ and Pθ. Similarly for the

conditional probability of Z given Λ. In the example of Subsection 3.1, this choice was not

available because equality of the conditional probability of Z given Λ under both P ∗
θ and Pθ

would be violated.

We next verify that the requisite conditions on P ∗
θ are satisfied. Agreement on C is

satisfied, i.e., (N × N, C, P ∗) = (N × N, C, P ), because

P ∗(Z = z) =
∑

λ∈N

P ∗(X = z + λ,Λ = λ) = P (Z = z)
∑

λ∈N

P ∗(Rλ) = P (Z = z). (26)

The correct probability is assigned to rectangles because

∑

x∈N

P ∗(X = x,Λ = λ) =
∑

x∈N

P (Z = x− λ)P ∗(Rλ) = P ∗(Rλ)
∑

z∈N

P (Z = z) = P ∗(Rλ).

Equations (26) and (25) imply that P ∗(Z = z |Λ = λ) = P (Z = z |Λ = λ).

3.5 The Abstraction

Let P o
θ denote the denote the probability measure on the Borel subsets of R

dim(X) × R
dim(Λ)

defined by the true data generating process. Hold θ fixed for the remainder of this subsection

understanding that what follows is meant to hold for every θ in the parameter space Θ. Let
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C be the smallest σ-algebra containing the preimages C = {(X,Λ) : Z(X,Λ, θ) ∈ B} where

B ranges over the Borel subsets of R
M and Z is given by (6). Let C∗ be the smallest σ-

algebra that contains all sets in C plus all rectangles of the form RB = R
dim(X) × B, where

B is a Borel subset of R
dim(Λ). The σ-algebras C and C∗ may depend on θ, which we let be

understood to reduce notational clutter. Define Pθ(C) = P o
θ (C) for every C ∈ C. Note that

(Rdim(X) × R
dim(Λ), C, P o

θ ) = (Rdim(X) × R
dim(Λ), C, Pθ)

so that expectations E(f)are computed the same on each probability space for C-measurable

f . Assume that Z(X,Λ, θ) has distribution ΨT (z) and density ψT (z) under P o
θ . ψT (z) may

depend on θ, which we let be understood; it will not if Z is pivotal with respect to P o
θ . Let

po(Λ, θ) be the marginal density for Λ implied by P o
θ .

Recall that Oλ is the union of all sets in C that can occur if Λ = λ is known to have

occurred and note that Assumption 6 implies that the probability of Oλ is one under the

probability space (Rdim(X) × R
dim(Λ), C, Pθ). Motivated by the discussion in Subsection 3.4

we define

p∗(X |Λ, θ) = p(X,Λ, θ) = ψT [Z(X,Λ, θ)]. (27)

p∗(X,Λ, θ) = p∗(X |Λ, θ) po(Λ, θ)

For given Λ and θ and C-measurable f , which must be a function of the form f(Z(X,Λ, θ)),

we define
�

f(Z(x,Λ, θ)) p∗(x |Λ, θ) dx =

�

Rdim(Z)

f(z)ψT (z) dz, (28)

leaving the dominating measure dx unspecified. In particular, for f(X,Λ, θ) = IB[Z(X,Λ, θ)]

where B is a Borel subset of R
M , we have

�

IB[Z(X,Λ, θ)] p∗(x |Λ, θ) dx =

�

B

ψT (z) dz. (29)

To each C ∈ C there is a Borel set B for which C = {(X,Λ) : Z(X,Λ, θ) ∈ B}. Therefore,

the fact that the right hand side of (29) does not depend on Λ implies that the probability

measure P ∗
θ that corresponds to the density p∗(X,Λ, θ) satisfies

P ∗
θ (C) =

�

B

ψT (z) dz (30)
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for every C ∈ C. For rectangles of the form RB = R
dim(X) × B where B is a Borel subset of

R
dim(Λ) we already have that

P ∗
θ (RB) =

�

B

po(λ, θ) dλ. (31)

We conclude that P ∗
θ and P o

θ assign the same values to C ∈ C and to the rectangles RB. For

C ∈ C∗ that cannot be computed using (30) and (31) define P ∗
θ (C) = P o

θ (C). We cannot

compute these additional probabilities but it does not matter because we never need to; their

existence suffices. We now have

(Rdim(X) × R
dim(Λ), C, P o

θ ) = (Rdim(X) × R
dim(Λ), C, Pθ) = (Rdim(X) × R

dim(Λ), C, P ∗
θ ).

(Rdim(X) × R
dim(Λ), C∗, P o

θ ) = (Rdim(X) × R
dim(Λ), C∗, P ∗

θ ).

For any C-measurable f , E(f) will be computed the same under any of these three probability

measures: P o
θ , Pθ, or P ∗

θ . Similarly, for C∗-measurable f , E(f) will be computed the same

under P o
θ , and P ∗

θ .

For large T we have under Assumption 4 that ΨT (z)
.
= Φ(z) whence we can replace (27)

by

p∗(X |Λ, θ) = p(X,Λ, θ) = φ[Z(X,Λ, θ)].

and drop the T from the marginal density for Λ to obtain expressions that agree with

Section 2.

4 Algorithms

Three algorithms are required to implement our method:

• A particle filter (PF) algorithm.

– Input: θ.

– Output: Draws
{
Λ(i)

}N
i=1

from p∗(Λ |X, θ).

• A Gibbs algorithm.

– Input: The previous draw Λ(i−1) and a draw θ(i) from p(θ |X,Λ(i−1)) ∝ p(X,Λ(i−1), θ).

– Output: A draw Λ(i) from p∗(Λ |X, θ(i)) that is conditional on Λ(i−1).

• A Metropolis algorithm.
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– Input: The previous draw θ(i) and a draw Λ(i) from p∗(Λ |X, θ(i)).

– Output: A draw θ(i+1) from p(θ |X,Λ(i)) ∝ p(X,Λ(i), θ) via a chain started at θ(i).

In this section we present them in turn.

The particle filter algorithm produces draws from the conditional distribution of Λ given

X and θ that is memoryless with respect to previous draws of Λ. The Gibbs algorithm is

a corollary to the particle filter. It produces a draw from the conditional distribution of

Λ given X and θ with memory of the previously drawn Λ, which improves computational

efficiency. The Metropolis algorithm produces a draw from the conditional distribution of θ

given Λ and X.

We previously introduced the notation X1:t = (X1, ..., Xt) and Λ1:t = (Λ1, ...,Λt) for

partial histories. The joint density for partial histories is

p(X1:t,Λ1:t, θ) = (2π)−M/2 exp

{
−1

2
gt(X1:t,Λ1:t, θ)

′ [Σ(X1:t,Λ1:t, θ)]
−1 gt(X1:t,Λ1:t, θ)

}
, (32)

which corresponds to (8). The density p∗(X1:t |Λ1:t, θ) is equal to (32) and the density

p(θ |Λ1:t, X1:t) is proportional to (32). We do not need the proportionality factor for

p(θ |Λ1:t, X1:t) because we use a Metropolis algorithm to draw from it.

4.1 A Particle Filter

1. Initialization.

• Input θ (and X )

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 1, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

) from po(Λt|Λt−1, θ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

)

2. Importance sampling step.

• For i = 1, . . . , N sample Λ̃
(i)
t from po(Λt|Λ(i)

t−1, θ) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t ).
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• For i = 1, . . . , N compute weights w̃
(i)
t = p∗(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

3. Selection step.

• For i = 1, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t} according

to the weights.

4. Repeat

• If t < T, increment t and go to Importance sampling step;

• else output
{

Λ
(i)
1:T

}N

i=1
.

4.2 A Gibbs Algorithm

1. Initialization.

• Input Λ
(1)
1:T , θ (and X )

• Set T0 to the minimum sample size required to compute gt(X1:t,Λ1:t, θ).

• For i = 2, . . . , N sample (Λ
(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

) from po(Λt|Λt−1, θ).

• Set t to T0 + 1.

• Set Λ
(i)
1:t−1 = (Λ

(i)
1 ,Λ

(i)
2 , . . . ,Λ

(i)
T0

)

2. Importance sampling step.

• For i = 2, . . . , N sample Λ̃
(i)
t from po(Λt|Λ(i)

t−1, θ) and set

Λ̃
(i)
1:t = (Λ

(i)
0:t−1, Λ̃

(i)
t ).

• For i = 1, . . . , N compute weights w̃
(i)
t = p(X1:t | Λ̃(i)

1:t, θ).

• Scale the weights to sum to one.

3. Selection step.
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• For i = 2, . . . , N sample with replacement particles Λ
(i)
1:t from the set {Λ̃(i)

1:t}Ni=1
according

to the weights.

4. Repeat

• If t < T, increment t and go to Importance sampling step;

• else output the particle Λ
(N)
1:T .

4.3 A Metropolis Algorithm

To implement a Metropolis algorithm we require a proposal density for θ. A proposal density

is a transition density of the form T (θold, θnew) such as a move-one-at-a-time random walk.

In the examples of Section 6, we used the move-one-at-a-time random walk that uniformly

selects an index k and then moves the element θk,old of θold to θk,new according to a normal

with mean θk,old and variance σk, where σk is chosen by trial and error to achieve a rejection

rate of about 50% in the Accept-Reject step of the algorithm that follows. For K below we

set K = 50 in our examples.

• Input: Λ, θold (and X )

• Propose: Draw θprop from T (θold, θ)

• Accept-Reject: Put θ(i) to θprop with probability

α = min

[
1,
p(X,Λ, θprop)T (θprop, θold)

p(X,Λ, θold)T (θold, θprop)

]

else put θ(i) to θold.

• Repeat: If i < K put θold = θ(i) and go to Propose; else output θ(K).

5 Theory

5.1 Particle Filter Theory

THEOREM 1 Under Assumptions 1 through 6, the particle filter algorithm defined in

Subsection 4.1 generates draws from p∗(Λ |X, θ).
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Proof Refer to Assumption 6 for the notation which follows.

From the point of view of particle filter theory we have a transition density po(Λt |Λt−1, θ)

and a measurement density

p#(zt |Λ1:t, θ) = n {[Zt[Υ(zt,Λ1:t, θ),Λ1:t, θ] | 0, I} (33)

Note particularly that with θ and Λ1:t held fixed, the measurement density depends only on

zt ⊂ R
M , Λ1:t, and θ; it does not depend on X1:t. The particle filter produces draws Λ

(i)
1:T

from the density p#(Λ1:T | z1:T , θ) ∝ p#(zt |Λ1:t, θ)p
o(Λ1:t, θ). However, Assumption 6 puts

z1:T into a one-to-one correspondence with the observed Xo
1:T . Therefore,

p∗(Λ1:T |Xo
1:T , θ) = p#(Λ1:T | z1:T , θ).

What we want are draws from the actual conditional density of Λ = Λ1:T given Xo
1:T

that we denote by fT (Λ | z1:T , θ). Let ΨT (·) denote the actual distribution of ZT (Xo
1:T ,Λ, θ)

and ψT (·) its density function. We have assumed that ΨT (·) converges in distribution to the

standard normal distribution Φ(·), with density φ(·), for large T . Let

u
(i)
T = φ(z

(i)
T ) po(Λ | θ) (34)

UT =

�

φ(ZT (Xo
1:T ,Λ, θ)) p

o(Λ | θ) dΛ (35)

v
(i)
T = ψT (z

(i)
T ) po(Λ | θ) (36)

VT =

�

ψT (ZT (Xo
1:T ,Λ, θ)) p

o(Λ | θ) dΛ (37)

where

po(Λ|θ) = po(Λ
(i)
1 | θ)

T∏

s=2

po(Λ(i)
s |Λ(i)

s−1, θ).

Using (34) through (37) to construct importance sampling weights, we have

1

N

N∑

i=1

v
(i)
T

u
(i)
T

UT
VT

gT (Xoe :1:T ,Λ
(i)
1:T , θ) =

UT
VT

1

N

N∑

i=1

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (38)

is an approximation to
�

gT (Xo
1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (39)

The approximation error decreases as N → ∞.
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We shall first show that
UT
VT

1

N

N∑

i=1

gT (Xo
1:T ,Λ

(i)
1:T , θ) (40)

also approximates (39) for large N and T .

Choose the cube (a0, b0] large enough that

UT
VT

�

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]} gT (Xo

1:T ,Λ, θ) fT (Λ | z1:T , θ) dΛ (41)

approximates (39) to within ǫ/4. Let η = min{φ(z) | z ∈ (a0, b0]}. The assumption of

convergence in distribution implies that the convergence of ΨT ((a, b]) to Φ((a, b]) is uniform

over all cubes of the form (a, b] (Billingsly and Topsoe, 1967). Choose T large enough that

|ΨT ((a, b]) − Φ((a, b])| < ǫη/4. Choose N large enough that

UT
VT

1

N

N∑

i=1

I{ZT (Xo
1:T ,Λ, θ) ∈ (a0, b0]}

ψT (z
(i)
T )

φ(z
(i)
T )

gT (Xo
1:T ,Λ

(i)
1:T , θ) (42)

approximates (41) to within ǫ/4. Choose cubes of the form (ai, bi] of equal edge length h

small enough that ΨT ((ai,bi])/h
M

Φ((ai,bi])/hM approximates
ψT (z

(i)
T

)

φ(z
(i)
T

)
to within ǫ/4. We have shown that (40)

approximates (39) to within ǫ.

We shall now show that UT

VT
tends to one.

Choose J disjoint rectangles Ij = (cj, dj], where elements of cj may be −∞ and elements

of dj may be ∞, whose union is R
M and choose points ej ∈ Ij such that

∣∣∣∣∣

J∑

j=1

ψT (ej)IIj(z) − ψT (ej)

∣∣∣∣∣ < ǫ

∣∣∣∣∣

J∑

j=1

φ(ej)IIj(z) − φ(ej)

∣∣∣∣∣ < ǫ.

Note that 1 =
∑J

j=1

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ. Then for any T,

∑J
j=1 ψT (ej)

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − ǫ
∑J

j=1 φ(ej)
�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + ǫ

<
UT
VT

<

∑J
j=1 ψT (ej)

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + ǫ
∑J

j=1 φ(ej)
�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − ǫ
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Choose cubes of the form (aj, bj] of equal edge length h small enough that ΨT ((aj, bj])/h
M

approximates ψT (ej) to within ǫ and Φ((aj, bj])/h
M approximates φ(ej) to within ǫ, whence

∑J
j=1 ΨT ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − 2ǫhM

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + 2ǫhM

<
UT
VT

<

∑J
j=1 ΨT ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + 2ǫhM

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − 2ǫhM

Choose T large enough that |ΨT ((a, b]) − Φ((a, b])| < ǫ, whence

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − ǫ− 2ǫhM

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + ǫ+ 2ǫhM

<
UT
VT

<

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ + ǫ+ 2ǫhM

∑J
j=1 Φ((aj, bj])

�

IIj(ZT (Xo
1:T ,Λ, θ)) p

o(Λ|θ) dΛ − ǫ− 2ǫhM

which proves that UT

VT
tends to one.

Regularity conditions sufficient to imply that particles are draws from the density

p#(Λ1:T | z1:T , θ) are in Andrieu, Doucet, and Holenstein (2010). They are mild, requir-

ing that the weights at the importance sampling step be bounded and that multinomial

resampling be used, which is the scheme used at the selection step.

The regularity conditions used to prove consistency and asymptotic normality of GMM

estimators typically include a compact parameter space, domination conditions on the mo-

ment conditions, and bounds on the eigenvalues of the weighting matrix so that bounded

weights are typically a side effect of these conditions. ✷

5.1.1 Comments on Particle Filter Theory

The performance of the particle filter depends upon the variance of the weights. As remarked

earlier, on can use penalty functions to help in this regard. However, even with a penalty

function, for small t there are few degrees of freedom for computing the weighting matrix

and the variance of the weights is a problem. One might try to control this by setting T0

larger than strictly necessary at the initialization step of the particle filter in Section 4.1
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but doing this has a deleterious effect on the performance of the particle filter because the

information from X is not being used until t exceeds T0.

A better approach is regularization of the weighting matrix. If the condition number

of the weighting matrix (ratio of smallest singular value value to the largest) falls below a

preset value η (e.g. η = 10−8) an amount δ is added to the diagonal elements of the weighting

matrix just sufficient to bring the condition number to η prior to inversion of the weighting

matrix.

5.2 Gibbs Theory

The proof above that we can draw a sample from fT (Λ | z1:T , θ) with negligible error for large

T implies that the algorithm given in Subsection 4.1 of Andrieu, Doucet, and Holenstein

(2010) is valid. This, in turn, implies that the algorithm proposed in Subsection 4.2 generates

a valid Gibbs draw under the setup defined by Assumptions 1 through 6.

5.2.1 Comments on Gibbs Theory

Using only one particle to evaluate the conditional expectation is essential. One is relying

on egodicity to correctly evaluate g∗ and relying on the particle filter to provide an unbiased

estimate of GMM∗. If one averaged over several particles to compute g∗ one would destroy

the unbiasedness in the computation GMM∗. On this see Andrieu, Doucet, and Holenstein

(2010).

As to the number of particles one should use in the conditional particle filter, we found

that N = 1000 gave about the same results as N = 5000 and larger. Andrieu, Doucet,

and Holenstein (2010) report similar experience for their examples and suggest that the

length of the MCMC chain R be increased rather than N because runtimes increase less

with R than with N for most of their examples. Because our runtimes increase at the rate

RM [(T !)N + TK], the suggestion that N be kept small at the cost of increasing R carries

considerable force.
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5.3 Metropolis Theory

A compact parameter space, an identified model, and a move-one-at-a-time proposal are

enough to ensure that Metropolis part of the Metropolis within Gibbs algorithm will mix

(Gamerman and Lopes, 2006).

6 Examples

We illustrate our proposal with two examples: a stochastic volatility model with comparison

to the Flury and Shephard (2010) estimator, and a DSGE model with comparision to the

maximum likelihood estimator.

6.1 A Stochastic Volatility Model

Our first example is a stochastic volatility (SV) model:

Xt = ρXt−1 + exp(Λt)ut

Λt = φΛt−1 + σet

et ∼ N(0, 1)

ut ∼ N(0, 1)

The true values of the parameters are

θ0 = (ρ0, φ0, σ0) = (0.9, 0.9, 0.5)

for the purpose of plotting the particle filter and

θ0 = (ρ0, φ0, σ0) = (0.25, 0.8, 0.1)

for illustrating estimation results. The reason for the difference is that the former generates

plots that are easy to assess visually whereas the latter are more representative of, say, fits

to daily S&P 500 closing prices.

The moment conditions used with this model are:

g1 = (Xt − ρXt−1)
2 − [exp(Λt)]

2 (43)
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g2 = |Xt − ρXt−1||Xt−1 − ρXt−2| −
(

2

π

)2

exp(Λt) exp(Λt−1) (44)

...

gL+1 = |Xt − ρXt−1||Xt−L − ρXt−L−1| −
(

2

π

)2

exp(Λt) exp(Λt−L) (45)

gL+2 = Xt−1(Xt − ρXt−1) (46)

gL+3 = Λt−1(Λt − φΛt−1) (47)

gL+4 = (Λt − φΛt−1)
2 − σ2 (48)

Moment (46) identifies ρ independently of Λt; moments (43) through (46) overidentify Λt

given ρ. Moment (47) identifies φ given Λt and moment (48) identifies σ given Λt and φ.

What may not be obvious here is how an equation such as (43) identifies Λt . One can

see this at the point at which one computes weights in the importance sampling step of the

PF algorithm (Subsection 4.1). The weight wt depends on Λt while the weight wt−1 does

not. Therefore the incremental information regarding Λt provided by (43) does get used at

time t to determine Λt. For the Metropolis within Gibbs algorithm itself, the incremental

information does get used at the Gibbs step but does not get used at the Metropolis step

because the Metropolis step uses sums over all the data rather than partial sums.

Sometimes one uses a penalty function in connection with MCMC. We shall investigate

the effect of multiplying (8) by the Jacobian term [det Σ(X,Λ, θ)]−M/2. The idea is that

(8) bases inference on the density for Z whereas (8) multiplied by the Jacobian term bases

inference on the density for gT . It is interesting to see what effect this might have.

Estimates of θ for the SV model are shown in Table 2 for three methods: Metropolis

within Gibbs GMM with a Jacobian term, without a Jacobian term, and using the Flury

and Shephard (2010) estimator. The Flury and Shephard estimator can be regarded as

state-of-the-art. The MCMC chain generated using the method are draws from the exact

posterior with a flat prior.

Applying the particle filter at the true value of θ and N = 5000, we obtain the estimate

of Λ shown as a time series plot in Figure 1 and as a scatter plot in Figure 2 for the case

when a Jacobian term is included and as Figures 3 and 4 when it is not. The plots for the

Flury and Shephard estimator are Figures 5 and 6. In the particle filter vernacular, the
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Metropolis within Gibbs GMM estimator is computed from a smooth whereas the Flury and

Shephard estimator is computed from a filter; accordingly, the plots shown for the Metropolis

within Gibbs GMM estimator are smooths whereas the plots shown of the Flury-Shephard

estimator are filters.

(Table 2 about here)

(Figure 1 about here)

(Figure 2 about here)

(Figure 3 about here)

(Figure 4 about here)

(Figure 5 about here)

(Figure 6 about here)

6.2 A Dynamic Stochastic General Equilibrium Model

The second example is taken from Del Negro and Schorfheide (2008). We need to have a

model with an exact analytical solution to generate accurate data with which to test our

proposed methods. The working paper version of the article has some simplified versions of

the full model in the article that have an analytic expression for the solution. The example

is one of the simplified versions.

The full model is a medium-scale New Keynesian model with price and wage rigidities,

capital accumulation, investment adjustment costs, variable capital utilization, and habit

formation. The simplified model discussed here is obtained by removing capital, fixed costs,

habit formation, the central bank, and making wages and prices flexible. With these choices,

the model has three shocks: the log difference of total factor productivity zt, a preference

shock that affects intertemporal substitution between consumption and leisure φt, and the

price elasticity of intermediate goods λt, called a mark-up shock in the article. In the full

model the endogenous variables are output, consumption, investment, capital, and the real
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wage, which are detrended by exp(zt) and expressed as log deviations from the steady-state

solution of the model, and inflation. Of these, the ones of interest in the simplified model

are the log deviations of wages and output, wt and yt, respectively, and inflation πt. The

time increment is one quarter.

The exogenous shocks are

zt = ρzzt−1 + σzǫz,t (49)

φt = ρφφt−1 + σφǫφ,t

λt = ρλλt−1 + σλǫλ,t,

where ǫz,t, ǫφ,t, and ǫλ,t are independent standard normal random variables.

The first order conditions are

0 = yt +
1

β
πt − Et(yt+1 + πt+1 + zt+1) (50)

0 = wt + λt

0 = wt − (1 + ν)yt − φt

where ν is the inverse Frisch labor supply elasticity and β is the subjective discount rate.

The solution for the endogenous variables is

wt = −λt (51)

yt = − 1

1 + ν
λt −

1

1 + ν
φt

πt = β
1 − ρλ

(1 + ν)(1 − βρλ)
λt + β

1 − ρφ
(1 + ν)(1 − βρφ)

φt + β
ρz

(1 − βρz)
zt

The true values of the parameters are

θ = (ρz, ρφ, ρλ, σz, σφ, σλ, ν, β) = (0.15, 0.68, 0.56, 0.71, 2.93, 0.11, 0.96, 0.996)

which are the parameter estimates for model PS of Del Negro and Schorfheide (2008) as

supplied by Frank Schorfheide in an email communication.

We take wt, yt, and πt as measured and zt and φt as latent so that in our notation

Xt = (wt, yt, πt)
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Λt = (zt, φt).

This model is simple enough that an analytical expression for the likelihood is immedi-

ately available by substituting equations (49) into equations (51). By inspection one can

anticipate identifications issues: a small change in σφ can be compensated by small changes

to ν, β, and σz. This in turn, causes the MCMC chain for estimating the model by maximum

likelihood (Chernozhukov and Hong, 2003) to fail to mix. If one is going to estimate this

model by frequentist methods, one must, as a practical matter, calibrate three of the four

parameters σz, σφ, ν, and β. Our choice is to calibrate σz, σφ, and ν, leaving β as the free

parameter. The situation here is rather stark: without calibrating σz, σφ, and ν, the MCMC

chain for the MLE will not mix. Given that the MLE MCMC chain will not mix without

these calibrations, one would hardly expect the Metropolis within Gibbs GMM chain to mix

without them. Indeed, our experience confirms this conjecture.

As mentioned in Section 2, the general principles guiding moment selection are to identify

as many parameters as possible from the observed data and try to identify the latent variables

themselves indirectly from quantities that can be identified from the observed data. The

moment conditions (52) – (60) that follow were designed with these principles in mind.

g1 = (wt − ρλwt−1)
2 − σ2

λ (52)

g2 = wt−1(wt − ρλwt−1) (53)

g3 = [wt−1 − (1 + ν)yt−1][wt − (1 + ν)yt − ρφ(wt−1 − (1 + ν)yt−1)] (54)

g4 = [wt−1 − (1 + ν)yt−1](φt − ρφφt−1) (55)

g5 = [wt − (1 + ν)yt]
2 − σ2

φ (56)

g6 = wt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (57)

g7 = yt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (58)

g8 = πt−1(yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1) (59)

g9 = (yt−1 +
1

β
πt−1 − yt − πt)

2 − ρ2
zσ

2
z

1 − ρ2
z

(60)

Conditions (52) and (53) identify ρλ and σλ. Recalling that ν is calibrated, (54) identifies

ρφ; (55) identifies φt given ρφ. (This is not literally true because φt and ρφ will interact in the
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Metropolis iterations; this qualification applies a few times below also.) Because both ν and

σφ are calibrated, (56) helps enforce an identity linking wt and yt. Because σz is calibrated,

(57) – (59) identify ρz, β, and zt; here we cannot identify ρz and β without making use of

the latent variable zt, which is likely to negatively affect GMM relative to MLE. However,

(60) does help identify ρz and β without using zt.

One could attempt a comparison with the methods proposed in (Fernandez-Villaverde

and Rubio-Ramirez, 2006) using equations (51) to avoid numerical solution methods. The

difficulty is that (51) is a singular set of measurement equations, to use the filtering vernacu-

lar. The customary approach is to add measurement error to these equations. This presents

the additional difficulty of determining how to calibrate the scale of the measurement error.

The scale can be manipulated to make results nearly the same as for the MLE (larger scale)

or very poor (smaller scale). We do not present these results because we feel one learns

nothing from them. One of the advantages of GMM, SMM, and EMM type methods is that

singular measurement equations do not cause problems.

Applying the proposed Metropolis within Gibbs GMM method both with and without a

Jacobian term to the DSGE model of Subsection 6.2, we obtain the estimates of θ shown in

Table 3. Table 3 suggests that the Metropolis within Gibbs GMM estimates are reasonable

relative to MLE estimates and within the range one might expect for GMM estimates.

(Table 3 about here)

As mentioned in Section 2, while the moment conditions (52) through (60) can be ex-

pected to obtain reasonable results for estimating the parameters θ, they can be expected to

do a poor job of estimating the latent variables Λ. That this is the case here can be verified

by inspecting figures similar to Figures 7 through 10 that are not shown. In particular, the

plots not shown have slopes that are much shallower than those of Figure 8 and 10.

In order to improve the estimate of Λ given X we consider the following additional

moment conditions derived from the first order conditions of the DSGE model:

h1 = yt−1 +
1

β
πt−1 − yt − πt − ρzzt−1 (61)

h2 = wt−1 h1 (62)

h3 = yt−1 h1 (63)
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h4 = πt−1 h1 (64)

h5 = wt − (1 + ν)yt − φt (65)

h6 = wt−1 h5 (66)

h7 = yt−1 h5 (67)

h8 = πt−1 h5 (68)

Applying the particle filter using conditions (61) through (68) at the true value of θ and

N = 10000, we obtain the estimates of Λ given X shown as time series plots in Figures 7

and 9, with and without a Jacobian term, respectively, and as scatter plots in Figures 8

and 10, with and without a Jacobian term, respectively.

(Figure 7 about here)

(Figure 8 about here)

(Figure 9 about here)

(Figure 10 about here)

Estimation results using moment conditions (52) through (60) at the Metropolis step and

conditions (61) through (68) at the Gibbs step are shown in Table 4. As seen, by comparing

Table 3 to Table 4, estimation performance only improves marginally.

(Table 4 about here)

Using moment conditions (52) through (60) at the Metropolis step and conditions (61)

through (68) at the Gibbs step rather than conditions (52) through (60) for both reduces

computational cost slightly because runtimes for the Gibbs step increase at approximately

RM(T !)N whereas runtimes for the Metropolis step increase at approximately RMTK.

6.3 Discussion of Examples

The main conclusions from these examples are not surprising, one could have guessed many

of them ahead of time:
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• In a state space model situation where an analytic form for the measurement equation

is available, maximum likelihood when possible, or Flury and Shephard (2010) when

not, are better than what we propose unless one is incredibly clever at choosing moment

equations.

• When there is no alternative that does not rely on perturbation or numerical approxi-

mations that one would rather avoid, our proposal is a viable option.

• The quality of the moment equations matters and there are some principles guiding

selection, bearing in mind that the moment equations for the Metropolis step can differ

from the moment equations for the Gibbs step:

– For the Metropolis algorithm to estimate the parameters θ accurately

∗ One should identify as many parameters as possible from the observed data.

∗ One should make the latent variables depend as much as possible on quantities

that can be computed from the observed data.

– For the Gibbs algorithm to track the trajectory of the unobserved latent variables

Λ accurately

∗ One should choose moments for the particle filter so that observed variables

depend on the latent variables as much as possible without regard for identi-

fication of parameters.

• A penalty function can make p(X,Λ, θ) more peaked and improve performance of the

particle filter as seen by comparing Figure 1 to Figure 3 and Figure 7 to Figure 9: those

with a penalty function have much smaller standard errors. The penalty function we

used amounts to letting p(X,Λ, θ) correspond to the distribution of gT rather than Z.

• A penalty function has little effect on estimates of θ as seen from Tables 2, 3, and 4.

• Bayesian methods are popular for the examples we present because, as seen from the

examples, there is not as much information in the data as one could desire. Because

the data are calendar dated in most applications, more data is not available. If one
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does wish to use moment based Bayesian inference, we conjecture that the technology

that we propose here is superior to that proposed by Gallant and Hong (2007).

7 Conclusion

We proposed an algorithm for estimating the parameters of a dynamic model with unobserved

variables using only moment conditions and illustrated with two examples: a stochastic

volatility model and a dynamic stochastic general equilibrium model. We used a probability

distribution derived from a continuously updated GMM criterion considered both with and

without a Jacobian term. We found that the Jacobian term had little effect on parameter

estimates but did affect the particle filter used in connection with the estimator. Particles

deplete much faster when the Jacobian term is present than they do when it is not. (The rate

of depletion is the rate at which particle variability declines as t moves from T to 1, compare

Figures 1 and 3.) Of interest in applications would be the ability to use our particle filter

results to generate impulse response functions for dynamic models with unobserved variables

at a given θ using only moment conditions. We have managed to convince ourselves that our

results are sufficient for this purpose and are currently working on the requisite algorithms.
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Benigno, G., Benigno, P., and Nisticó, S. (2012), “Risk, Monetary Policy and the Exchange

Rate,” NBER Macroeconomics Annual 26, 247–309.

Billingsley, Patrick, and Flemming Topsoe (1967), “Uniformity in Weak Convergence,”

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 7, 1–16.

Bloom, Nicholas (2009), “The Impact of Uncertainty Shocks,” Econometrica 77, 623–685.

37



Chernozhukov, Victor, and Han Hong (2003), “An MCMC Approach to Classical Estima-

tion,” Journal of Econometrics 115, 293–346.

Del Negro, Marco, and Frank Schorfheide (2008), “Forming Priors for DSGE Models (and

How it Affects the Assessment of Nominal Rigidities),” Journal of Monetary Economics

55, 1191–1208.

Duffie, D. and K. J. Singleton (1993), “Simulated Moments Estimation of Markov Models

of Asset Prices,” Econometrica 61, 929–952.

Fernandez-Villaverde, J., and J. F. Rubio-Ramirez (2006), “Estimating Macroeconomics

Models: A Likelihood Approach,” NBER Technical Working Paper No. 321.

Fisher, R. A. (1930), “Inverse Probability,” Proceedings of the Cambridge Philosophical

Society 26, 528–535.

Flury, Thomas, and Neil Shephard (2010), ”Bayesian Inference Based Only on Simulated

Likelihood: Particle Filter Analysis of Dynamic Economic Models,“ Econometric The-

ory 27, 933–956.

Gallant, A. Ronald, and Han Hong (2007), “A Statistical Inquiry into the Plausibility of

Recursive Utility,” Journal of Financial Econometrics 5, 523–590.

Gallant, A. R., and R. E. McCulloch (2009). “On the Determination of General Statis-

tical Models with Application to Asset Pricing,” Journal of the American Statistical

Association 104, 117–131.

Gallant, A. R. and G. Tauchen (1996), “Which Moments to Match?” Econometric Theory

12, 657–681.

Gallant, A. Ronald, and Halbert L. White, Jr. (1987), A Unified Theory of Estimation and

Inference for Nonlinear Dynamic Models, Basil Blackwell Ltd., Oxford,

Gamerman, D., and H. F. Lopes (2006), Markov Chain Monte Carlo: Stochastic Simulation

for Bayesian Inference (2nd Edition), Chapman and Hall, Boca Raton, FL.

38



Hansen, L. P. (1982), “Large Sample Properties of Generalized Method of Moments Esti-

mators,” Econometrica 50, 1029–1054.

Hansen, L. P., and Singleton, K. J. (1982), “Generalized Instrumental Variables Estimation

of Nonlinear Rational Expectations Models,” Econometrica 50 1269–1286.

39



Table 1. Tossing two dice (X,Λ) when the probability of the difference D = X − Λ is the primitive.

P (D = d |Λ = λ)

Preimage d P (D = d) Λ = 1 Λ = 2, . . . , 5 Λ = 6

C−5 = {(1, 6)} -5 0 0 0 0

C−4 = {(1, 5), (2, 6)} -4 0 0 0 0

C−3 = {(1, 4), (2, 5), (3, 6)} -3 0 0 0 0

C−2 = {(1, 3), (2, 4), (3, 5), (4, 6)} -2 0 0 0 0

C−1 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} -1 4/18 0 4/18 4/14

C0 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} 0 10/18 10/14 10/18 10/14

C1 = {(2, 1), (3, 2), (4, 3), (5, 4), (6, 5)} 1 4/18 4/14 4/18 0

C2 = {(3, 1), (4, 2), (5, 3), (6, 4))} 2 0 0 0 0

C3 = {(4, 1), (5, 2), (6, 3)} 3 0 0 0 0

C4 = {(5, 1), (6, 2)} 4 0 0 0 0

C5 = {(6, 1)} 5 0 0 0 0

The sets that cannot occur when it is known that Λ = λ are those that do not contain (x, λ) for

any x. The conditional probability function P (X = x |Λ = λ) assigns zero probability to the sets

that cannot occur. The conditional probability of a set that can occur is computed by dividing

its unconditional probability by the probability of the union Oλ of all sets that can occur.
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Table 2. Parameter Estimates for the SV Model

Moment Conditions (43) through (48) at
both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode Standard Error

With Jacobian Term

ρ 0.25 0.30488 0.30961 0.074778

φ 0.8 0.09153 0.94851 0.660790

σ 0.1 0.09023 0.06702 0.050229

Without Jacobian

ρ 0.25 0.30271 0.30939 0.076758

φ 0.8 0.15348 0.85765 0.643400

σ 0.1 0.11400 0.08435 0.070081

Flury and Shephard Estimator

ρ 0.25 0.30278 0.28555 0.059320

φ 0.8 0.17599 0.89189 0.509780

σ 0.1 0.09737 0.07839 0.064661

Data of length T = 250 was generated by simulating the model of Subsection 6.1 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs methods described in
Section 2 with a one-lag HAC weighting matrix using N = 1000 particles for Gibbs
and K = 50 draws for Metropolis. In the third panel the estimator is the Bayesian
estimator proposed by Flury and Shepard (2010) with a flat prior. It is a standard
maximum likelihood particle filter estimator except that the seed changes every time
a new θ is proposed with N increased as necessary to control the rejection rate of the
MCMC chain. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Table 3. Parameter Estimates for the DSGE Model

Using Moment Conditions (52) through (60) at

Both the Metropolis and Gibbs Steps.

Parameter True Value Mean Mode Standard Error

With Jacobian

ρz 0.15 0.21596 0.15006 0.08632

ρφ 0.68 0.60098 0.58945 0.04988

ρλ 0.56 0.50134 0.46443 0.28818

σλ 0.11 0.10827 0.08923 0.06494

β 0.996 0.98429 0.99603 0.01476

Without Jacobian

ρz 0.15 0.21887 0.23069 0.09179

ρφ 0.68 0.59967 0.60750 0.04988

ρλ 0.56 0.50884 0.31473 0.28981

σλ 0.11 0.10797 0.11613 0.06896

β 0.996 0.98201 0.99634 0.01834

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

Data of length T = 250 was generated by simulating the model of Subsection 6.2 at the
parameter values shown in the column labeled “True Value”. In the first two panels
the model was estimated by using the Metropolis within Gibbs method described in
Section 2 with a two-lag HAC weighting matrix using N = 1000 particles for Gibbs and
K = 50 draws for Metropolis. In the third panel the model was estimated by maximum
likelihood. The columns labeled mean, mode, and standard deviation are the mean,
mode, and standard deviations of a Metropolis within Gibbs chain of length R = 9637
for the first two panels and the same from an MCMC chain of length R = 500000 with
a stride of 5 for the third.
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Table 4. Parameter Estimates for the DSGE Model Using

Conditions (52) through (60) at the Metropolis Step

and Conditions (61) through (68) at the Gibbs Step

Parameter True Value Mean Mode Standard Error

With Jacobian

ρz 0.15 0.21702 0.15006 0.08367

ρφ 0.68 0.61408 0.58945 0.05102

ρλ 0.56 0.50082 0.46443 0.28344

σλ 0.11 0.11086 0.08924 0.06493

β 0.996 0.98740 0.99603 0.01056

Without Jacobian

ρz 0.15 0.23508 0.15007 0.08975

ρφ 0.68 0.69870 0.58945 0.06127

ρλ 0.56 0.49904 0.46443 0.28418

σλ 0.11 0.11292 0.08924 0.06559

β 0.996 0.97465 0.99604 0.02479

Maximum Likelihood

ρz 0.15 0.15165 0.15087 0.00583

ρφ 0.68 0.59185 0.59419 0.05044

ρλ 0.56 0.56207 0.56549 0.05229

σλ 0.11 0.11225 0.11189 0.00508

β 0.996 0.99640 0.99643 0.00186

As for Table 3.
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Figure 1. PF for Λ with Jacobian, Time Series Plot, SV Model. Data of length

T = 100 was generated from a simulation of the model of Subsection 6.1 and N = 5000

particles computed using the algorithm described in Section 4.1 with a Jacobian term.

The dashed blue line plots the simulated Λ. The solid red line is the mean of the particles

and the dotted red lines are plus and minus two pointwise standard errors. The moment

equations were (43) through (48); a one lag HAC estimator was used for (4).
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Figure 2. PF for Λ with Jacobian, Scatter Plot, SV Model. As for Figure 1

except that plotted is the mean of the particles vs. the simulated Λ.
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Figure 3. PF for Λ, without Jacobian, Time Series Plot. As for Figure 1

except that estimation is without a Jacobian term.
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Figure 4. PF for Λ, without Jacobian, Scatter Plot, SV Model. As for Figure 3 except

that plotted is the mean of the particles vs. the simulated Λ.
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Figure 5. PE for Λ, Flurry-Shephard Method, Time Series Plot, SV Model. As for

Figure 1 except that plotted is a filter, not a smooth, and weighting is by the measurement density,

not GMM.

48



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

o
ooo

o
o
o o

o
o

o

o
o

o o

o
o

o

o
oo

o
o

o

o

ooo

o
o

o

o
o

o
o

o o
oo

o
o

o
o

o
o

oo
o

o
o

o
o

o
o o o

o o
o
o

o o
o

o

o
oo

o

o

o ooo

o
o

o
o

o

o

o
oo

o o

o o
o

o o
o

o
o

o
ooo o

oo

o

Figure 6. PF for Λ, Flurry-Shephard Method, Scatter Plot. As for Figure 5 except that

plotted is the mean of the particles vs. the simulated Λ.
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Figure 7. PF for Λ with Jacobian, Time Series Plot, DSGE Model. Data of length T = 250
was generated by simulating the model of Subsection 6.2 and N = 10000 particles were computed using the
algorithm described in Section 4.1 with a Jacobian term. The dashed blue line in the upper panel plots the
simulated φt for the last 50 time points. The lower panel is the same for zt. In both panels, the solid red
line is the mean of the particles and the dotted red lines are plus and minus two pointwise standard errors.
The moment equations were (61) through (68); a two lag HAC estimator was used for (4).
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Figure 8. PF for Λ with Jacobian, Scatter Plot, DSGE Model. As for Figure 7

except that plotted is the mean of the particles vs. the simulated Λ for all 250 time

points.
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Figure 9. PF for Λ without Jacobian, Time Series Plot, DSGE Model. As

for Figure 7 but without a Jacobian term.
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Figure 10. PF for Λ without Jacobian, Scatter Plot, DSGE Model. As for

Figure 8 but without a Jacobian term.
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