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Contribution

e The contribution of GMM (Hansen and Singleton, 1982) was
to allow frequentist inference regarding the parameters of a
nonlinear structural model without having to solve the model.

— Provided there were no latent variables.

e [ he contribution of this paper is the same.

— With latent variables.



The Requirements, 1 of 3

e A structural model with parameters 6 and true value 6°

e Observed variables: X = (X1, Xo,..., X7)

e Latent variables: A = (A1, N\p, ..., \p)
e Known transition density: N4y ~ P(Ayy1 | A, 0)

e Conditional moment conditions: &|g(X;41,Ar41,0) |Zt| =0
— That would identify @ if both X and A were observed.

- It — {X_007 ...7Xt, /\_oo, ...,/\t}



The Requirements, 2 of 3

e Sample moment conditions

T
gT(Xa/\79) — Z g(Xt7/\t79)

3\

e \Weighting matrix (May have to use a HAC weighting matrix instead.)

Z(X,/\,Q) — Z g(Xta /\tae) g(Xta/\tae)
t—l

~ 1
g(Xt7/\t79) — g(Xta/\tae) — ﬁgT(Xa/\79)

e Such that
Z = [S(X, A, 0] Y2 gp(X, A, 0% & N(O, 1)

— Hansen and Singleton (1982)
— Gallant and White (1987)



The Requirements, 3 of 3

R

1=

e A sample {H(i)} from the density

p(e) — (QW)_M/Q eXp{_%gT(Xv /\7 9)/ [Z(Xa /\7 9)]_1 gT(Xa /\7 9)}

IS a sample from the asymptotic distribution of the GMM
estimator for large T'.

— Chernozhukov and Hong (2003)



Estimation Strategy
e Sample {9@), /\(’0} from the density

p(ea /\) — (27T)_M/2 eXD{—%gT(X, /\7 0)/ [Z(Xa /\7 9)]_1 gT(Xa /\7 9)}

— Might multiply p(#,A) by a Jacobian term [det Z(X, A, 6)]M/2

e Metropolis within Gibbs algorithm

— Sample 0 given AG=1) and 9G—1) using Metropolis
x last draw of MCMC chain of length K.

— Sample A® given (9 and AG=1) ysing Gibbs.
x last particle of a modified particle filter of size N.

— Iterate back and forth. (Can view it as an approximate EM algorithm.)

e Estimate and scale are mean and standard deviation of {9(73)}.



Next:
Two Examples

e A Dynamic Stochastic General Equilibrium Model
— Description

— Estimates

e A Stochastic Volatility Model
— Description

— Estimates



A DSGE Model — 1 of 4

From Del Negro and Schorfheide (2008) simplified to permit an
analytic solution by removing rigidities, investment, etc.

T hree shocks:

2t = pz24—1 + 0z€,¢+  Factor productivity
Gt = PypPt—1 T Tp€p ¢ Consumption/leisure preference
At = paAt—1 T oxex Price elasticity of intermediate goods

T hree outputs:

wy Wages
y: Output
m¢ Inflation



A DSGE Model — 2 of 4

First order conditions

1
0 = y+ i Et(Ytg1 + mg1 + 2¢41)
0 wt + A
0 = w— (L4 v)yr — ¢4

where v is a labor supply elasticity and 3 is the discount rate.

The true values of the parameters are

0 = (pz,qu,p)\,az,dqb,d)\,l/,ﬁ)
= (0.15,0.68,0.56,0.71,2.93,0.11,0.96,0.996)

We take wy, y¢, and m as measured and z; and ¢4 as latent so
Xt — (wtayhﬂ-t)

Ne = (2, Pt).



A DSGE Model — 3 of 4

A set of conditions that identify the model are

g1 = (wr—prw_1)® — o3

g2 = wp_1(wg — prwi_1)

93 = (w1 — A +v)y—1]lwe — (1 + )y — pp(wi—1 — (T +v)yp—1)]

ga = |wi—1 — (L +v)y—1](dt — pydr—1)

gs = [wy— (1+v)yl” — o3

g6 = wi—1(yr—1 +%7"t—1 — Yt — Tt — Pz2t—1)
1

97 = Y-1(y—1 ‘I'Bﬂ't—l — Yt — Tt — PzZt—1)
1

g8 = m_1(ys—1+ e i P22t—1)

g9 = (y—1+ 17Tt—1 — gy — )2 — pEo:

3 1 —pz



A DSGE Model — 4 of 4

e An analytic expression for the likelihood L(0) = p(X|0) is
available for this model

e Analysis of the likelihood shows that only one of the four
parameters o;,04,v, 3 Can be identified

e [ hree will have to be calibrated in order to apply frequentist
methods

e We calibrate o, o4, and leave § as the free parameter.



Table 1. Parameter Estimates, DSGE Model

Parameter True Value Mean Mode Standard Error
With Jacobian
o 0.15 0.21596 0.15006 0.08632
P 0.68 0.60098 0.58945 0.04988
P 0.56 0.50134 0.46443 0.28818
o 0.11 0.10827 0.08923 0.06494
I6] 0.996 0.98429 0.99603 0.01476
Without Jacobian
o 0.15 0.21887 0.23069 0.09179
P 0.68 0.59967 0.60750 0.04988
o) 0.56 0.50884 0.31473 0.28981
o 0.11 0.10797 0.11613 0.06896
1] 0.996 0.98201 0.99634 0.01834
Maximum Likelihood
o 0.15 0.15165 0.15087 0.00583
P 0.68 0.59185 0.59419 0.05044
P 0.56 0.56207 0.56549 0.05229
o 0.11 0.11225 0.11189 0.00508
I6] 0.996 0.99640 0.99643 0.00186

Data with T'= 250 simulated at true values. Gibbs particles are N = 1000; Metropolis
draws are K = 50. GMM mean, mode, and standard deviation are from MCMC chains
of length R = 9637 with stride of 1; for MLE chain R = 500000, stride is 5.



Figure 1. PF Estimate of A with Jacobian, DSGE Model
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Remark: The Gibbs draw should evaluate the moments in the Metropolis step accu-
rately; not necessarily approximate the history accurately.



Figure 2. PF Estimate of A without Jacobian, DSGE Model
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Figure 3. PF Estimate of A with Jacobian, DSGE Model
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Figure 4. PF Estimate of A without Jacobian, DSGE Model
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T he Choice of Moments Does Matter 1 of 2

e It is possible to perform counter-factual (e.g. impulse-response)
analysis using moment conditions alone.

e However, for it to work, one must do a much better job of
estimating the history of the latent variables.

e [0 estimate latent variables, it is not necessary to identify
model parameters.

e Only the latent variables need to be identified.



T he Choice of Moments Does Matter 2 of 2

Moment conditions for counter-factual analysis
1

hi = y—1+ g1 T YT T P
ho = wi_1h1

hy = y—1ha

hg = m_1h

hs = wi— (1 +v)y — ¢y

he = wi_1hs

h7 = yi—1hs

hg = m_1hs



Figure 5. PF Estimate of A with Jacobian, DSGE Model




Figure 6. PF Estimate of A without Jacobian, DSGE Model
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Figure 7. PF Estimate of A with Jacobian, DSGE Model
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Figure 8. PF Estimate of A without Jacobian, DSGE Model
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Gibbs and Metropolis Moments Can Differ

If we use the moments that identify the model used for Table 1
for the Metropolis step and the moments designed for a counter-
factual analysis used for Figures 5 through 8 for the Gibbs step,
we get slightly better results in the following Table 2.



Table 2. Alternative Parameter Estimates, DSGE Model

Parameter True Value Mean Mode Standard Error
With Jacobian
o 0.15 0.21702 0.15006 0.08367
P 0.68 0.61408 0.58945 0.05102
P 0.56 0.50082 0.46443 0.28344
o 0.11 0.11086 0.08924 0.06493
I6] 0.996 0.98740 0.99603 0.01056
Without Jacobian
o 0.15 0.23508 0.15007 0.08975
P 0.68 0.69870 0.58945 0.06127
P 0.56 0.49904 0.46443 0.28418
o 0.11 0.11292 0.08924 0.06559
1] 0.996 0.97465 0.99604 0.02479
Maximum Likelihood
o 0.15 0.15165 0.15087 0.00583
P 0.68 0.59185 0.59419 0.05044
P 0.56 0.56207 0.56549 0.05229
o 0.11 0.11225 0.11189 0.00508
I6] 0.996 0.99640 0.99643 0.00186

Data with T'= 250 simulated at true values. Gibbs particles are N = 1000; Metropolis
draws are K = 50. GMM mean, mode, and standard deviation are from MCMC chains
of length R = 9637 with stride of 1; for MLE chain R = 500000, stride is 5.



A Stochastic Volatility Model

Xt
N ON\t—1 + o€y
ee ~ N(O,1)
ur ~ N(0,1)

The true values of the parameters are
0o = (po, ¢0,00) = (0.9,0.9,0.5)

0o = (po, 0, 00) = (0.25,0.8,0.1)

— 1 of 2

pXi—1 + exp(A) uy

(plots)

(estimation)

(1)
(2)
(3)
(4)



A Stochastic Volatility Model — 2 of 2

Moment Conditions

hi
ho

hr+1
hp+2
hr+3
hi+4a

(Xt — pXp)? — [exp(Ap)]?

2 2
X; — pXo|| X1 — pXio1| - (;) exp(Ay) exp(Ar_1)

2 2
| Xt — pXy|| Xp—p — p Xy | — (;) exp(As) exp(Ni_1,)
X 1(Xt — pXi_1)

Ne—1(Ag — pN—1)
(At — ¢pN_1)? — 02



Table 3. Parameter Estimates, SV Model

Parameter True Value Mean Mode Standard Error
With Jacobian Term
P 0.25 0.30488 0.30961 0.074778
¢ 0.8 0.09153 0.94851 0.660790
o 0.1 0.09023 0.06702 0.050229
Without Jacobian
P 0.25 0.30271 0.30939 0.076758
o} 0.8 0.15348 0.85765 0.643400
o 0.1 0.11400 0.08435 0.070081
Flury and Shephard Estimator
P 0.25 0.30278 0.28555 0.059320
¢ 0.8 0.17599 0.89189 0.509780
o 0.1 0.09737 0.07839 0.064661

Data of length T' = 200 was generated from the SV model at true values.
In all panels the number of particles is N = 1000. The columns labeled
mean, mode, and standard deviation are the mean, mode, and standard
deviations of an MCMC chain of length 200000.



Figure 9. PF Estimate of A with Jacobian Term, SV Model
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Figure 10. PF Estimate of A without Jacobian, SV Model
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Figure 11. Flury-Shephard Estimate of A, SV Model
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Figure 12. PF Estimate of A with Jacobian Term, SV Model




Figure 13. PF Estimate of A without Jacobian, SV Model




Figure 14. Flury-Shephard Estimate of A, SV Model




Next:
The Three Algorithms

e A particle filter algorithm
— Input: 6
R

1=

— Output: Draws {A(i)} , from P(A|X,0)

e Gibbs algorithm
— Input: Draws 60(—1) and AG-1)
— Output: A draw A from P(A| X, 0)

e Metropolis algorithm
— Input: Draws 6G—=1) and A®)
— Output: A draw 0% from P(6] X, )



Notation
o X1.4+=(X1,....,X¢)
© N1t = (A1,..0s \t)

® p(Xi1:+4,N14,0)

= (QW)_M/Q eXp{—%gt(Xl:t, N1, 0) [ (X1, N1, 9)]_1 gt(X1:¢, N1, 9)}



Particle Filter Algorithm, 1 of 3

1. Initialization.
e Input 6 (and X )

e Set Ty to the minimum sample size required to compute
gt(X1:4,N1:1,0).

o Fori=1,...,Nsample (A{) AL . .,AgzO>> from p(AdAs_1,6).
e Set t to 1p+ 1.

o et AY)_; =AY, AR



Particle Filter Algorithm, 2 of 3

2. Importance sampling step.
e Fori=1,..., N sample 7\7@ from p(/\t|/\§?1) and set
Ath = (g1 A,
e Fori=1,..., N compute weights w( B — p(Xl;t,/\1 4, 0).

e Scale the weights to sum to one.



Particle Filter Algorithm, 3 of 3

3. Selection step.

e For:=1,..., N sample with replacement particles /\% from
the set {7\&2} according to the weights.

4. Repeat

o If t < T, increment ¢ and go to Importance Sampling Step;

| out L@ 1Y
e else outpu LTy



Gibbs Algorithm, 1 of 3

1. Initialization.
e Input /\g?%, 0 (and X )

e Set Ty to the minimum sample size required to compute
gt(X1:4,N1:1,0).

o Fori=2,...,Nsample (A{?, AL .,/\%O)) from p(AdAs_1,6).
e Set t to 1p + 1.

o et AY) | =AY, AR



Gibbs Algorithm, 2 of 3

2. Importance sampling step.
e Fori=2,...,N sample 7\?) from p(/\t|/\§i)1) and set
Ath = (Ag-1. AL,
e Fori=1,..., N compute weights 'w( B — p(Xl;t,/\1 4, 0).

e Scale the weights to sum to one.



Gibbs Algorithm, 3 of 3

3. Selection step.

e For + =2,..., N sample with replacement particles /\g’% from
the set {7\&2},{\;1 according to the weights.

4. Repeat
o If t < T, increment ¢ and go to Importance Sampling Step;

e clse output the particle /\&AQ



Metropolis Algorithm

Proposal density: T(0yeres Othere) (e.9., move one-at-time random walk)
e Input: A, 0., (and X )
e Propose: Draw Oprop from T'(0,;4,0)

e Accept-Reject: Put 0(9) to 6,.0p With probability

p(Xa N\, Qprop)T(QpTopa Qold)

a=min |1,
p(X, N\, eold)T(Holda QPTOP)

else put 69 to 6,,,.
e Repeat: If i < K put 6,,; = 0 and go to Propose;

e clse output (%),



Next:
Why Does this Work?

e Prove that the particle filter works using the notion of Gal-
lant, A. Ronald, and Han Hong (2007), “A Statistical Inquiry
into the Plausibility of Recursive Utility,” Journal of Financial
Econometrics, that GMM induces a probability space;

— next several slides

e T hat the Metropolis algorithm works follows from Cher-
nozhukov, Victor, and Han Hong (2003), “An MCMC Ap-
proach to Classical Estimation,” Journal of Econometrics.

e T hat the Gibbs algorithm works follows from Andrieu, C., A.
Douced, and R. Holenstein (2010), “Particle Markov Chain
Monte Carlo Methods,” Journal of the Royal Statistical So-
ciety, Series B.



Joint Density Induced by GMM, Dice Example

Table 4. Tossing two correlated dice (X, A) when the probability of the difference D = X — A

is the primitive.

Preimage d P(D=d) P(D=d|AN=1)P(D=d|N=2)
C_s ={(1,6)} -5 0 0 0
C_4=1{(1,5),(2,6)} -4 0 0 0
C_3={(1,4),(2,5),(3,6)} -3 0 0 0
C2=1{(1,3),(2,4),(3,5),(4,6)} -2 0 0 0
C-1={(1,2),(2,3),(3,4),(4,5),(5,6)} -1 4/18 0 4/18
Co=1{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} O 10/18 10/14 10/18
C1 ={(2,1),(3,2),(4,3),(5,4),(6,5)} 1 4/18 4/14 4/18
C>={(3,1),(4,2),(5,3),(6,4))} 2 0 0 0
Cs = {(4,1),(5,2),(6,3)} 3 0 0 0
Cs = {(5,1),(6,2)} 4 0 0 0
Cs ={(6,1)} 5 0 0 0

Conditional probability is P(D = d|A = \) = P(Cy;nN 0,)/P(0,), where O, is the union
of the events that can occur. Q(A = X)) = P(0O,) is the marginal in the sense that

P(D=d) =3 _ P(D=d|A= QA=)



Conditional Density, Dice Example, 1 of 2
e Let C be the smallest o-algebra that contains the preimages in Table 4.
e Any C-measurable f must be constant on the preimages.

e For such f the formula

6 5
EfIN=2)=) f(,2) Y Io(z,2)P(D=d|A=2) (5)

rz=1 d=-5

can be used to compute conditional expectation because f can be re-
garded as a function of d and the right hand side of (5) equals

5
> HP(D=d|A=2).

d=-5



Conditional Density, Dice Example, 2 of 2

e Equation (5) implies that we can view P(D = d) as defining a conditional
density function

5
P(X=z|A=X)= ) Ig(@, )P(D=d|A=2)) (6)
d=-5

that is a function of = as long as we only use it in connection with
C-measurable f.

e 10 get an expression that agrees with the expressions in Gallant and
Hong (2007) note that we can write equation (6) as

P(D=xz—)\)

PX=aIN=N =56 bp =0

(7)

e Similarly,
P(D=xz—)\)

PIN==)\NX=2) =
( | ) SS_P(D==z-)\)

(8)




Abstraction

e A GMM criterion Z(X, A\, 60) defines a probability space

— C is the smallest o-algebra containing the preimages of Z

e On which there are notions of joint
p(X, A, 0) = (27)M/? exp{—%gT(X, A, 0) [Z(X, N, 0]t gr(X, A, 9)},

conditional p(X |A,0), and marginal densities.

o If PQO denotes the data generating process, then

(RAIMX) 5 RAMN) ¢ pyy = (RIMX) 5 Rdim(/\),c,Peo>



What if One Knows a Marginal?, Dice Example

e Then one knows the probabilities P(R)) of the rectangles

D x {\}
{1,2,3,4,5,6}

Ry
D

e Let C* be the smallest o-algebra containing {Cd}2:_5 and
{RA}§:1

e The singleton sets {(z,\)} are in C* so joint probability P* on
C* and conditional densities have their conventional definition

- PH(X = | A=) = FHEND

- PA= ALY = 2) = PG



Indeterminacy, Dice Example, 1 of 2

For P*({(x,\)}) we have nine equations in sixteen unknowns:

% — ip*({(z',mn})

p—
2 = ip*({(i,z')})
18 —
, 5
= = > PG+ 1L0D

p—
% = P {1 +PHER DY
% = P2+ P2+ PHG2)})
% = P{23)})+P B3I+ P43}
é = PG+ P DY) + PG5,
% —  P({(4,5)}) + P*({(5,5)}) + P*({(6,5)})
é = P'({(5,6)}) + P*({(6,6)})

There is one linear dependency leaving eight equations in sixteen unknowns.



Indeterminacy, Dice Example, 2 of 2

e The fact that for P*({(x,\)}) we have only eight equations
in sixteen unknowns is fatal.

e \We have no logical basis for choosing a particular solution.

e [ he particle filter depends on the choice of solution.



A Second Example, Mimics Fisher (1930), 1 of 2

l1-p
PIZ(X,N) =2 = 1
Z(X,N) = X—A
X € N
AN € N
N = {0, +1, +2,...}

e The preimages of Z(x,\) are
C,={(x,\) :x=2z4+ )\, A e N} z €N

which lie on 45 degree lines in the (x,A) plane.

e Given ), for every z € N there is an x € N with (z,\) € C; so
every C, can occur. Therefore Oy = U, nC: and P(O,) =1
for every )\ € N.



A Second Example, Mimics Fisher (1930), 2 of 2

e If P(O,) =1 for every X € N.

e [ hen

P(Z=2|A=)) = (P(O/\)/\) = P(C.) = H_Z;p' |

which does not depend on .

e Consequently,
P(X=x|AN=XN)=P(Z=x—X)
e Provides a rationale for choosing a solution: The conditional
robability of X given A should be the same under Py and Fy.

P(X =z, A= ))
P(X =z|N=))

P(Z =x—)\)P*(R))
P(Z =x—\).



Abstraction, 1 of 3
e A GMM criterion Z(X,N\,0)

e And knowledge of P°(Rp)
— Rp = Rdim(X) % B

— B € RIMA) is Borel

e Defines a probability space
(Rdim(X) % Rdim(/\),c*, P@*)

— C* is the smallest o-algebra containing the preimages of Z
and rectangles Rp,

e On which there are notions of joint p*(X,A,0), conditional
p*(X |A\,0), and marginal densities p*(A\).



Abstraction, 2 of 3
° (Rdim(X) > Rdim(A),C,Pg) — (Rdim(X) % Rdim(A),C,PQO)
° (Rdim(X) > Rdim(/\),C,Pék) — (Rdim(X) > Rdim(A),C,PQO)

° (Rdim(X) > Rdim(/\),c*,Pék) — (Rdim(X) x Rdim(A),C*,PQO)



Abstraction, 3 of 3

e If we assume that the union O, of all sets in C that can occur
if A= X\ is known to have occurred has probability one, then
p*(X, N\, 0)

p (XA, 0)

p(X, N\, 0)p™ (A, 0)
p(X, N\, 0)

e And we can recover

/f(a:, M) p(A] X, 0) dA

via a particle filter as long as we restrict attention to C-
measurable f.



Interpretation
e If we assume compact ©, then

e Chernozukov-Hong are Bayes on

(Rdim(X) X Rdim(A),C,Pg) — (Rdlm(X) X Rdim(A>,C,P90)

e And we are Bayes on

(Rdlm(X) X Rdlm(A),C*,Pék) — (Rdlm(X) X Rdlm(/\)’c*7P90)



Contribution

e The contribution of GMM (Hansen and Singleton, 1982) was
to allow frequentist inference regarding the parameters of a
nonlinear structural model without having to solve the model.

— Provided there were no latent variables.

e [ he contribution of this paper is the same.

— With latent variables.



