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This veport is & summary of the topics in nonlirear regression which are

ularly relevant in applications of segmented polynomial regressions with

ints. These gre nonlinesr regresgion models whose dis stingulshing

thal the partial derivatives of the responge Functicn with

b0 the parameters to be estimated may not exist.
The regularity conditions us Ly asswmed in nonlinesr regression thsory

wion method of computing least

the asymptotic normality of these estimators, and

distribution of Likelihood Ratio test stabtistics for hypotLeses

of paraneter location are reviewsd. The extent to which the derivative conditions

can ve weakened to accommodate segmented polynomial regressions constrained to be

once continuously differentiable with respect to the input varilable is digcussed,
Hartley's methed of testing hypotheses of the location of subsets of the

paremsters which enter a response function nonlinearly is reviewed, This method

does aot require the impogition of regularity conditions involving derivaiives

ted polynomial regressions which violate the derivative

applications,
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1. INTRODUCTION

This report summarizes the theory of noniinear regression which is particulsrly
relevant in statistical applications of segmented polynomial approximating functions
where the joln points are unknown and musi be egbimseted from the data, A Formal
statement of the theoretical results cited is included as an Appendix,

The nonlinear parameters appearing in such models are, of coursge, the unknown
abscissae where ope polynomial submodel stops and the next polynomial submodel
starts; the remaining coefficients of the mode®l snter in o linesr fashion., In
many data analysis situations the join pointe are known & priori or are of no
rarticular interest in the analysis (Fuller, 1969). In the former case the
model is linear subject known restrictions on the parsmeters (referred to as
BO’ Bl’ »+. in the later sectiocns] and in the latter case the ssme is true
provided one is conteni to treat his visual estimates of the join points &g
& priori knowledge. In these situationg, Section 2 may be of interest as a
means to put the model in proper form for standard multiple regression computing
programs. On the other hend, one can avold reparasmeterivation in these situa-

ticns by employing the numerical methods given in Gerig and Gallant (1974).

This slgorithm is avallable as a SAS procedure upon request from the author,



2., REPARAMETERIZATION OF SEGMENTED POLYNOMIAL REGRESSIONS

Tt will be convenient in the later sections to be able to express or represent

a segrented polynomial regression according to the specification commonly employed

in nonlinear regression theory: A get of responsges to inputs X are
o By - t -y—
4.

generated according to the regression eguaticns
ytﬁf(;‘gt,tg)-i“et (t =1, 2, vauy 1)

where The orrors €y are independently and normally distributed with mean zero
and unknown variance 62 . The response function fgﬁ:,g) has a known functional
form depending on k-dimensionsl input vectors X contained in a known set X and
a p-dimensional parameter{g contained in a known set Q’u The true but unknown

*
value of the parsmeter 1s denoted by 8§ .«

Segmented polynomisl regressions are usually written as
= -+
vy = alx ) + ey

where g{x) is the sequence of grafted polynomial submodels

\ ) el o) 0 = E=
glx) = 4§ . :
. (%,
R\ EpiHs ﬁw) arm1.<:X:£ Fyp

correspoending to the partitioning of the interval [ao, ar] into

C(O{Q'l(@g(*'!(:arm‘i(Qr *



The endpoints and g are known but the intermediate points of Jjoln

(IO
g - (Cﬁ; s =00 Cz’.,‘ml

are unknowrn and must be estimated from the data. The submodels gj(x, Eﬂ)

(=1, .., r) consist of the polynomials

2 4
e (% fy) = By TEE Byt t oo YRy X s
ggix’ EQ) - 302 + glgx o 4 L. h @G a X 5
(55 B,) = Bgp * Byt * Bo i Foean .
g% B = B TR S T B o qur : '

As pointed out by Fuller (1969), it is often desirable to impose a continuity

regtriction on the model

BO: gj(aj} Ej) = g‘j_i_l(&'js ’%j’é’"l) j = :!-_9 23 e r-l

and, in addition, reguire that the response funciiocns g(x) e once continuously

differentiable by imposing

. b R / . .
B}-‘ bx gj(&’j’ ’%‘j) DX gJ"‘l\Qj? 2‘3"}“1) J 13 23 M | rel .

As mentioned earlier, it is helpful to be able to express such a regression

model in the single equation form

-+
4]

yt - 5’153 "@) ; ey

in order to epply the ldeas of nonlinear regression theory. This mey be done

glong the lines (Gallent end Fuller, 1973) summarized here.



The basic idea is to rewrite the grafted polynomial model in terms of the
pasgis functions

-

&
Ly Xy Xy vsns x3

To(ai - %), ‘I‘l({yi “ X))y wans Tq{qi - %) i=1, 2, eees p=1

where ¢ = max{q,} and

Note that To(z) is discontinuous, Tl(Z} ig a continuous function, TQ(Z) is
once continuously differentiable, TB(Z) is twice continuously differentiable,
and sc on. Consequently, the impogiticn of the continuity restriction BO
reguires that the functlions To(qi - %) be deleted from the basis, imposition

of the once continuously differentiable restriction B, requires that the

1
functions Tl(ai - %} be deleted from the basis, and so on.

As an example, the guadratic-guadratic model

o
81 (%s By) = By T By Xt BpyX oy S X K oy

805 Bo) = Bop * BypX t Byp¥ o) <X

IA
R
S

subject to the continuity restriection

2 2
Byi Bop T Byjey T Boy 7 Bgs T Bppag FOBooag

iz written in terms of the basis functions as



L%

: 2
£.(%s 8) = 8 + B %+ 8% * 6,7, (g - x) + 85?2(96 - %)

where the correspondences between parameters in the two representations are
8 = Bops 8y = Bips 03 T Bopr 8 =By - By * 2By, - Byl 85 = By - By
8 = ¢ The data given in Table 1 can be represented by this model as seen
from the least sgqueres fit in Figure 1.
If the gquadratie-guadratic model is restricted to be continuously differenti-

ghle by imposing

Byt By v 2P =B, 2 B

one cbtains
£,(%, 8) = 8, + 8,x + 6% + 9,7 (8, - x)
2377 1 z 3 LTeMvsg
where the parameter correspondences are

8) = Poor 85 = Pip B3 = Bups 8y = Fop - Byys 85 T

The data given in Teble 2 can be represented by this model as seen in Flgurs 2,
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PABLE 1. Specific reteation volume of cycloheptene in polyethylene terephthalate

=}

Reciprocal x 107 of
temperature in degrees Kelvin specific

wral logarithm of
volume in CC, per gm.

(69323 0.35680
72182 0.27624
LTH3G5 O.Eh18s
L8026G 0. 0011699G
s ey (L OBETOR
,835388 ~0.011101
L7686 o OE8G2G
Jrase FLOLR5hT7

!
0.20731
$.29910
0.386LY
0.h3128
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0.56516
0.802L0
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TABLE 2. Specifile retention volume of methyiene chlovids dn polvethylene
g
tevephthalate

Reciprocal x 107 of Natural logaritim of
temperature in degress Kelvin specific volume in CU. per gm.

L6323
1,10458
0.98832
O,87471
0.62060
0.511Y75
0.35371
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satisfles this set of assumptions and the additlonal sssumptions requiyed to

obtain the convergence of the modified Gauss-Newton method, The methods of

proof employed are not unigue to the gquadratic-quadratic model and, working by

analogy, one should be ebie to verify that these assunpitions are satisfied by
ﬁ‘.

any segmented polynomial model subject to BQ and LL when the inputs are

Yeonstant in repeated semples,”
A listing of Gallant's (1973a) assumptions and & formal statement of the

theoretical results are gilven in the Appendix to this report. A summary of iLhsse

28 applied o

points and subject to the conditions BO and Bl le presented below.

Assuming tThat the methods of Section 1 have been employed 1o wyrite the model

in terms of the basis functions as

we define;

the p x 1 vector whose J element is g%~ fgggfg},

<
=
)
b
=&
it

nJ
Fle) = trix whose t o roy 7' ( )
e = ne n ¥ p matrix whose t row is Y TUX, . 8
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These iteratlions are contlinued until terminated according to some stopping rule

such as

“,@,i - ,@i+li§ g € n_@igg (j‘ = “1‘3 23 A p)

fﬂd,simuitaneousiy
fsse(g.) - ssE(g, )| < e|ssu(g,)]

yhere ¢ is some tolerance, (The use of the modified Gauss-Wewton method to fit

grafied polynomisl wmedels i cxplained in more detall in Gellant and Fuiler
{(1973).)
-
Let 8@ Tbe the value of the parameter to which the iterations have converged
snd let

C = (83B(g)/n){ %g’(,é)ﬁ(,é)]d .

Assuming that § 1is, in fact, the least syunares estimator, it is strongly

* P * . .
consistent for :@ and gnig - 8 )} converges in distribubion to a p-dimensional

multivariaste normal with mean zero and a varlance-covariance matrix estimated

N
consistently by £ . Conseguently, one may expect

to be & reasonably accurate 95% confidence interval for §. in epplications.,

{ongider the hypothesis of location

H - oty .
H 1= o1, agalnst Ar 1 #oa
4

where 8§ has been pariltioped asccording to

,@! = (Q,i_’ ’T;)

ot



=

iQ
with p Tbelng an r ¥ 1 vector of nulsance paresmeters. Define p to be the

r ¥ 1 vector minimizing Eitl{yt - fﬁﬁﬁﬁ {g.» 4@)) over fg, EO} e . The

vaiue of p is obtained using the modiiled Gauss-Newton method as above by

treating f&%ﬁ’ gg,‘zo}) as a response function with parameter I Let

The Likelihood Ratlo Test for H against A 1z to reject H when

t(y) =T () /o ()

is larger than ¢ where EiTQg} > e'Hj =g . The Likelihood Ratio test statistlc

T(y) may be characterized as

(y) = X + ¢
& n

« .
where ., converges almost surely to zero. The point ¢ such that the

i

approximating random vardlable ¥ satlsfies
#*
x> c |H) =«
is
Q‘L R
¢ =1+ {p-r)F_/(n-p)

where F& denoctes the upper @ . 100 percenfage point of an F-digtribution with
p-r numerator degrees freedom and n-p denominator degrees freedom, (See the
Appendix for the non-null behavior of X.)

in applications, one would test the hypothesis H:i 7 = 7. against

&
.. % b T_Li - ,72( N d_ /“Q( > o P thm e % T( ) __"“'2( \ j;::,}( }
Ar I ¥ 1, by compuling a'{y) snd O (\y), forming the ratlic XJ)o= O Ay X,

and rejecting when TQx) exceeds <o . Also, one may set a confidence ianterval
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I aboui a coordinate 7 of @ by putting all v in I for which the

*
hypothesis Hr 7 = 7. is accepted; that is, for which T(y) < ¢ .

gH

As an example, we msy apply these methods to the data given ip Table 1 using

the guadratic-gquadratic model subject to BO and Bi

Vo= 61 -+ GBXt i 8

%

2 v ) .
T eufz(e5 T AT ey

3

o

The results from a modiflied Gauss-Newton f£it are displayved graphically in Figure

and the numerical results are given in Table 3. The modified Gauss-Newion method

1 s b

1onet perform well for these dats necessitating a cholice ¢

(]

g, slart velus yeryl
near the corvect answer as determined Trom the entries in Teble 4. The cause
for this poor performance seems to be & very poorily conditioned F'QQ}FQQ)
patrix; see Table 3. Exemples where the performance of the Gauss-Newton method
is much betier are given in Gallant and Fuller (1973).

The asymptotic nommality of éﬂ, the Llikelihood Ratioc test, and Hartley's
test (discussed in the next section) may each be used to set a 5% confidence

interval on the point of Join 8. . Using the numericasl results in Tsbles 3 and

5

4t the confidence intervals thus cbtained are

1) Asymptotic nermallity of the least sguares estimator

IT=1{o5r 85 - (1.96)(39) = 8, % g+ (1.96)(.39)]

5 .
= [2.178, 3,705}
2} Inversion of the Likelinou? Ratioc test

T = {ggr Tly) = 1.262} = [2.915, 2.975]

3} Inversion of Hartley's hest

The lengths of these intervals are 1,53, .06, and .09 respectively.



TARLE 3. Meodified Causs«ilewton Regults
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MODIFIED GAUSS-NEWTON ITERATIONS *
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ERROR Sum OF FARBMETER INTERMEDIATE
STEP SQUARES NUMRER . ESTIMATE
ot o o B P T L Y ) e o W S o ol e VIR S T e o

3 . 585085480 02
80.321843220 02
“0.448383620 01
G.2967230800 02
$.293998240 061

o 0.34143134D-01

e WD

~0+555120690 02
04321666030 02
“0.44842048D 01
0.285725750 02
0,294010190 03
_wmm=  UNABLE TO IMPROVE ON THIS ESTIMATE

1 G.341411500-01

Ul & W N

GRGEHAOEROR BRI NSV L DO S LAG RO ORISR ILE AR AITCONBLAILDRLGRRBVERBEpOERRRRR

CHECK THESE ITERATIONS 10 SEE IFf CONVERGENCE HAS
BEEN ACHIEVED BEFORE USING THE FOLLOWING RESULTS
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CORRELATION MATRIX OF THE PARAMETER ESTIMATES

1.00G000
=0+999935
G.999739
“0.426821
~0,794536

~04999935
1.000000
~0.999934
0.430923

0.789949

0.999739
=~3.999934
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~0o 785370

~Jet¥6821
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00435792
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-0.168183
14000560

%



TO9STT ST 3899 0198y POOUTTONTT SU3 20) qutod TBOTITIO (G- ouf

“£9C 8T 983y 2, ASTQTBE a0 jutod TeROTRTIO GO 8ur
n1L6S 2 2600904 L2830 0 gLGe T1¢ THLG CT TE06° Qg TS 6610 ¢
9T00Z° 2 T609L°6 08TGLO™ O TERL T OF A TOWG " 0Q QOETET= BEE00E
Q5955 T QOERT A 6rEE90 0 EGLE " OF TS0 TT~ 0N Y) OLOTETT BEORE"
H62L6° T THE9L" ., GOLESO D ££20°08 668G 6= ATt RIS T4T Aot~ QE6R6" 2
RLICE"T £LLOE" G FETOHO "0 Latl 6z QELGY g 075094 GE99° 66~ g66.L6 3
LREGT T TGl H ZT0RC O geEc a2 19226 /- THTO T¢ 6TTL Hg- 06967
THOLO* T FRACT AR GHeet0 0 680l 62 EnLehto- 3E6EE hy cGE - ABACE" 2
GLE0O"T nGeR9 2 TLEHED 0 ENTS 62 Gt G- 650T 8¢ 9569 19~ REGHE 2
00000° T THRGE 2 ENTHEO" O T£L9 62 neEet 4= tHoT 2C Aelalagda e QRAEE"Z
L9R4O"T 690212 EETSE00 £Q46AE 09GLG £~ R0S5 02 6EHG - On= peses° e
RTIORT T 060ER" T SEEOR0 G 3ELE "0F TagTLi 2~ G662 T2 1869 gE- QERTE"Z
ETHCE"T 90465°T 9E2eh0 0 NI06° 08 LEOTE T TLTE 0T IR0 TE~ GO606 2
LEORGTT LOLGE T GSHES0 D GEGLTE 6TLYT T~ LEOL®TT AT 6666572
GLORG* T gT0TNn T Lt0L50"0 66LL EE LTEOR O~ LS aniad) SLOK LT~ 6669072
AN 7GGE0° 2 TELELOT0 9GO0 " 1€ 196LTT0 #ETEH € 208 1T 66RLEE
QZTER "2 CLTGEE 65050070 Oq0L"GE RETARLTO CogTE o~ epkogg- 8660072
§09%g°2 HE6067 4, CT8iE0 0 198G L onzlET 09LLH*C AR AR 666an 2

(9)z (£)a e g °g L Tg o
183l oTymy 1887 SA919WBIRY JTBSUTT 3yl 0

DOOUTTaYTT ¢, Lotgaey

F93BWILSY saxenbg 1seoT Burpuodsaiio)n

IUTOT WEOL

PezTsausodiy

JOJ Hm R

0

g 0% 3o8luny Topow SramaIpEnb-oTyespenb B Buz

T 2T9BL Jo ®iEp sy

st utel jo qurod eys JOT §388]

ThOETHYL



12

4. HARTIEY'S METHOD

The theory presented in the brevious section required the deletion of the
Punctions To(ai - x) and Tl(ai ~ %) from the set of basis functions or,
equivalently, the imposltion of the constraints EO and Bi on the resgponse
funetion g{x). In applications where it is not appropriate to impose these
conditions (see Figure 1} it is still possible to test some hypotheses and set
exact confidence intervels on some parameters using a method due to Hartley
(196k4).  In those applications where the impogition of BG and Bl is appropriate,
Hartley's method is not recommended for setting confidence intervals. Usually
such intervals will be wider than those consirucied using the methods of Section 2
and sometimes the confidence interval will not contein the least squares estimate
ef the parameter.

Consider the hypothesis

sgalinst A

PR

Hi 1= To
for the regression model
vy =z 8) + ey

where 6 has been partitioned sccording to

If the regression model with o specified to be Ty

y“ﬁ = f(;’.&ts (Q; :EO}) + eﬁ b

is a linear model in the remaining parameters 0, then Hartley's method is
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appliceble. For example, the Quadratic-quadratic model subject to B. with the

0]

Join point 86 speoified as 92 is

-

L . = O \ -
Vg =0y 7 8%+ 07 4 8T (8 - x) + 6.1
which 1s linear in the parameters (81, 8,5 8o 8,: 85). If the hypothesis

H: = g is true and one fits the linear model

A

T
i

vy = T ey 1)) TSt ey

U

where A denotes arbitrarily chosen regressors then the least squares estimate
§ 1is normally distributed with the zerc vector as its expectation. Conseguently,

the standerd F-test for the hypothesis H': JQ = 0 in the linear model

yt = f((gft; (,Q,: "E'O)) +,§,§; 5+ €y

is test for H: g = T, in the nonlinear model

Yo = f_(;f,t: (,Qs ’T'O)) + €t -

The regressors Z, must be chosen to obtain good power for the test under

T

the alternative A: 1 # o+ A method of chocsing the extra regressors whleh
works well for grafted polynomisal models is the following. Plot the residuals

from fitting

ve = £z Ry 150 ey

for various choices of 7. . From a visual inspection of these

o

plots, try to choose regressors which are Tunctions of the x, and would glve

%

against X,

a "good" least squares Tit to the plotted residuals. For example, the choice

I
B = U %)
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vields adequate results for the hypothesis H: 86 = 92 of the quedratic-
gquadratic model.subject to BG .

A confidence interval may be set on the point of Join for grafted polynomisal
nodels with a singie join point using this method. Letting T correspond to this
Jjoin point, cne includes in the confidence interval I those polnte Tey Tor

which the hypothesis H': i3 = U corresponding to H: 7T = Toy is accepted. In

models with multiple joins

)

o = i ‘e o
(Q'l: Yoy P ML

o~ I

this same process can be used to construct joint confidence regions.,

One might note that Hartley's method depends only on the assumption of
normal errors e, 8o that probability statements baged on the method are exact
and not approximate as with the methods of Section 2. However, in this suthor's
opinion, the deficiencles of the method noted earlier outweigh the advantages
of exgct probability statements in situations where either approach is applicsble,

Ag an exsmple, we mey apply these methods to the data given in Table 2 using

the guadratic-gquadratic model subject Lo BO

£

2 ¥ 1 7 A )
Y, =8 fex 4 SSXt + ehyl(eé - Xt) + eﬁ;ggeé - %, )+

The parsmeter estimate

L3

8 = (-56, 45, 8.8, 12, -.93, 2.8}’

is obtained by minimizing SSE(g) with respect to (8., § , B.) for

5

h

o
N

3 eqi B =
e e
specified 86 by ordinary least squares and then varying 36 as seen in

Table 5. A4 95% confldence region for A obtained by inverting Haritley's
&

test is
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=]
1

= {80 F(y) = buy)

At

H

[2.815, 2.875) U [2.885, 2.9:5] .

The disconnectedness of this conflidence regicon can, of course, be eliminated
by including the omitted interval (2.875, 2.885). This would not alter the

truth of the statement

. + * I
"H I contains 96] z 05,7
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Notation,
Aol

*
where Ff{x, §) 1s o known function defined on L xQ and g

For the vregression model

e (t =1, 2, ..., n)

but unknown value of the barsmeter § define:

¥
£(g) =
Y (g 8) =
Lrlx, ) =
F(g) =
ssE(g) =
8y =
& () =

with respect to

the p x

the n xp

3 yn)f (n Kl)
s B)s v Tl 8)
veetor

o ., .th
matrix whose 1,
matrix

(Il Xl) 3

th , o]
whose element is g-é-:]— f@, ’Q) s

element is

CQ

D —

oeiaeé

th . ¢
whose t° row is v fﬂgt,,g} s

(- .08 (y - £(8)) ,

any Borel messurable function of X

n'iSSE(@)

the hypothe

»
»

o
S} e 2F

azainst A:

where § has been partitioned according to

8= (g, 1)

I

with S8E(g) =

0

18

denctes the true

£z, 8)

i

nf B

Y

i
[%3

3

8}
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define:
¥ % 3 ,
o= EENEW@IZEOITE ) (oxn)
o= 1-F (xn,

t : .
v f{%,rg) = the » X 1 vector whose 3 h eiement is Sgw-ng, QQAJI)} s
J

IRy = the n kv matrir whose t%0 vy is L s 1))
2o0) = E@UERE@ITE R (axn)

BR) = 12k (axn),

SoR) = 28 - (ax1),

o (y) = infﬁ%’f$o> ¢ 0 nhlSSE((Q) 3300 s

P/

kil

(y)

Densities and Distributions. Let g{t; v, A) denote the non=-central chia

squared density function with v degrees freedom and non-centrality A (Graybill,
1961, p. 7h) and let Gty v, &) dencte the corresponding distribution function,
Let n{%t; pu, 02) denote the nommal demsity function with mesn u and varlance

Gg and let N(tj; u, Gd) denote ‘the corresponding distribution function, Define

H{x; Vis Vs Al kg) to be the distribution function given by



0, xS 1, A, =0,

- 2 2 N
j ;G(t/i_x-l] + 2 xhz/ixul] 5 Vo Ag/[X»l] Ya(t; Vs J\l)d‘t, x< 1, .\2 ~ 0,
J o -ts 2hy E))alts v, A at, x=1,A,>0,

a - 2 - ;
1~ z{}(t/i_x-l] + Exhg/[}c»l] 5 Vos le/Lx—l]’g)g(t; vy },l)dt-, x>1,

Remarig. the distribution function H{x; Vis Vo, Al, ?\2) is partlally
tabulated in Gallant {1973b) and can be approximated by the non-central ¥
distribution with srgument vg(x—l)/vi, vy numergtor degrees freedom, v,
denominator degrees freedom, and non-centrality Al when the parameter ).2 is

small,

Def‘in:l_.foion. (Malinvaud, 1976) Let Q be the Borel subsets of £ and
i
let {f%t}t":l be a sequence of inputs chosen from. X . Let IA%) be the
indicator function of a subset A of X . The measure W, on Ly §) is

defined by
W (4) wn"ltfg I,(x, )
n =] AL
for emch A ¢ G .

Definition, (Billingsly end Topsoe, 1967} A sequence of measures {p"n}
on (%, @) is said to converge weakly to a measure @ on (X, Q) 1if for every

real valued, bounded, continuous Function g with domain X

JelEdde (x) - [aly)an(x)

as n — e,
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For each assumption below it is jmplicitly assumed that any lower numbered

assumption necessary for exisztence of terms is satisfied, Por example, the state-

ment of Assumption 7 regulres Assumption © for definition of b and Assumption 2

for the O mensurability of {x: flx, 8) 4 £z, )} .
Asgunption 1. {1 is a closed subset of RY
Assumption 2. f(}é, 8) is continuous on x xQ .

Assumption 3. For given n  and almpst every y there ls a 8 in
[ ot Pt ™

minimizing SSE(G) .

Assumption L. The errors {et} are independent and identicelly distributed

with mean zero and flniite variance 0'2 >0,

Assumgtion 5. X is a compact subset of Rk .

Agsumption 6. The sequence of measures {p..n} determined by {f‘i{ft] converges

weakly to a measure g on (L, @)..

* *
Ssgamption 7. If 8748 and § ¢Q then wy: £z, 8) # flx, 8 )} =0,

Assmgtion 8. Given M > O there is an N and a X such that for atl

.. 4 ’.l n 2 . : 1 i
n>0 andall gefd if n Et=lf (’g;lt, @) < M then ;Lg;; < K,
*
Assum;etion 2. There 1s a bounded open spheare Qf’ containlng g whose

closure Q" iz a subset of ( .

A,sswngtiori 10, if(;s, (@) exists and iz continuous on '3:._‘ xg .
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Ass_umgtion 11, The matrix
Fyaw(x)]
8 )M, v p

: SN
-1 5 o ) 5 a8

is non-singular.
Assumption 12. . There is a function w(z, 8) which is uniformly bounded for

(%, 8) ¢ L Xx(3° such thaet

£ &) = 2 )+ ez 878 - 8 + elx 8) g - 8'F

Assumption 13. The response function # , inputs {’g.gt} and errors {et}
' o ’ ) *
are such that given a sequence of random variables L@n] with @ et Bl g as

it follows that

n-®
2
it Lo 1 > * P

as n=® for i=1,2, ,..,p.

The verification of Assumption 8 is unnecessary when those which preceed

it ag satisfied and

Assumption lh 8 is bounded.

Also, the verification of Assumptions 12, 13 is unnecessary when those

a which preceed them and
o

0o
- Assumption li. The partial derivatives b

continuous over % X2 .
Additional assumpitions which are required to derive the agymptotic propertles

agalnst A: 1 # T, When g has

£(x, 8) exist and are

of the Likelihood Ratio test of H: 3= :0
been partitioned sccording to §' = {p’, ') are:
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Assumption 16, There is a unigue point Q*O which minimlzes

[ ey &) = 2G5 (s 3500 77(x) over BR= (o1 (g, 7.) ¢0)
J i) ~ i

. Assumption 17. There is a bounded open sphere HISO containing R4 whose

» W g

closure EG is a subzet of ‘.}3 .

Assumption 18. The matrix
= - - e .
b =0 5t ko 2000 557 e o IR, o,

is non-singular.
L.

Theorem, If a regression model satlsfies Assumptions 1 through 8 then 8

o~

x% :
converges almost surely to Q and 02 converges almost surely to qg .
Proof. Gallant (1973s),

Theorem. If a regression model satisfies Assumptions 1 through 13 then
" *
/{8 - § ) converges in distribution to a multivariaste normal with meen 0O
and variance-covariance matrix E"l ; Moi-eover, n-l£4(£)£(ﬁ) converges almost

surely to £ .
Proof. Gallent (1973a).
Theorem. We are glven a regression model
vy = flx, 8) ey

and the data pairs (yt,_ (t =1, 2, «vs, n},

i)

Conditions. There is & convex, bounded subset S of R° and a )

o interior

to 8  such that:



1)

2)

3)

i)

2l

zf('%‘c’ g) exists and is continuous over § for t = i, 2{ sepy It o
8 e8 implies the rank of E(g) is »p.

SSE{@O) < %ai‘{SSE(ﬁ); 8 & boundary point of 8} .

There do not exlst Fg‘, @” in § &such thsat

v SSE(R') =V SSE(§'‘) =0  and SSE(Q’) = SSE(g’’)

Construction. Construct the sequence agk}:“l ag follows:

0}

1)

2]

Compute By = [£' (8 )E(80) 1™ (8o )y = £(8,)] -

A
D
"
S

Find Aj which minimlzes SSE(@O% AD )  over Ay ={A: O

Set 8 =8, 7 ?&0130 .
Compute D, = [E‘(ﬁl)ﬁ(,@l)yiﬁ!(ﬁl)ix - ,@(,@3_)3 '
Find A, which minimizes SSE(g, + A,) over A, ={A O0SAsS1,

(@l+h215§j .

set 8, = & + MD .

&
Conclusions. The for the sequence iﬁ'k}kmi it follows thats

},_)
2)

3)

8. 1is an interior point of § for k = L1y 2y ver
K . _

: %
The seguence {f@«k} converges to a limit § whilch is interior to &

*
7 S8E(g ) =0 .
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Proof: Gallant (1971).

In the following theorem, ib QO’ ‘20, and ’Eg denote the corresponding

functions evaluated at the point p = ﬁO given by Assumption 16,

Theorem. For a regressglon model with normally distributed errors whilch

satisfies Assumptions 1 through 13 and Assumptions 16 through 18 the Likelihood

Ratic test statistic for H: 3= sgalinst Ap 7 # g? may be characterized

20
vy

T{x} = X + Cn

where ¢ converges in probability to zero and
ol S

£ e £ e
Eole * 85)/e'E g

v

X = (g+ 8,

If the condition ?:P ='§O is satisfied, the random variable X has the dlstri-
. , g A - et 2

bution function H(x; p-r, n-p, hys he) where A, = QO(E:- fb)éo/(Ec ) and
Y 2y

A, = B8 /(20%) .

When the null hypothesis H: g3 =1, 1s true the condition B P =2 15

satisfied and X 1s distributed as H(x; per, n~p, 0, 0),

Proof. Gallant (1974).
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