STATISTICAL INFERENCE BASED ON M-ESTIMATORS FOR THE

MULTIVARIATE NONLINEAR REGRESSION MODEL IN IMPLICIT FORM

by Geraldo Souza and A. Ronald Gallant
North Carolina State University

SUMMARY

The general regression model postulates that an cbserved multi-
variate response is a function of an observed multivariate input,
an unknown parameter, and an uncbservable additive multivariate error.
In principle one may solve for the response given the input, pa;ameter,
and error but this is not required in applications. Given an optimi-
zation procedure which defines an estimator, a companion theory of
large sample inference is developed. This theory incluées strong con-
sistency and asymptotic normality of the estimator and the ésymptotic
null and non-null distributions of the Wald test statistic, an analog
of the likelihood ratio test statistic, and an analog of Rao's

efficient score test statistic.
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L ’Introduction. An M-variate response yt follows the statistical model
Qv xv°) = e t=1,2, ..., n

where Xy denotes a k-dimensional input varisble, y° denotes an unknown
s-dimensional parameter, and e denotes an M-variate random error. These
variables are contained in the Borel sets Y, X, ', and & respectively.
It is convenient to absorb the scale parameters of the error distribution
into y and impose

ASSUMPTION 1. The errors e, are independently and identically dis-
tributed each with mean zero and variance-covariance matrix the identity.

An example, which occurs in the study of consumer demand (Jorgenson,

Christenson and Lau, 1975), is

1t

Y14 ~

-1+ 8¢ 4n(py/T)y + 6dn(p,/I) + 6gbnlp,/T),
o 8% 854n(py/I)+ 854n(py/I)y + (87 8,- 85)4n(py/T)y = e,
2t

or, say,

Vg - £1(%g58) = ey

Vor = Tp(%g»8) = ey

1/

with x, = (anl, anz, an3, an)t. In this model, termed a translog

expenditure system in the econometric literature, Y1t and Yoy are the tth

consumer's expenditures on non-durable goods and services of durable goods
expressed as a proportion of the consumer's income It 3 pl, p2, and p3

are the prices of non-durable goods, services of durable goods, and ser-
vices respectively. The scale parameters may be absorbed by writing

r r

11 Ti2 Y1y - F1(%458)

Cl(x :'Y) =
t 0 r

22 Yoy = falxg,0)




or, say,
Q.(xta‘{) = Ry - f(xt,e)]
where vy = (el, rees Bgs Tyys Tppo r22) with ri,, r,, > 0.

The models envisaged here are supposed to describe the behavior of
a physical, biological, economic, or social system. If so, to each value
of (e,x,y°) there should correspond one and only one outcome y . This
condition and confinuity are imposed.

ASSUMPTION 2. For each (x,y) ¢ X x ' the equation q(y,x,y) = e
defines a one-to-one mapping of € into Y denoted as Y(e,x,y). Moreover,
Y(e,x,y) is continuous on &€ x L x I .

Throughout, q(y,x,y) = e will be referred to as the structu;al
model while y = Y(e,x,y) will be termed the reduced form following the con-
ventions of the econometric literature. It should be emphasized that it is
not necessary to have a closed form expression for the reduced form, or even
to be able to compute it using numerical methods. in order to use the statis-
tical methods set forth here.

Interest is focused on a p-vector of parameters A . Typically, A
will equal y or some subvector of y . The parameter A is contained in A

and is estimated by finding that value in in A which maximizes

s,(\) = (1/n) oy s(ypsx,T M)

where ;n is a fandom variable; typically, v corresponds to some subvector
of y which is regarded as a nuisance parameter and ?n is its estimator.

This formulation of the estimation problem is motivated by a consid-
eration of the statistical methods presently in use in nonlinear regression
analysis and some others one might wish to employ. The translog example
may be used for illustration.

Maximum likelihood methods for nonlinear models with explicit, sep-

arable reduced forms - those which may be written as y = f(x,6) + e - have



been studied by Barnett (1976) and Holly (1978). The translog example fits

this description and if normelly distributed errors are assumed then the ‘

log likelihood is
2
const + n 4n det R - (1/2) Zt;:l Hnyt- f(xt,e)u .

Put A= (el, ) and

ceny 98’ ri10 P10 Too

s(y,%,7,A) = fn det R - (1/2)||Rly - £(x,8)]||2

and the method of maximum likelihood may be formulated as above; the

dependence of s(y,x,T,A\) on T is trivial in this case.

The estimation method which probably finds most frequent use in
applications is "iterated Aitken" also termed "Zellner-type," "the seemingly
unrelated regression method,”" and "minimum distance." This method has been
studied in Gallant (1975) and Holly (1978). The method is 'as follows when

1t 2t
obtained by fitting the two models Vi = fl(xt’e) *ou and y,, T fZ(Xt’e) *ou,,

applied to the translog. First least squares residuals U, and 0., are ~

individually by least squares. Let

§ = (W/n)m,y [, | (ays 8500

Yoy,

The iterated Aitken estimator is obtained by finding 8 which minimizes

(1/n) 7 [y~ 2(x,,0)1787 0y, - £(x,,0)]
Set A = (911 ey 98) sy T = (Sll’ 512: 322) » and
s(y,2,m0) = =(1/2)0y,- £(x,,8)1'8 Ty, £(x,,6)]

and the iterated Aitken estimator is seen to be of the general form considered

here. ‘




~

The asymptotic properties of the estimator Xn are considered in
Sections 3 and 4. To indicate the nature of these results, for the moment
’ assume that a density p(e) and Jacobian (3/3y’)a(y,x,y) are available so

that a conditional density for the endogeneous variables y is given by

p(ylx,y) = | det(d/3y )al(y,x.v)|Laly,x,v)]-

*
Set the true value y° = vy and suppose that Lim = r* almost surely. Then

%
n-=® 1

*
in converges almost surely to the point A which maximizes

% *
g(‘\{*,'\'*,.)\) = ;%imn_m(l/n)il;_lfus(y,xtﬂ, Y)P(y\xt’Y )dy

Moreover, Jz(in- X*) converges in distribution to a multivariate normal

, 0 a=lea-l 2
N(0,V). A strongly consistent estimator of V is V = 4 93 ~ where 2/

¢ l;

(1/0) 2 L (3/aN)s (7570 ) L (3/N)s (75T o)

"

3

QA
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2 - *
-(l/n):‘;;l(a’/akal')s(yt ,xt: Tn;)‘-n>

This result suggest that if the true value is y; in each Tinite sample
then the estimator kq is to be regarded as estimating that voint K; which

-

- *
maximizes s(y;,r ,A). Typically, \ and v are subvectors of y whence there

correspond k;

and T; obtained as subvectors of y° . Usually, T; is regarded
. La
. - , ~ o *‘. 1. s . .
as a nuisance parameter to be held fixed at ™ = v+ for all n . This implies
a constraint on y; . It may happen that k; obtained as a subvector of y;
- *

does not coincide with k; defined as the maximum of s(y%,f ,A) . In these
cases, the definition of x; as a maximum is to prevail. Similarly, the

. > . * 3 . ~ . . . » 3
definition of + as the almost sure limit of T, is to prevail when ambiguities

arise. The results of Section 3 and 4 are cbtained with y; subject to drift

‘ to facilitate the derivation of non-null distributions in Section 5.



Inference is considered as an adjunct to the estimation procedure in

Section 5. To indicate the nature of these results, consider testing ‘

H: n(x;) = 0 against A: n(x:l) £ 0

where h(\) is an r-vector valued function with Jaccbian H(A) = (3/3M)n(\) ;

let f = n(}) and = H(in) . Following Wald, the test statistic
bl a1
W=nh/(BTH') &

may be employed to test H against A. Let fin denote an estimator obtainedty
maximizing Sn()“) subject to the comstraint n(\) = O . By analogy with the

likelihood ratio test, the test statistic




L=-2:s (X)) - s, (3)
may be employed to test H against A. Let H = H(Xn) .
. 2 Lol )
3‘ = ‘(l/n)il(a /axa)\,) S(yt:xt:'rn:x‘n) ’
3" (l/n)izzl[(a/a)») s(yt’xt’Tn’A’n)I(a/a)") S(yt’xt’;njn)j, )
Nyl el . ' < s s s s
and V = 5_ 313 . The analogy with Rao's efficient score test statistic is

R= ol (3/20) s, )1 PR ETHEN TR TG/ 5, (7))

These test statistics are shown to converge in distribution to the same non-
central chi-square distribution with r degrees of freedom. The non-
centrality parameter of this non-central chi-square distribution may be

approximated by
o _ 7 /o‘l [}
oy = n 0 (W )LH(R) VH (xn)] h(kn)/2

where V° = (?°)-130(9°)-l and

[}

& (1/n)2§=lju{(a/ax) S(y’xt’T;’k;)}{(a/aX)s<V’xtsT;,k:)}’p(y‘xt,y;)dy

a0 - - 2 ’ o 30 o
7 (l/n)4t=lju(a [3NN) s(y,x 0,0 )p(y =, 5y? day

The validity of this approximation requires the additional assumption that

4im__ (3°- 9°) = O in the case of the statistic L .
-



2. [The Probability Space and Limits of Cesaro Sums. Repeatedly, in the

sequel, the almost sure uniform limit of a Cesaro sum such as

(l/n)zfé:lf(yt ’X‘t 3'Y) = (l/n)Z:____lf[Y(et :Xt ,Yo ) ’Xt 9Y]

is required. In the nonlinear regression literature much attention has been
devoted to finding conditions which insure this behavior yet are plausible
and can be easily recognized as obtaining or not cobtaining in an application
(Jennrich, 1969; Malinvaud, 1970; Gallant, 1977; Gallant ana Holly, 1978).

A précis of these ideas appears here for the readers convenience.

The independent variables (xl,x , +..) are either fixed, the realization
of a random process or the components of the vectors X, are a mixture of
these. 1If, say, the data for the translog example were generated bf randomly
selecting individuals from a population in each of several years then a
plausible and convenient assumption is that X, = (znpl, ﬂnpe, znp3, I,nI)t

follows some distribution which is absolutely continuous with respect to

Lebesque measure on the cube X . Then, denoting this distribution by w(x) ,
= [£(p)5p,5p5,1) d u(x)

for integrable f (strong law of large numbers). The typical regression

assumption is that the independent variables X, and the errors e, are

uncorrelated. If this is strengthened to independence then, by Assumption 1,
zimnem(l/n)zi;lf(plt’p2t’p3t’It’et)
= Hf(pl,PQ,PyI,e) dP(e) au(x)
for integrable f where P is the distribution of the errors.

These considerations motivate the notion of regarding the joint sequence

of independent variables and errors as being defined on a probability space ‘



and the definition of Cesaro summability. Theorem 1 demonstrates that the
concept is not void for examples which come immediately to mind, and
Theorem 2 yields the desired uniform, almost sure convergence.

DEFINITION. (Gallant and Holly, 1978) A sequence {vﬁ} of points from
a Borel set Uy is said to generate Cesaro summable sequences with respect to
a probability measure v defined on the Borel subsets of U and a dominating

function b(v) with fb dv < @ if
pin (1/n)5y_ £(v,) = [£(v) av(v)

for every real valued, comtinuous function f with |f(v)| < b(v) .

THEOREM 1. (Gallant and Holly, 1978) Let Ve, t=1,2, ...Dbea
sequence of independent and identically distributed s-dimensional random
variables defined on a complete probability space (Q,a,P*) with common distri-
bution v . Let v be absolutely continuous with respect to .some product mea-
sure on R° and let b be a non-negative function with fbd v< @ , Then there

*
exists E with P (E) = O such that if o ¢ E

pim (/07 4V, (0)] = [£(v) av(v)

for every continuous function with |£(v)| < b(v) .

Note that the null set depends on b and not on £ .

THEOREM 2. (Gallant, 1977) Let f(v,\) be a real valued continuous
function on ¥V x A where A is compact. Let {vt} generate Cesaro summable

sequences with respect to v and b(v). If supA\f(V,k)l < b(v) then

pim_sup, | (1/n)mp_, £(v,0) - [£(v,)) av(v)| = O

and If(v,k) dv is continuous on A .



ASSUMPTION 3. (Gallant and Holly, 1978) Almost every realization of
{Vf} with v, = (et,xt) generates Cesaro summable sequences with respect to

the product measure

(A) = I,(e,x) dP(e) dap(x)
v ije A e,x e wix

and a dominating function b(e,x) . Almost every sequence {xt] generates
Cesaro summable sequences with respect to p and b(x) = I b(e,x) dP(e). For

each x ¢ L there is a neighborhood N such that f supy b(e,x) dP(e) < > .
X

e
COROLLARY. (Gallant and Holly, 1978) Let Assumptions 1 through 3 hold.

Let f(y,x,p) be continuous on U x X x K where K is compact. Let
| £(y,x,0) |< blaly,x;v°),x] for all (y,x) ¢ Y x X and all (p,y°) in K x A*
where A* is compact. Then both (l/n)2$=lf(yt,xt,p) and
(l/n)2:=ljeffY(e,xt,y°),xt,p] dP(e) converge uniformly to
f I fy(e,x,v°),x,p] aP(e) du(x)
X e
except on the event E with P*(E) = 0 given by Assumption 3.
In typical applications, a density p(e) and a Jaccbian
I(y,xv°) = (3/dy Naly,x,v°)

are available. With these in hand, the conditional density

p(ylx,v°) = |det J(y,x,v°) |plaly,x,v°)]

may be used for computing limits since

Iﬂ'ngY(e %,¥°) ,x,y] dP(e) du(x)

= [ [ £(rsxy) plylx,y®) dy au(x)
Ly

The choice of integration formulas is dictated by convenience.
The probabilisite structure which is usually assumed in asymptotic
regression analysis is as follows. One fixes a sequence

x_ = (xl,x yeee )




and works with a sequence of regular conditional probability distributions
Pn(-lxm,y°) defined on the measurable subsets of Y = X2=1U . The assumption
of independent and identieally distributed errors with common distribution
P(+), Assumption 1, induces a product measure P®(°) defined on the measur-

able subsets of 8°° = X:=f3 . The relationship between the conditional

distribution on un and the error distribution on €_ is

P (alx,v®) = P {e &€ :[¥(ep,x,v°), «o0y T(e vx, 5¥°)] € A)

~

for every measurable subset of un . A statement such as xn converges almost
¥ a
surely to A means that Kn is a random variable with argument i/

(el,...,en,xl,...,xn,y;) and that P_(E) = O where

o -] *
E = ng>0nj=lUn=j{em:‘Xn- A >ed

*
A statement that Vﬁ(in- A ) converges in distribution to a multivariate normal

distribution N(°|6,V) means that for A of the form
A= (_m,kl] X (-m,xzj X «.0 X (-W,Xr]

it is true that

gim P (Alx_v7) = j‘AdN(zh,v)

In the sequel, the usual conventions will be followed; the probabilistic
structure is as described in the preceeding paragraph. The analysis is
conditional on a fixed sequence x_ for which the Cesaro summability propsrty
holds with fespect to u and b(x) of Assumption 3. The link with the usual
probabilistic structure and Assumption 3 is provided by Theorem 3 below.

It shows that the event E C:é‘,°° on which Cesaro summability fails for the

joint sequence (elxl), (e2,x2), ... occurs with P_ probability zero for



almost every choice of x_

THEOREM 3. Let Assumption 1 hold and let [Vt} with Vt = (Et’xt) be

a sequence of random variables defined on (Q,G ,P*) which satisfies Assumption ‘
3. Let Pw be the measure on the measurable subsets of ew = : l&‘, induced by

the sequence of random variables {Et} and, similarly, W, on I@ induced by

{X,} . Then there is a subset N of X_ with w (N) = O such that each x] ¢ N

both satisfies the Cesaro summability property (with respect to b(x) and w)

and

P = “,>o”J—o n_J{e 18| £(e,x) < b( (e,x) 3 | (Il./n)ZTn f(e ,x?c) - “‘f dP dp|><}

oy =
hasP@(E)-O.

PROOF. By Assumption 3, (Nl) = O where

NeogamoUne (28| E(x) | < 0(x) 3 [(1/n)E_ £(x,) - [£ au| > e} .

NIL e>OJOn3

Moreover, Assumption 3 implies that P_ x “‘m(F) = O where
o -] . n
= ﬂe>oﬂj=oun=jt(ew,x@).E|f(e,x)l <b(e,x) 3 ‘<l/n)2t=lf(et’xt) -M‘f aP dp.
Note that for every X: , B° x {x)} = F whence

P(E°) = je To(e,) dB (e,)

®

J‘e LLOX{XZ} (emaxi) dP@(em)
xn

©

<l IF(em,xi) dP_(e_)

But
P x p.w(F) = j' f Iw(ew,x:)d Pm(em) dp.m(xi)
X & °

(-]

whence P@(E") = 0 except for x in some event T\TZ with p.m(Nz) = 0. Let

N=NUN, . [




'g. Consistency- It is necessary to introduce a dependence of the true
parameter on sample size in order to derive the non-null asymptotic distri-
bution of test statistics. Also, the large sample behavior of ;n nust be
specified.

NOTATION.

s, (\) = (1/n)Tg_ ;s (v, %57 50)
g(Y5T:X) = IxIeSEY(e’X’Y)’X’T’X] dP(e) dp(x)

*
ASSUMPTION 4. The parameter yv° is indexed by n and J&imn_my; =y for

* A . *
some point vy ¢ I' . The sequence T, converges almost surely to a point =

~ ¥*

and VE(Tn' v ) is bounded in prdbability.ﬁ/ There are unique points.

* o] (o] . * o] [e] . . s - *
A LA sA5s .-+ corresponding to y =y sY1:¥gs --- Which maximize s(y,T HA)
over A . The function h{(\) of the hypothesis H: h(x;) = 0 is a continuous

* *
vector valued function on A ; the point A satisfies h(A ) = O and
*

. ) _

Lim  No(X - A7) =8 .
To illustrate, consider the translog example with the iterated Aitken

estimation method. In this case,

3,0 = /2 - 3 [ [£(x,0) - £x,82) )5 H0(,0) - £(x,63)] W (x)

X
-1 -1\, . * * .
where £= (R ")(R ™)’ provided 7 is such that S =S x =5+ It is seen
="

at sight that

o _ o

A, = (91:92, cees 98)n

- *
maximizes S(y; ,T ;A) . Uniqueness obtains if ¥ is positive definite and

w(A) > O when 8 # 8° where

A= {x: £(x,8) ¥ £(x,6°)} >0



Recall that x = (Jl.npl, znpa, znp3, 4nI) ¢ X and u is absclutely continuous

with respect to Lebesque measure on X whence w(A) = O if and only if

f(x,8) = £(x,8°) a.e. with respect to Lebesque measure on L . Some algebraic ‘
manipulation‘shows that f£(x,9) = £(x,8°) a.e. implies § = §° provided that,
for example, ei R e°h are non-zero and at least one of the values e% , 6% R
or 9% is non-zero.:j/ Thus, )\; is uniquely determined for the translog
example with minimum distance estimation.
The almost sure convergence imposed in Assumption L implies that there
is a sequence which takes its values in a neighborhood of T* and is tail
equivalent to ;n . Thus, without loss of generality, it may be assumed that
;n takes its values in a compact sphere T for which -r* is an interiqr point.
Similarly, T may be taken as a compact sphere with interior point y*
Sufficient conditions such that A may effectively be taken as a compact sphere
are set forth in Theorem 4; they are patterned after Huber .(1964).
THEOREM 4. Let Assumptions 1 through 4 hold. Suppose that I and T are .

compact, that A is an unbounded closed set, and that there is a continuocus

positive function w(\) such that

(1) supAs[Y(e,x,y),x,T,X]/w(?\) is continuous and supA]s[Y(e,x,Y),x,T,X]/w(y)I
is dominated by b(e,x)

(12) [ [ sup [s(¥(e,my )oxor sAYA(MY < -1
re -

(lll) Lim lan)\H—)‘” W()\) > ‘g(Y*:T*yk*)

. 13 . * *
Then there is a compact set A’ containing y such that there corresponds to
almost every realization of {xt} an N for which n > N implies

sup,\,sn()\) = suPAsn(X) ;

N depends on the realization but A’ does not.




44

The function s(y,x,T,A) is continuous on 4y x X x T x A’ and
s(y,x,m,0) < vlaly,x,y)sx]Jon U x X x Tx A’ xT . (The function b(e,x) is
given by Assumption 3.)

THEOREM 5. (Strong consistency) Let Assumptions 1 through 5 hold.
Then Xn and ?% converge almost surely to k*

PROOF. Let [et} be such that Eimn*m?n =1 , [(et,xt)} has the Cesaro
summability property, and in e A’ for large n j.almost every error sequence
is such. Since N satisfies h(x*) = 0and A e A’ it follows that ?h e A
for large n . Since A’ is compact, the sequences in and'xn corresponding to
{et} have subsequences Xn and RL converging to limit points i and }:

m ©Tm
respectively. By the Corollary of Theorem 2,

s (vamah) = (1/m)E s[¥ (e s 7), %, 07 ]

converges uniformly to s(y,t,A) on ' x T x A’ . Then

- * * . ~ ~
S('Y 5T :>\) = zimn—)cosn ('Y; 3Tn ’)\n )
m m m m
> L' ( ~ *)
My Y 2Ty A
m m m

* #*
S(‘Y*:T sA )

. . s s o ~ 2 P - .

because in each finite sample (yn STy oAy ) maximizes S (y; s ,A) while
R m omom m m

(YH STy .A ) need not. Similarly, because A satisfies h(\") = 0 ,

& -

m m

w e

- * % %
s(y ,T 5 A) = s(y ,7 ,A ) . The assumption of a unigue maximum, Assumption k4,

. . * ~ ~ *
implies A= A = A . Then {Xn] and {xn] have only the one limit point A .

ptotlc Normalltx The asymptotic normality of in is established

S

e

here. The verification that the "scores" (a/ak)s(yt,xt,;n,lg) are
asymptotically normally distributed is the critical result; the notion of

Cesaro summable seguences plays a key role in the proof'. From this result



-

PROOF. By (iii) there is a compact set A’ and an ¢ with 0 <e¢ <1

such that .

inf s win) > '—iﬁ-—e
- ¢

ANEA

- - * * ¥*
where s = s(y ,7 A ) <O . By (i), (ii) and the Corollary of Theorem 2,

there exists Nl such that for n > N .

supy ASn(M/(A) S supy Asn(k)/W(x) < -1+ ¢

Then A ¢ A’ and n > N, imply
3.0 € W)L - ) S7 -
By (i) and the Corollary of Theorem 2,

pin__s (N)A(N') = 5/w(\)

so there is an N2 such that n >>N2 implies

' * -
Sn(X )>s - ¢
*
Then if n >N = max{N,,N,} it follows that A ¢ A’ and

5,00 . D

supxeA,sn(k) >5 -¢2 sup, /A

Theorem L4 suggests that an assumption that it eventually suffices to
maximize sn(x) over a compact set is not as restrictive as might appear at
Tirst glance. As an alternative to Theorem 4, one may verify this assumption
directly as in, say, Gallant and Holly (1978).

ASSUMPTION 5. The sets ' and T are compact spheres contaiﬁing y* and
T*, respectively. There is a compact set A’ containing X* and to almost
every realization of {et] there corresponds an N for which n > N implies

Supm,sn(X) = supAsn(K)




asymptotic normality of Xn follows by Taylor's series expansions and
related arguments of the sort which are typical of nonlinear regression
theory.
* % * * %
ASSUMPTION 6. There are open spheres ' , T , and A withy e I'C [ ,
* % *  %_
teTCT,and e AS A’ . The elements of (3/3\)s(y,s,T,A) ,
2
(az/alak')S(Y,X,T,l) ’ (a,—/a'\'a)\,l)s“’:x:'\':)&) s and [(a/a)\.)s(yﬂc’"';)\:)] X
L (3/3N\)s(y,x,7,\)]’ are continuous and dominated by b[a(y,x,v),x] on
% % %
YxXxT xT x A where the overbar indicates the closure of a set.

Moreover,

j‘e(a/a)y)SEY(e,X,'\{;),X,T*,X;] dP(e) =0
) fe(az/aTal')sz(eaX>v*>,x,f*,x*] 4P(e) du(x) = O
L

The two integral conditions imposed in Assumption 6 do not appear to
impede application of the results in instances which come readily to mind.
Apparently they are intrinsic properties of reasonable estimation procedures.

The translog example with interated Aitken estimation serves to illustrate.

The score is

(3/3M)s (y,x,7,0) = [(3/38")£(x,8)1" ™% [y - £(x,8)]

whence

(3/aM)sCY (e,:,42) 51 23] = [(3/28")5(x,8)) (8)™F e

Since j e dP(e) = 0 , one notes at sight that the two integral conditions
e

are satisfied.

NOTATION.
3= [ [ ((a/oN)sl¥le,x,y )x,m N 11 (3/3M)s[¥(e,x,y )oxsm sA 137 aB(e) du
i) A
g =~ [ [ @/ann)sl¥le,xy )ox,m N ) aB(e) dulx)
Xe



Jn(x) = (l/n)Z'::l[ (a/a)\)s(yt ’Xt 3?\'n:>\)][ (B/BX)S(y{.‘ ’X‘b a?\'n:)\)] !

n 2 A
F,(\) = =(1/n)g_, (37/3MN )s (v oxp T nN) ‘
For the translog example with iterated Aitken estimation

3 = [ [(3/281)20x,0))" s £ 577 [(3/08")2(x,8)7 dulx)
7 = [ (/282,01 ()7 [ (3/28")2(x,6)] du(x)

*
If =85 thend =g .
THEOREM 6. (Asymptotic Normality of the Scores) Under Assumptions 1

through 6

(LR T (3/aN)s(y, %, 7 A2) T W(0,9)

J may be singular.

PROOF. Given £ with HZH = 1 consider the triangular array of random

variables . I

*
Zo, = Z'(B/BX)S[Y(et,Xt,y;),xt,'r ?)\;’1] t=1, ..., n;n=1,2,... .

Each Z, has mean, f Ztn(e) dP(e) , zero by assumption and variance
e
* *
. Uin = Z’\[‘e{(a/BX)SEY(e’Xt’Y;)’Xt,T ,)\;]}{(a/a)\)S[Y(e,Xt’\(;) ’xt’T ,)\;)1]} 'dP(e)}, .

* _*
By the Corollary of Theorem 2 and the assumption that zimnﬁm(y;,kg) = (y ;A )

it follows that Lim__ (1/n)V_ = 4’3 4 where
> e n

n 2
Vn B 2t=lctn

. . . ’ —
Now (l/n)Vn is the variance of (1/¢E)z€=lztn and if 4’34 = O then (l/vz)ziélztn
converges in distribution to N(0,L’d4) by Chebyshev's inequality.
Suppose, then, that £'d4 > 0 . If it is shown that for every ¢ > 0

2im B = O where
o n

s




(2, (e) 12 () aB(e)

B, = (1/n)Z_.[ I
t=1

n el ‘z|>e~/5n]

then ft’,1'.mn__m(n/Vn)Bn = 0 . This is the Lindberg-Feller condition (Chung, 1974);

it implies that (l/Jﬁ)z_rtl=thn converges in distribution to N(0,L°34) .

- * _*
Let n> 0 and ¢ > O be given. Choose a > O such that B(y ,A ) < n/2

where
-, * ¥ * * %
By A)=(]1I PMCVEINER CH SD I VY
e [ |z]|>ea]
* * _*_.D ,
x {4'Q/3N)sY(e,x,y )ox,7 oA 1}7dP(e) ap(x)
This is possible because E(y*,)\*) exists when a = 0 . Choose a continuous

function &(z) and an N, such that, for all n > Nl R

Sz) €6(z) <1 (z)
[|z|>eal

I
[z |>e«/'\ﬁ1

and set

gn(‘{s)\.) = (l/n)Z:::l‘fe@{.z,(a/a)\-)S[Y(e:X:Y))X.t3'\'*3)\]}
X {JL'(B/BX)S[Y(e,x,y),xt,T*,XJ}z aP(e)

~ - -¥
By the Corollary of Theorem 2, Bn(y ,A) converges uniformly on T x A 1to, say,
-~ . . * _* . ~ ~, ¥ %
B(y,A) . By assumption len__)m(y;,)\%) = (y ,A ) whence Zim_ Bn(y;,k‘;)=B(y LA )

: jand O a0 N~ % K
Then there is an N, such that, for all n >N, , B"l(yn’)\n) <B(y ,A )+ n/2.

2

But, for all n >N = max{N,,N,}, B < Bn(y;,x;) whence

~ ~, % ¥ -, ¥ ¥ .
B, <B (v3,\° ) <Bly ,A )+ n/2<B(y ,A) *n/a<n

By Taylor's theorem
(L/WR) Ty 12y, = (LR LB, (3/2M)s(ry %57 0A))

+ L(/n) (/a7 )8 B (3/a0)s (v, %, 57 A0 ) WR (- *



Ry

2
where ”'-rn- ‘T*H = H?n- T*H . By the Corollary of Theorem 2, the almost sure

»~ A *
convergence of 7 , and Assumption 5, the vector multiplying “/E(Tn' T ) con- ‘

verges almost surely to zero. This and the assumed probability bound on

“ *
JE(Tn- v ) imply that the last term converges in probability to zero whence
(1/¢E)z'zg=l(a/ax)s(yt,xt,?n,x;) i, N(0,4’34). This holds for every £ with

HLH = 1 whence the desired result obtains. ]

THEOREM 7. Let Assumptions 1 through 6 hold. Then g is nonsingular,

(/R T, (3/N)s (v 2,7 N ) o m(g6,9)
EA - ) S s,

Jn(xn) converges almost surely to J , and gn(;"n) converges almost surely to 7 .

PROOF. By the mean value theorem and the dominated convergence theorem,

interchange of differentiation and integration is permitted whence .
2 -, % ¥ ¥
? = '(a /axa)\l) S(Y 5T A )

- ¥ ¥ . *

By Assumption L, s(y ,T ,A\) has a unique maximum at A = )\ whence
2 ry = ¥ ¥ . - *

(3%/3MN\") s(y ,T ,\) must be negative definite at A = \ .

By Taylor's theorem,
(L) T (3/30) s(y,,x,,7 0
= (L) (3/3N)s (v, % T ,00) - AA(- 22)
where J has rows
- (1/m)E (3/30 )(3/aM, sl (e s, v2) x> 5K, ]

and \\Xin- )\*H = H.)\*- )\;H . From the Corollary of Theorem 2 and the assumption

S



-—

o A o * * %, . -
that (yn,Tn,ln) converges almost surely to (y ,t ,A ) it follows that J

converges almost surely to ¢ . Since LimnanE(k;- X*) = § by Assumption,
the left hand side converges in distribution to N(J §,d) .

By Theorem 5 there is a sequence which is tail equivalent to‘in and
takes its values in A* . The remarks apply to the talil equivalent sequence
but a new notation is not introduced. Taylor's theorem applies to this

sequence whence

(1) Sy (3/5M) s (3 sy, N )
= (LWR)EL, (3/aM)s(y,ox 7 LK) = GV &)

where 5 is similar to § of the previous paragraph and converges almost surely
to § for similar reasons. Now the first term on the right is the gradient
of the objective function evaluated at a random variable which is tail
equivalent to the optimizing random variable; it must, thefefore, converge
almost surely to zero. Thus, VE(Xn- x*)-ga N(é,g_l3?-l) by Slutsky's theorem.

By the -Corollary of Theorem 2 and the almost sure convergence of
(y;,;n,in) to (y*,T*,K*) it follows that zimnamL$n(xn)’gn(in)] = (3,9) almost
surely. [J

2+ JIests of Hypotheses. Tests of the hypothesis

H: h(2®°) = 0 against A: h(A°) # O

are considered here. A full rank assumption is imposed which is not strictly
necessary. However, the less than full rank case appears to be of no practi=-
cal importance and a full rank assumption eliminates much clutter from the
theorems and proofs.

NOTATION

~

A, maximizes sn(l) subject to h(\) = O

4

3=9,(0), d=3 (\)



H()\) = (3/30")n()\) (the Jaccbian of h of order r x D)

n=n("), h=nR),%=0{), 1 =n()
H=u0\) , B=H03) , %=u8R) , ¥ = ()

ASSUMPTION 7. The r-vector valued function h(\) defining the hypothesis
H: h()°) = 0 is twice continuously differentiable with Jacobian
H(A) = (3/37\)n(A\) ; H(\) has full rank at \ = X* . The matrix V = ?-lJ ?_l
has full rank. The statement "the null hypothesis is true" means that
n(X) = 0 for all n . A

THEOREM 8. Under Assumptions 1 through 7 the statistics

W=n h'(in)(ﬁ%ﬁ’)‘lh(xn)
R = ol (3/20)s, (X )1F ' GV ¥)™F T (/o0 (X )]

converge in distribution to the non-central Chi square distribution with r

degrees of freedom and noncentrality parameter Z/
o=d'H(HV H’)"lHé/z

Under the null hypothesis, the limiting distribution is the central chi
square with r degrees of freedom.

PROOF. (The statistic W) By Theorem 5 there is a sequence which is
tail equivalent to in and takes its values in A* . The remarks refer to the
tail equivalent sequence but a new notation is not introduced. Taylor's

theorsm apvlies to this sequence whence




VALe () - 5 (N1 = (/o0 hy (R WA - 47 =12,

4

- * a * . - *
where Hxin- S Hxn- » || . By Theorem 5, lenemuxin- Al = 0 almost

3 ~ - - * »
surely whence £im (B/ak)hi(kin) = (a/ax)hi(x ) almost surely. Now, in
s * . . 8/
addition, h(g ) = O so the Taylor's expansion may be writte

Jn h(xn) = [(H + os(l)1JE(Xn— k*) . Then by Theorem 7, +/h h(X ) has the

A * a -
same asymptotic distribution as H JE(Xn- A ) . Now (R ¢ 8)

[N[&Ea1

exists for n
sufficiently large and converges almost surely to (H V H’)-% whence

(ﬁ v ﬁ')_%JE h(in) and (HV H')-%H,JE(%n- X*) have the same asymptotic
distribution. But

(5 vV H')‘%H JE(XH- Y S v H')-%H 8, ]

whence W converges in distribution to the non-central chi-square.

' When the null hypothesis is true, it follows from Taylor's theorem that
- o] * - ’ o *
0 =#nln (A7) - b, (M) = [(d/a0 )0, (R, Y Wa(Ag- A7) .

Taking the limit as n tends to infinity this equation becomes

0= (3/2A")n,(\")s whence H6 = 0 and A = O .
(The statistic R) By Theorem 5 there is a sequence which is tail
equivalent to ?£ and takes its values in A* . The remarks below refer to
the tail equivalent sequence but a new notation is not introduced. By

Taylor's theorem

(3/3n)s (X)) = (a/axi)sn(x*) + [(ag/axaxi)sn(iin)]’(?Q- )

n, (%) = 0, 0F) + [ (/a0 )0, (R, )G - 47



4

- * = * i~ * . . .
where Hxin- s Hxin- IS Hkn- A fori=1i,2, ..., r . By tail

equivalence, there is for. every realization of {et} an N such that h(h);n) =0 ‘

~ *
for all n> N . Thus h(kn) = os(l) and recall that h(§ ) = O . Then the
~ *
continuity of H(A), the almost sure convergence of xn to A given by Theorem
5, and the Corollary of Theorem 2 permit these Taylor's expansions to be

rewritten as
(3/a0)s (X)) = (3/3M)s (A - [2 + o (1)K - \)
[g+ o (IR - V) = o (1)
These equations may be reduced algebraicly to
-1

(2 + o (1))g + os(l)]‘l(a/ax)sn(in) = [H+ o (1))g + o (1)]

(a/ak)sn(k*) + o (1) .

Thén it follows from Theorem 7 that

[H+ o (1)L7 + o (1) Va(/aNs,(K) T w6, 5V E)

The continuity of H(A), Theorem 5, and the Corollary of Theorem 2 permit the

conclusion that

G¥EYER T LEG/ANs K) S tEy ek, 1]

r

whence R converges in distribution to the non-central chi square. This

completes the argument but note for the next proof that

H ™A (3/o0)s, (R) Lowmes, mnviE) . 0

THEOREM 9. Under Assumptions 1 through 6 the statistic

L=-2Ls (X)) - s ()]




converges in distribution to the law of the quadratic form
Y=292
where Z is distributed as the multivariate normal
Z ~ Mg (TR s, R () T v ) (g ) g

If 3 = 7 then ¥ has the non-central chi-square distribution with r degrees

of freedom and non-centrality parameter
o = é’H’(HVH')'lHa/z

Under the null hypothesis Y is distributed as the central chi-square with r
degrees of freedom provided that 4 = & | -

PROOF. By Theorem 5 there are sequences which are tail eguivalent to
Xn and K; and take their wvalues in A* . The remarks below refer to the tail

equivalent sequences but a new notation is not introduced. By Taylor's theorem

-2n£sn(xn) - sn(in)]

-2 (3/a0M)s, (R )1 (R - %) - a(X - )T /aan)s, (R )1, - &)

where Hin- inlgé HXQ- inE . The Corollary of Theorem 2 and the almost sure

~ e * 3 - 3
convergence of (Xn, xn) to (A, X*) imply that (az/axax')sq(xn> = -[g+ os(l)]

Now, by tail equivalence, -2n(a/aX')sn(in) = os(l) whence

-~

-2nEsn(Xn) - s, (A )1 = n(X - A)Tg+ os(l)](Zg— A) + 0 (1)

a n

By tail equivalence, there is for every realization of {e+} an N such that
v

lad

A solves
n

Max sn()\) subject to h(N) = 0
for all n > N. Then for n > N there are Lagrange multipliers Gn such that

JH(a/ax)sn('in) -a'(R) Vs, =0



Thus,

[+ o (VA 6, = W& (3/3h)s () + o (1)

by a previous argument vﬁ(a/ax)sn(in) = os(l) whence
= v (3/a0)s,(A) - 4R (a/aX)S(in) + o (1)
by Taylor's theorem and previous arguments
=g+ o (DWW (A,- %)+ o (1)
From this string of equalities one has
- , -1 -
Hg™H + o (1)1'Wa 6_ = /B B T(3/aM)s (K ) + o (1)
]
whence by the last line of the previous proof
B g7lH + o (1)1E 6 %o N(Hs, B H)

Thus

VB oS o (g7 Y) He, (mg TR T TRY) (g RY) T
Again from the string of equalities one has

JUE+ o (1)YWE 8 = 9717 + o (DT VE (A- X)) + o (1)

whence

AR - K)o Wy (s ) g Gy ) T (v e ) (g )

Then VE(Xn-‘Xn) converges in distribution to the distribution of the random

variable Z and vﬁ(in- Xh) = OP(l) . From the first paragraph of the proof,

-2n[sn(xn) - sn(in)]

n(R - X)) TF + o (DI~ X)) + o (1)

n<“xn- ) #(h,- X))+ 05(1) o (1) 0h(1) + o (1)




4

If d = 4 then V = g'l and

z ~ Mgt (ag~ ) w9~ (ay ) ey

The conclusion that Y is chi-square follows at once from Theorem 2 of
Searle (1971, p. 57). {

In a typical application, A and t are subvectors of vy
or some easily computed function of v . Thus, if y; is specified then X;
and T; become specified and this 1% will satisfy Assumption 4. Thus, in a
typical application, (y;, T;, X;) is specified and the noncentrality
parameter o = 5'H'(HVH')-1H6/2 is to be computed. The annoyance of having
to specify (y*, T*, X*) in order to make this computation may be eliminated

by application of Theorem 10.

NOTATION.

:90

]

(l/n)22=1j€{(5/ak)sEY(e,xt,v;),xt,T;,X;]]

x {(3/3M)sl¥(e,xy ,v) ) x5 70,00 1} aP(e)

A2
o)
1]

-(1/n)z’t*=lje(a2/axax')sty(e,xt,y; )x,572,02] aB(e)

v = (g0) syt

o2 = n h'(C)HO) WE (1)1 n()/2

THEOREM 10. Let Assumptions 1 through 7 hold and let {Y;,T°,x;)} be any

n
N * * % ] *
sequence with zlmnam(y;,rg,kg) = (y ,7 ,A ) and zlmnamJE(X;- AN)=56 . Then
Lim  o° = o
e n

PROOF. By the continuity of H(A), the Corollary of Theorem 2, and the

. . o] O A0 * * * .
assumption that Zlmnew(Yn’Tn’kn) = (y ,7 ,A ) it follows that



o\

. fe) ? le] "l_ / -l t
zlmnqm[H(Xn)V°H (Xn)] = (HVH') . By Taylor's theorem

I

Jan () = WA [h () = 1, (W)

L(/aM)ny (R, ) 1WROS- 1)
where Hiin' X*H < Hl;- X*H fori=1,2, ..., r . Thus,

gin N h(A)) = HS . 0

FOOTNOTES

;/ See Caves and Christensen (1978) for a detailed discussion of the
domain of applicability of this demand system. Since the purpose here
is illustrative, a simple expedient is adopted: 1let ® and L be com-

pact cubes in R8 and RLL such that on @ x X

-1+ g 4n(py/I) + 6, £n(p,/I) + gt (py/I) > 0

2/ For a real valued function g(u,v) of the k-vector u and p-vector v,

(3/3u)g(u,v) denctes the k-vector [(B/Bul)g(u,v), cee, (a/auk)g(u,v)]' ,
and (Bg/aubv')g(u,v) denotes the k x p matrix with typical element

(az/auiavj)g(u,v) . For a k-vector valued function g(v) of the p-
vector v , (3/3v’)g(v) denotes the k x p matrix with typical element
(a/avj)gj(v) . For a k x p vector matrix function g(z), jg(u) ap(u)

denoctes the k x p matrix with typical element fgij(u) dw(u) .

§/ Typically Xn depends on (yl,...,yn,xl,...,xn) and the dependence on

o . . _ o
(el,...,en,yn) enters via the relation y,_ = Y(et,xt,yn)

&/ Given & > O there exists M and N such that P(Jh H;n- T*H <M)>1-5%

for alln>N . ‘



(1]

(2]

[3]

(4]

5]

The weakest condition is that a particular matrix has full rank

but a display of this matrix would consume too much space.

The function ;n may be taken as measurable; however, measurability of

;n is not necessary for the validity of the proof.

Searle's (1971) definition of the non-central chi-square is used.

The notation is standard: os(na) denotes a matrix whose elements are

the random variables 33 4n each with £im /n% = 0 almost surely,

a. .
n—>e ijn
o . .
Os(n ) denotes a matrix whose elements are the randoms variable aijn

each with a..n/na is bounded almost surely. Similarly o

o
i3 P(n ) an@

Op(nQ) for cmvergence in probability.
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