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ABSTRACT

The paper presents a data analysis methodology consisting of a synthesis of

experimental design methods and spectral methods of time series analysis which

is appropriate in exploratory gituations where the recording process generates

a long sequence oOf correlated observations.



1. INTRODUCTLON

The paper conslders the study of experimental material which exhibits two
characteristics. The first, replication subject to a particular configuration
of factors thought to affect the experimental material is possible. The second;
the process of recording the phenomena under study generates a long sequence of
correlated observations. si tuations where the suggested methodology is
appropriate are likely to be exploratory studies where knowledge of the
experimental materisl has not advanced to the point where a few statistics can
be computed from these correlated observations which are gufficient to
represent the phenomena under study. One exemple of the type of situation we
have in mind would be the study of nolse in an electronic circuit where selected
components of the cirvcuit are to be varied. A second example would be an
exploratory study of the effect of various processing plant configurations on atl
index of product quality gpanning an appreciable length of time. On the other
hand, the methods. presented would not apply to the study of most economic time
gseries due to the impogsibility of replication.

The paper is arranged as follows. Tn Section 2 we suggest that a spectral
or frequency domain gpproach 1s appropriate to the study of data of the type
described in the previous paragraph. We also point out the statistical pro-
perties of the Schuster periodogram which dictate its use in this context. In
Section 3 we define sequences indexed by frequency which correspond to analysis
of variance statistics guch ss treatment means, F-sbtatistics, and estimators of
variance components which are sppropriate to the experimental design cheosen. In
Yections 4 and 5 we discuss how these sequences of analysis of variance
statistics may be used to study the experimental materisl in much the same

fashion as they are used in upivariate analysis of variance. Section 6 contains



comments on methods of performing the computations. Section T presents an
example of the application of the proposed methodology in an aerial crop

identification study.

o, SPECTRAL METHODS AND THE SCHUSTER PERTODOGRAM

The observed portion {y(t)]z;é of a time series [Y(t)}Eﬁicn)is an n dimen-
sional random vector. However, standard mltivariate statistical methods are
seldom employed in time series analysis because n is usually so large as to make
the computations infeasible and reasonable first and second moment assumpbions
allow the use of computationally feasible alternative methods.

The first moment of the time series is

n(t) = e((e)) -
quite frequently, an examination of the data or a priori considerations suggest
a regular and periodic trend in the data of the form

u(t + A) = u(t) -
A natural representation [2, p. 927 of such & function is a low order Ffourier
series expansion

w(e) =n+ 55 o cos (wyt + By)

where i, &> Bi, and m: are the unknown parameters. This model is nonlinear in
the perameters wi.

This paper conglders the case when a Fourier series representation of the
trend u(t) is appropriate. We suggest the following approach in the case when
an additional non-periodic component T(Et,g) depending on inputs X appears bto
be present in the data. Estimate R by least squares obtaining an estimate E for
each "cell” in the experimental design. Use standard multivariate experimental

design methods to interpret the information contained in the multivariate random



p,
variable E. Use the methods suggested in this paper to extract the information
remaining in the residuals

e(t) = (&) = t(x,,8) -
The bulk of the useful information is contained in the second moments
g(x(t + n) - u(t + 0))(E(E) - u(t))
in most time series analysis situabions. A reasonable simplifying assumption [5,
p. 3 ff.7] is that these covariances depend only on the gap h and not on the
position t in time. Such a series is called weakly covariance stationary with
autocovariance function defined by

y(n) = e(x(t +h) = u(t + R)(E(E) +ult)) .

We shall further assume that these covariances decline to zero &s lh\ tends to
infinity sufficiently fast Lo cause the series Z;ficx)ly(h)| o be finite. This
assumption insures the existence and continuity of the Fourier series

flw) = (em) T zfj_ooy(h)e‘iwh, sl
which is called the spectral density of the time series {Y(t)}éfico. Interest
is often focused on the spectral density £() (-1 = < 1) rather than the
autocovariance function y(h) (h =0, *1, ...) in applications because it is
generally easier to interpret estimators of the spectrum than estimators of the
autocovariances; moreover, the gpectrum has a direct physical meaning in some

'applications (5, p. 7] As we shall see later, ease of interpretation becomes
particularly relevent when there is a possibility of a periodic trend w(t) in
the data.

Historically, the Schuster periodogran
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was Tirst considered in connection with the analysis of time series suspected of

having a deterministic component of the form
= P ] * +
uf{t) = p + Too1 % cos(wit 61)
and a second moment function y(h) = 62,h = 0and = 0 for h £ 0 [4, Chapt. 67.
However, under the second moment assumptions stated previously and assuming that

*
each Wy = g for some s, one can show that

(it)g(0) + 2w  w_ =0

s
e ) = { Omalw) +Zey w o,
(b )e (o) wg # 0, 9

where

g(w) = (2”)“l (n-l) E:lﬁl T(h)e"iwh

=-{n=1) n

and that the asymptotic distribution of PQ”S)/(2ﬂf(wS)) is a two degree~freedom

chi-squared provided w £ o, mi (1 =1, «.., p) [4, Chapt. 67. Violation of the
assumphbion that w: = W for some s is of negligible consequence in applications

[2, p. 136-158, p. 387].

Except for sampling variation, one would expect a plot of the periodogram
ordinates P(ws) against frequency W, to have a shape proportionel to the spectral
density f{w) of the time series and to have spikes at those frequencies w: wiich
are important in a low order Fourier series representation of the first moment
of time series p(t). See, for exsmple, Figure A. Thus, the periodogran
summarizes in its first moment the informetion contained in both the first and
all second order moments of the time series. Moreover, for large time series
lengths n {say n > 512}, the sampling distribution of each periodogram ordinate is

proportional to a two degree-freedom chi-squared. These are the properties -
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7
condensation of the first and second order moment information in the time series
and known sampling distribution - which make the pericdogram & useful re-

presentation of a time series in an exploratory study.
%, BXPERIMENTAL DESIGN CONSIDERATIONS

fle have examined the considerations which indicate that the Schuster pericd-
ogram is a natural representation of time series data in an exploratory gituation.
However, the normal distribution is more appropriate in an analysis of variance
context than s chi-squared with two degrees-freedom. For this reascn, we pro-
pose to transform each periocdogram ordinate by the function qb(z) = zajwhere
0 <@« L. By means of a Taylor serieg expansion of qa(z),we argue that
¢b(P(wS)) will retain the desirable first moment properties of P(ms) and for
o = /3 one expects approximate normality to obtain [6, Section 12.7]. (In the
experiment reported in Section 7 we found o = l/h to be a more satisfactory
choice. )

Subsequent to the performance of the experiment,one's data consists of a
time series realization {y(t)]i;é for each "cell" of the experimental design.
Fach btime series is then replaced by its transformed Schuster periodogram
{@b(P(wS))}SZG . The next step is to compute and retain the statistics which
are appropriate for the design chosen for s = 0, Ly, vus, I The result of this
process is one sequence of length m indexed by s corresponding to each statistic.

This process 1is easier to visualize from an example. Suppose that the
indexing schene for a univariate experiment carried out according to the
experimental design chosen is
X4 Jk4 (1 =23, voey L33 =1 ey I3 k=1, sovy K3 & =Ly cons L) .

The transformed periodograms of the time series reglizations may be referencad



according to this same indexing scheme; viZz.,
{(p&(Pijk’a(ws))}srio (1o, ooy I3 320 ey d3 k=1 ey K= Ly ooy L)
Now, fix the index s at s° and make the assignment

% s " O Pagig ) )
and carry out the analysis of variance computations corrvesponding to the experi-
mental design. Repeat this process letting «° successively assume the valves
g® = 0, 1, ..., m and retain: (i) estimates of treatment means which would be
of interest in the corresponding wnivariate design, if any; (ii) ¥ test
statistics corresponding to hypotheses which would be of interest in the corres-
ponding univariate degign, if any; {(iii) estimates of variance components
which would be of interest in the corresponding univariate design, 1% any.

To be more specific, suppose that our example is & one wvay layout with the
index i corresponding to treatments i = 1, ..., L and the remaining indices J,
k, & representing levels of subsampling within treatments. The model for the
univariate design is

e =1 T %y P Pigk T Tagwe

where we assume e(xijkﬁ) = 7, and that the errors are NID(O,U ), NID(O,o, ), and
NID(O,UE).respectively. Natural statistics to retain would be treatment means
T ;» the F-statistic for the hypothesis H: T, =T, = «cv 7 T against A: T, £ T,
for some 1 # i+, and estimates of the variance components 0§, 62, and 35. By
means of the process of performing the computations to obfain these statistics
for each & we generate the corresponding sequences [? (wg )}, {Flog )}, [U (w, M1
{ (w 11, and {0‘(w )} where in each case the index s ranges from ¢ to m

In the remeining sections of the paper we will discuss how these sequences
may be used to pley the same roles in an exploratory analysis as do their uni. -

variate counterparts. These roles are estimation of treatment effects, detection

of treatment differences, and identification of sources of variation.
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Let us summarize the computational process before going further. The time
series realizations {y(t)]ilé have been collected according to an experimental de-
sign. Bach series is replaced by its Schuster pericdogram {P(ws)]sfo which is,
in turn, transformed to obtain the sequences [qy(?(ws))}sig, one such sequence
for each "ecell" in the design. Then, depending on the experimental design chosen,

these sequences are replaced by sequences corresponding to treatment means

m

. . P m
and wvariance component estimates {o .
S=OJ p { Ci(wS )}S___O

[Ti(ws)], F-statistics {F(ws)]

On the bhasis of these sequences we propose to study the data.
4. USES OF TREATMENT MEANS AND F-STATISTICS

The statistics associated wifth the fixed effects in a univariate design are
used to estimate treatment means and decide whether or not these means differ.
Analogously, a set of sequences of treatment means [?i(ws)} (i=1,2, ..., T)
and the associated F-statistics corresponding te the null hypothesis of no treat-
ment differences may be used to estimate the spectral density for treatment i,
detect those frequencies w% which are important in a low order Fourier series
representation of the first moment u(t) of a realization subjected to treatment
i, and decide whether or not the true means {Ti(w)} differ on some interval
[Kl)lgj-

A sequence of treatment means {?i(ws)] is, of course, the average of the
transformed periodogrems [@G(P(ws))} of all realizations which have been sub-
jected to the same treatment. For the example of the previous section, we have

Fylog) = UKD 5 5 g (B 0))
The effect of this averaging is to reduce veariance and gain a hetier estimator

of the true mean Ti(w“). A visual impression of this variaance reduction can bs
jeg

ovtained by comparing Figures A and B which are plots of a single transformed
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10
periodogram and the average of twelve transformed periodograms for the same
treatment. The variance reduction takes place in the vertical direction in these
plots and its visual effect is to "smooth" them. This type of estimator is
similar to Bartlett's estimator of the spectrum [k, p. 228 £f.7]. The essential
difference between the estimator [?iﬂus)] and Bartlett's estimator is that, here,
the average is taken over transformed periodograms which are independently and
identically distributed due to the design structure rather than being taken
over pericdograms formed from contiguous segments of the same realization which
are, of course, correlated. Thus, one achieves more variance reduction than is
the case with Bartlett's estimator due to the absenCe of correlation. In the
study reported in Section 7, we found that the variance reduction dve to
averaging over the transformed periodograms within a treatment achieved
sufficient "smoothing" for our purposes. One may achieve additional variance
reduction, if desired, by moving average smoothing as explained in [h, Chapter 6].

Plots of the pairs (ws,?(ws)) are interpreted in the same manner as plots
of estimated spectra since %y is a strictly increasing function. Jenkins and
Watts [5] discuss the interpretation of estimated spectra in their book,
especially in Chapter 7. We give an example in Section 7 of this paper.

As one compares the plotted estimates (ws,?i(ws)) for the various treatmants
i =1, 2, .., I) one may notice differences in shape and height in some
interval [Al,kgj of [0,m). A natural question is whether or not the differences
in this interval represent actual differences or sampling varistion. The
sequence of F-gtatistics {F(ws)] each with numerator degrees freedom v, and
denominator degrees fresdom v, may be used to answer this quastion.

If v £ w,, then, asymptotically, %y(P(mS)) is independent of ¢d(P(wS,))
under reasonable assumptions [4, p. 2117. The experience of practitioners

indicates that periodogram ordinates do, in fact, have an appearance of
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independence in applications. This "approximate" or asymptotic independence
will, of course, carry over to the sequence of F-statistics [F(ws)}. Let s, and

be such that W, for s = 81s 8y + 1, ..., 8, are those frequencies satisfying

5p
w, € [kl,xgj from the set of frequencies w, = (en/m)s) where s = 0, 1, ..., m.
Suppose  the hypothesis H: Ti(ws) = Ti,(ws) holds for all treatment pairs
i,it =1, 2, ..., I and all w, € [kl,hg]. Then [F(ws)]ZESl is a seguence of in-
dependent and identically distributed central F-statistics each with vy
numerator and Vs denominator degrees freedom. On the other hand, if the alter-
native A: Ti(ws)8¢ Ti,(ws) holds for some i £ i/ and some wg € [AsA,] then the
sequence [F(ws)}sisl is e mixture of central and non-central F-statistics. Any
goodness of fit test which is sensitive to this departure from an assumed random
sample from the central F-distribution is an appropriate test of H against A.
The chi-squared gocdness of fit test {10, p. 1267 is & candidate. Tables of the
F-distribution such as in [10, p. 5297 which give a full range of lower and
upper significance points may be used to set up the cell boundaries for the test.
As pointed out in Section 2, if wj is important in a low order Fourier series
representation of u(t) one expects to see a "spike" in a plot of the pairs (ws,
P(w,)). This will carry over to plots of the pairs (ws,’r‘r(ws)). See FiguresA
and B for an illustration. Thus, inspection of the plots yields a visual means
of estimating the nonlinear parameters wz. Methods of confirming these visual

impressions by tests of hypotheses and methods of estimating the remaining para-

meters of u(t) are given in [2, Chapt. H7.
5. USES OF VARTIANCE COMPONENT ESTIMATES

The statistics assoclated with the random effects in & univariate design
are used to isolate sources of variation and estimate variances of linear com-

binations of the observations. Analogously, a set of sequences of variance
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component estimastors such as {Ei(ws)}, Eg(ws)}, and {Gs(ws)} for the example of
Section 5 may be used to isolate sources of sampling variation and estimate
variances of linear combinations of transformed periodograms by frequency.

In the previous section, we mentioned that variance reduction in sequences
of treatment means in addition to that achieved by the design computations could
be obtained by moving average smoothing., This same consideration applies to
sequences of variance estimators as well. Our experience indicates that some
smoothing of variasnce component estimates is desirable. This is accomplished as
follows. Let {Eg(ws)}sfg be a sequence of variance components to be smoothed
where negstive values of 3(ws) have been replaced by zeroes. The smoothed

sequence f&g(ws)} is defined by

~ P 1 K 2
7 (ws) T PK+L zj=~K ¢ (wsmj) !
. . _mo,em . s :
where ms—j = ms+j if 8 - j « O and ws—j =3 + 3 Jjif s J > m. The number of

points 2K + 1 to be included in the moving average is found by choosing the
smallest K such that a plot of the pairs (wS;EE(wS)) has a visual appearance of
stability.

The smoothed estimates may be used to estimate variances of linear coln-
binations of the transformed periodograms (¢b(P(ws))} such as treatment means
[?i(ws)} at each frequency W An example is afforded by Figure C which is a
plot of the pairs (wsfﬁg(ws)),where'ﬁg(ws) is an estimate of the variance of a
single transformed periodogram ¢b(Pijk£(ws)) for the design we have used for
illustration, namely

%y(Pijkg(ws)) =7 (o) * aij(ws) + Bijk(ws) + 7ijk£(ws) .
The estimator of this variance is
o) =) ) T,
where the tildas over the estimators on the right hand side indicate the smooth-

ing described in the previous paragraph (K = 41). As one would expect from the
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discussions in Sectlion 2, this variance varies with frequency.

Sources of variastion at various freguencies can be isolated by building up
estimators of the wvariance of a linear combipation of interest and plotting the
additive contribution of each source of variation on the same grid. TFigure D is
an example of this sort of plot. OFf interest was the relative contribution of the

2 2 2 . 2 . , .
components G&(ws)’ Ub(ws)’ and Uy(ws) to their sum o (ws) wnich is the variance
of a single transformed periodogram. Plots of (wS,Ef(wS)/Eﬁ(ms)),

2 2 2 2 ~e ~2 ~2

+ + + =
0y Gplog) + Fgw )W Fw))s ant (o Bolw)) + B0 + )/ (W) = 1) on
the same grid help identify the proportion of the total variance contributed by

each source of wvariaticn in the experimental procedure.
6. COMPUTATIONS

The computations described in Sectlons 2 and 3 require an efficient means of
computing the Schuster periodogram and the statistics associlated with the
experimental design used to obtain the time series realizations. The Fast
Fourier Transform algorithm is the most efficient means to obtain the periodogram.
The FORTRAN implementation of the algorithm by Singleton [L11l7 may be used for a
reagsonably dense set of resglization lengths n. Implementations of the Fast
Fourier Transform algorithm for which n is restricted to some power of two are
available at most computing centers.

The computation of the design stetistics must be approached on an ad hoc
basis according to the design chosen. The easiest approach ig te write a sub-
routine in a scientific language such as FORTRAN or PL/L which inputs data for a
corresponding univariate design and outputs the statistics of interest, For our

example,

= 4
Xiarg = T2 Vg T Pigk T Vi 0
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the inputs are the ) (L =1, 2, vouy I3 3 =1, 2, vous J3 k=1, 2, «or, K

4=1, 2, ..., L) and the outputs are %i (i =1, 2, «ev, 1), the F-statistic for

the null hypothesis of no treatment differences, Bﬁ, Eg, and %5. This subroutine

is then placed in a loop whose index s runs from O to m with the assignments
)) made on input and the assignments %i(ws) =T, FQ»S) = the

i
fa) ~ ~ A2
Ub(ws = g, and Uf(ws) =0, made &n output. Clearly,

*i3k8 “h(Pijkz(ws

. . Ll 2 = Ag
F-statistic, Ué(ws) =G,
a simple balanced experimental design will lead to easier programming and re-

duced costs at this stage of the computations.
7. APPLICATION T0O AERTAL CROP IDENTIFICATION

The ideas presented in the previous sections are illustrated in this section
using an application to an aerial crop identification study as an example. The
design according to which the reslizations were collected is the same one-way
layout with two levels of subsampling which we have used as an example throughout
our discussion. The methods set forth in the previous sections were used to
detect trestment differences for purposes of identifying statistics which can be
used in discriminant analysis. A secondary objective, was to isolate the con-
tribution to the total varisnce of each step of our data collection technigue.

The feasibility of crop identification by sensing ground reflectance from
an aerial platform is presently a subject of active investigation, notably at
the Laboratory for Agriculbtural Remote Sensing, Purdue University, and the
Forestry Remote Sensing Leboratory, University of California, Berkeley., We call
the interested reader's attention to the bibliography prepared by NASA [9], the
annual reports of the Purdue Laboratory 7,87, and the recent survey report by
Colwell [37. Methods of crop discrimination ranging from classification by
trained inspectors using photographs taeken from aircraft and spacecraft platforms

to computer classification of digitally recorded optical. scens are reported in
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this literature. The latter approach is relevant to the present study and is
perhaps best illustrated by the experiment reported in [7, p. 127]. Here,
ground reflectance of selected fields was sensed over twelve bands (HOC-U4 0 myz,
Lho-U60 mu, 4E0,480 mu, 480-500 mu, 500-520 nu, 520-550 Mz, 550580 mu, 580-620 nu,
620-660 M, 660-720 mu, 720-800 mu, 800-1000 mu) of the electromagnetic spectrum
using s multispectral scanner mounted in an airplane. A grid of contiguous
segments was sensed such thal each represents approximately fifteen feet by
fifteen feet of ground sres. Bach segment is then classified into crop catagories
by means of standard multivariate discriminant methods (1, p. 126 ££.7.

A considerable smount of ground detail is lost when the resolution of the
gensing procedure is as coarse as the fifteen foot grid used above. The
objective of this exploratory study is to determine the degree to which this lost
information is relevant to crop discrimination. Specifically, this experiment
was designed to determine the presence or absence of useful information other
then mean field reflectance in s digital record of a high resolution optical scan.

The data were collected as follows. A designated target was photographed at
an altitude of 2750 feet on Eastman 2443 color infrared film using an 8 1/ inch
focal length Ziess camera with a nine inch by nine inch format. The targets
were located on the resulbing transparencies and converted to a digital record by
means of o microdensitometer. Each microdensitometer scan consisted of 2048 ad-
jacent readings along a linear path at 45° to the erop rows if a row crop (or b5°
to a field boundary if not). Each reading represents a ground area of 1.9 inches
by 1.9 inches. The scan was repeated using red, green, and blue filters in
order to be able to estimate the mean field reflectance over three bands (500~
600 mu, 600~700 mu, TO0-900 mie) of the electromagnetic spectrum by aversging thi
filtered observations. The targets were selected according to the one way design

shown in Table 1. Within each field there were two levels of subsampling; two



TABLE 1. Experimental Design

i Crops Number of Fields

1 Cotton J2L e, Jy =2
2 Grapes J=1, «uuy 52 =2
3 Oranges J =1 .., J3x3
L Almonds J=1, «uu, Jy = 3
5 Alfalfa =L e, g =2
6 Corn 3 =1 ey dg =2
7 Walnuts J =Ly en, g =3

Subsampling within Fields

Digitizations: Kk

Scans:

£ =1,

L

')
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digitizations within each field and two scans within each digitizations. The sub-
sampling was undertaken to isolate sources of error in the data collection
technique to ensble variance reduction in subsequent experiments.

Most crops are arranged in rows of equal spacing so we would expect that
the expectation u(t) of a realization would have either a ginusoidal or square
wave pattern. Either of these models can be adequately approximated by the low
order Fourier series expansion

u{t) = u + 5 L Cos(w*t +B.) .
i=1 "1 i i
Moreover, either s square wave or sinusoidal wave of the type we envisage would

* #
satisfy Wy =W 1 and @, = max{aj]t An orchard with twenty foot spacing would

L
* .
yield o = (2n/24%0)(2.9/\2) = .03%2 radiens and corn plaanted in thirty inch rows would
*
yield w = (21/30)(1.9/\{2) = .281 radians using the formulae given by Jenkins

and Watts [5, p. 58] and Anderson [2, p. 3871

Following the methodology presented in the previous sections, the trans-

formed periodograms {us (P, ., ,{w ))}%OELL were obtained from the realizatlons
5 1Jkg™ s 78=0

20l
(7 31 (¥

%2(w )} appropriate to the model
7

and the sequences {?i(ws)}, [F(ms)], {%ﬁ(ws)}, %g(ms)], and

g (Py gpeg (05 ) = 73 () + g5 (o) + By () + 754, ()
were compubed. The analysis of variance table for this model is given in Table
2, An example of a transformed pericdogrem for a single scan over an orange
grove is afforded by Figure A. The average of the transformed periodograms over
all orange groves, hwelve in munber, is plotted in Flgure B. Notice the variance
reduction in bthe vertical direction achieved by the design computation and the
peak corregponding to 250 inch row spacing.

The smoothed estimate of the variance corresponding to the transformed

. , . . 2 . . . .
periodogram of a single realization o (w) is plotted agsinst frequency ln Figure



g9 = ™LX TYIOL

) TT=T
Aavmb f¢ = (T-T)¥ hﬁH R suBOY

T T=1
Avabm + Asv%u Lt = 2.5.% o« SUOTRRZ T TS IU
?&Mb: + Asvm& + mém.o 0T = S-HBMHW SPTOLd

T =T Lol L

_L(o)e=(my "3 TR o/ + (MIon = (W02 + (W) p 9 = T-I sdoap
T= T Tes
saenbg uesy psyoedxy : -Ip S0IM0g

TAONY ¢ HIdVdL



LT
C and the relative contribution of the variance components oi(w), og(w), and
Usﬁn) is shown in Figure D. (See Section 5 for a more complete description of
these plots.) As seen from Figure D, in all but the lowest frequencies, about
seventy-five percent of the total variunce is due to variations in realizations
at the lowest level of the design. Even at the lowest frequencies oﬁ(w) accounts
for at least fifty percent of the total varisnce, For our purpeses Ghis is a
fortunate discovery as replication at the lowest level of the design is the most
economical. It is only necessary to take multiple scans within a given target
and average the resultant transformed periodograms to achieve substantisl variance
reduction,

A visual inspection of overlaid plots of the pairs (ws,?i(ws)) for i = 1,
2, +v., T indicated substantial differences in the location snd height of maxims
and more subtle differences in shape of the curves in the intervals [0,.25% and
[.25,l.0]. Also, the curves appear to essentially reach an asymptote at 1.0 and
the asymptobe appears to differ for a few curves. These visual impressions are
confirmed by the chi-squared goodness of fit test described in Section .

As stated earlier, our objective is to discover additicnal information in a
digitized optical scan which mey be used to improve classification error rates,
Based on this study, the following statistics appear relevant. For a given
realization, denote the largest periodogrem ordinate by P(wL) and the corraes-

ponding abscissa by w The information as to the presence or absence of a

i
deterministic component (row crop) in a reslization is contsined in the statistic
/2
T = P(wL)/(Z:;zO P(ws) - P(wL) " P(wo))
(2, p. 102 1], The estimated row spacing in inches of a row crop is given by
the statistic
R = (am/uw ) (1. 9/\2) .

We propose to detect shape differences by fitting the segmented linrear madel
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a + Slw O= s .25
¥Y{w) = a + sl(.25) + 82(w - . 25) .25 £ w £ 1.00
a + sl(.25) + 82(.75) + 83(w - 1.00) 1.00 £ y £ 3.14

to m(PﬁpS)) by a robust method and retain the statistics a, 8 85, and S5. Qur

lJ
flrst choice of methods for fiﬁting the model was to minimize the sum of absolute
deviations. Because of its relatively high cost per fit and its anticipated
application to large data sets, we rejected the method in favor of a more
economlcal one. This consisted of fitting the model using least squares and
setting observations with excessively large residuals equal to their predicted
values and refitting to this adjusted data. We feel that this procedure sub-
stantially reduced the effect of extreme cbservations of the gsort seen in Figure
A,

One of the goals of this investigation was to demonstrate that use of the
information available in high resolution scans can greatly decrease the rate of
misclassification in crop discrimination. To effect the comparison, we extracted
mean reflectance for each scan by averaging 2048 readings representing 35.61
square inches of ground area to obtain the equivalent of 51.3 square feet of
ground area. This procedure was applied to scans obtained using a red, a green,
and a blue filter, and, using no filter. Taken together, these four measurements
represent the low resolution information. High resolution information ig con-
tained in T, R, a, Sl, 82, and 85 defined above.

Linear discriminant function methods were used to compare classification
performance., Upper bounds for Pj = the probabllity of misclassifying an ob-
servation from crop j were estimated and are reported in Table 3. The estimated
bounds were derived using the Bonferroni inequality and the methods described in
Anderson [1, p. 126 ff.7}. The bounds are given for low resolution information

alone, high resolution information alone, and for the cambined information.
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Table 5 gives strong evidence that the combined data from high and low resclution
scans substantially reduces the probabilities of misclassification as compared

to that of the low resolution scans. Also of interest is the fact that the niph

resolution variables seem to outperform the low.




TABLE 3

Classifi{cation Comparisons

Resolution
Crop Low ] Hgh Combined

Cotton . 573 L 171, .obe o
Grapes .528 . 19k ., 059
Oranges . 580 . 143 . 058
Almonds 572 239 - 077
Alfalfe Sk . 095 . 015
Corn . 355 . 085 . 025
Walnuts Jde1g L1735 053
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