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SUMMARY

The general regression model postulates that an observed multi-

variate response is a function of an observed multivariate input,

an unknown parameter, and an unobservable additive multivariate error.

In principle one may solve for the response given the input, parameter,

and error but this is not required in applications. Given an optimi-

zation procedure which defines an estimator, a companion theory of

large sample inference is developed. This theory includes strong con-

sistency and asymptotic normality of the estimator and the asymptotic

null and non-null distributions of the Wald test statistic, an analog

of the likelihood ratio test statistic, and an analog of Rao's

efficient score test statistic.
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Introduction. An M-variate response Yt follows the statistical model

t = 1,2, ... , n

where xt denotes a k-dimensional input variable, yO denotes an unknown

s-dimensional parameter, and et denotes an M-variate random error. These

variables are contained in the Borel sets 1, f, and e respectively.
It is convenient to absorb the scale parameters of the error distribution

into y and impose

ASSUMPTION 1. The errors et are independently and identically dis-

tributed each with mean zero and variance-covariance matrix the identity.

An example, which occurs in the study of consumer demand (Jorgenson,

Christenson and Lau, 1975), is

or, say,

Ylt - fl(xt,e) = elt

Y2t - f 2 (xt ,e) = 62t
y

with xt = (tnPl' tnp2 , tnp3 , tnI)t' In this model, termed a translog

expenditure system in the econometric literature, Ylt and y2tare the tth

consumer's expenditures on non-durable goods and services, of durable goods

expressed as a proportion of the consumer I s income It; Pl' P2' and P3

are the prices of non-durable goods, services of durable goods, and ser-

vices respectively. The scale parameters may be absorbed by writing ,
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or, say,

The models envisaged here are supposed to describe the behavior of

a physical, biological, economic, or social system. If so, to each value

of (e ,x,yO) there should correspond one and on1¥ one outcane y. This

condition and continuity are imposed.

ASSUMPTION 2. For each (x,y) e r x r the equation q(y,x,y) = e
defines a one-to-one mapping of e into U denoted as Y(e,x,y). Moreover,

Y(e,x,y) is continuous on e x 1. x r .
Throughout, q(y,x,y) = e will be referred to as the structural

model while y =Y(e,x,y) will be termed the reduced form following the con-

ventions of the econometric literature. It should be emphasized that it is

not necessary to have a closed form expression for the reduced form, or even

to be able to compute it using numerical methods. in order to use the statis-

tical methods set forth here.

Interest is focused on a p-vector of parameters A. Typically, A

will equal y or some subvector of y. The parameter A is contained in A

and is estimated by finding that value in A which maximizesn .

...where Tn is a random variable; T corresponds to some subvector
...of Y which is regarded as a nuisance parameter and Tn is its estimator.

This formulation of the estimation problem is motivated by a consid-

eration of the statistical methods presently in use in nonlinear regression

and some others one might wish to employ. The translog example

may be used for illustration.

Maximum likelihood methods for nonlinear models with explicit, sep-

arable reduced forms - those which may be written as y = f(x,6) + e - have
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been studied by Barnett (1976) and Holly (1978). The translog example fits

this description and if normally distributed errors are assumed then the

log likelihood is

S(y,X,'i,A) = Ln det R - (1/2)IIR(y - f(x,e)JII 2

and the method of maximum likelihood may be formulated as above; the

dependence of on 'i is trivial in this case.

The esttmation method which probably finds most frequent in

applications is "iterated Aitken" also termed "Zellner-type," "the seemingly

unrelated regression method," and "minimum distance." This method has been

studied in Gallant (1975) and Holly (1978). The method is 'as follows when

applied to the translog. First least squares residuals Ult and U2t are

,

•obtained by fitting the two models Ylt = fl(xt,e) + u1t and Y2t = f 2 (xt ,e) + u2t
individually by least squares. Let

The iterated Aitken estUnator is obtained by finding ewhich minimizes

and the iterated Aitken estimator is seen to be of the general form considered

here. ,
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The asymptotic properties of the estimator are considered in

Sections 3 and 4. To indicate the nature of these results, for the moment

assume that a density pee) and Jacobian (a/Oy')q(y,x,y) are available so

that a conditional density for the endogeneous variables y is given by

p(ylx,y) = I det(a/ay')q(y,x,y)\Rq(y,x,y)].

*Set the true value yO = Y

converges almost surely

and suppose that.tim ;. = ,r* almostn
*to the point A. which :naximizes

surely. Then

•
A *In(A.n- A. ) converges in distribution to a multivariate normal

estimator of V is V= n-ljn-l where gjN(O,V). A strongly consistent , if

This result suggest that if the true value is yO in each finiten

then the estimator n
- 0 * )maximizes s(y ,T ,A. •n

is to be regarded 9.S estimating that "Ooint AO rtThich- n

Typically, A and Tare subvectors of y whence there

c'J!'resnond A0 and TO obtained as subvectors of Y:' . Usually, TOn is regarded- n n
*as a nuisance to be held fixed at = T for all n This implies

a constraint on It may happen that

does not coincide with 1..0 defined as then

),,0 obtained as a subvector of yOn n
- (0 * )maximum of s Yn,r ,A . In these

Aas the almost sure limit of Tn is to prevail when

to facilitate the derivation of non-null distributions in Section 5.

arise. The results of Section 3 and 4 are obtained with yO subJ'ect to drift'n,
cases, the definition of ),,0 as a maximum is to prevail.n

*definition of T

Similarly, the
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Inference is considered as an adjunct to the estimation procedure in

Section 5. To indicate the nature of these results, consider testing

H: = a against A: * a
where h(A) is an r-vector valued function with Jacobian =
let h = and H= H(\n) . Following Wald, the test statistic

W= n h/(S H,)-l n

,

may be employed to test H against A. Let A denote an estimator obtainedqrn
maximizing subject to the constraint = a
likelihood ratio test, the test statistic

By analogy with the

•

,
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L =-2 n( s ) - s )]n n nn

, may be employed to test H against A. Let 'if = H(1:n) .

. = ,

J = (a/aA.) I (a/aA,) I ,

,... ';:,-1'" ?!,-land V = J The analogy with Rao's efficient score test statistic is

•

These test statistics are shown to converge in distribution to the same non-

central chi-square distribution with r degrees of freedom. The nqn-

centrality parameter of this non-central chi-square distribution may be

approximated by

The validity of this approximation requires the additional assumption that

(Jo _ go) = 0 in the case of the statistic L .

,
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The Probabilit S ace and Limits of Cesaro Sums. Repeatedly, in the

sequel, the almost sure uniform limit of a Cesaro sum such as

is required. In the nonlinear regression literature much attention has been

devoted to finding conditions which insure this behavior yet are plausible

and can be easily recognized as obtaining or not obtaining in an application

(Jennrich, 1969; Malinvaud, 1970; Gallant, 1977; Gallant and Holly, 1978).

A precis of these ideas appears here for the readers convenience.

The .independent variables (xl ,x2 ' •.• ) are either fixed, the realization

of a random process or the components of the vectors xt are a mixture of

these. If, say, the data for the translog example were generated by randomly

selecting individuals from a population in each of several years then a

plausible and convenient assumption is that xt =

follows some distribution which is absolutely continuous with respect to

Lebesque measure on the cube X. Then, denoting this distribut ion by ,

Sf(Pl,P2,P3,I) d

for integrable f (strong law of large numbers). The typical regression

assumption is that the independent variables xt and the errors et are

uncorrelated. If this is strengthened to independence then, by Assumption 1,

SSf(Pl,P2,P3,I,e) dP(e)

for integrable f where P is the distribution of the errors.

•

These considerations motivate the notion of regarding the joint sequence

of independent variables and errors as being defined on a probability space
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and the definition of Cesaro summability. Theorem 1 demonstrates that the

concept is not void for examples which come immediately to mind, and

Theorem 2 yields the desired uniform, almost sure convergence.

DEFINITION. (Gallant and Holly, 1978) A sequence [vt ) of points from

a Borel set U is said to generate Cesaro summable sequences with respect to

a probability measure defined on the Borel subsets of u and a dominating

function b(v) with Jb < if

bution Let be absolutely continuous with respect to ,some product mea-

for every real valued, continuous function f with If(v)\ < b(v) •

THEOREM 1. (Gallant and Holly, 1978) Let Vt , t = 1,2, •.. be a

sequence of independent and identically distributed s-dimensional random

*variables defined on a complete probability space (O,a,p ) with distri-

• sure on RS and let b be a non-negative function with Sbd

*exists E with P (E) = 0 such that if w i E

for every continuous function with If(v)\ $ b(v) .

Note that the null set depends on b and not on f .

Then there

,

THEOREM 2. (Gallant, 1977) Let f(v,A) be a real valued continuous

function on V x A where A is compact. Let [vt ) generate Cesaro summable

sequences with respect to v and b(v). If sUPA!f(V,A)\ < b(v) then

- Jf(v,A) = 0

and Sf(V,A) is continuous on A .
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ASSUMPTION 3. (Gallant and Holly, 1978) Almost every realization of

tVt} with vt = (et,xt ) generates Cesaro summable sequences with respect to

the product measure

and a dominating function b (e ,x) • Almost every sequence tXt} generates

Cesaro summable sequences with respect to and b(x) = Sb(e,x) dP(e). For
e

each x e I there is a neighborhood Nx such that J sUPN b(e,x) dP(e) < Q:) •

e x.
COROLLARY. (Gallant and Holly, 1978) Let Assu.'lJlptions 1 through 3 hold.

Let f(y,x,p) be continuous on U x I x K where K is compact. Let

*b[q(y,x,yO),x] for all (y,x) e x I and all (p,yO) in x A

where A* is compact. Then both and

f[Y(e,xt,yO),xt,p] dP(e) converge uniformly to
e

*except on the event E with P (E) = 0 given by Assumption 3.

In typical applications, a density pee) and a Jacobian

J(y,x,yO) = (2l/2ly')q(y,x,yO)

are available. With these in hand, the conditional density

p(ylx,yO) = !det J(y,x,yO)\p[q(y,x,yO)]

may be used for computing limits since

SS f[Y(e,x,yO) ,x,y] dP(e)
X. e

=SS f(y,x,y) p(Ylx,yO) dy
I U

The choice of integration formulas is dictated by convenience.

The probabilisitc structure which is usually assumed in asymptotic

regression analysis is as follows. One fix.es a sequence

,

•

,
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and works with a sequence of regular conditional probability distributions

Pn('lxm,yO) defined on the measurable subsets of = The assumption

of independent and identically distributed errors with common distribution

p('), Assumption 1, induces a product measure P (.) defined on the measur-co
m

able subsets of eco = xt=le • The xelationship between the conditional

distribution on and the error distribut ion on e isn m

P (Alx ,yO) = P te s e :[Y(el,xl,yO), •.• , Y(e ,x ,yO)] e A}n co com co nn

almost
...

A statement such as A convergesn

variable with argument J!
for every measurable subset of •n

* ..surely to means that A is a randomn

(el , •.. ,e ,xl" .• ,X ,yO) and that P (E) = 0 wheren n n co

co co *1E = n >on. lU . te : \/\ - A, > e '\e J= n=J co n J

• A statement that

distribution N( '\o,V)

*A ) converges in distribution to a multivariate normal

means that for A of the form

it is true that

tim P (Alx ,yO) = S dN(z\o,V)mn 'A

In the sequel, the usual conventions will be followed; the probabilistic

structure is as described in the preceeding paragraph. The analysis is

conditional on a fixed sequence X for which the Cesaro summability property
00

holds with respect to and b(x) of 3. The link with the usual

,
probabilistic structure and Assumption 3 is provided by Theorem 3 below.

It shows that the event E c e on which Cesaro fails for the
m

occurs with P probability zero form
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almost every choice of x=
THEOREM 3. Let Assumption 1 hold and let [Vt } with Vt = (Et,Xt ) be

a sequence of random variables defined on (n,u,p*) which satisfies Assumption ,

=3. Let P= be the measure on the measurable subsets of e= = xt=le induced by

the sequence of random. variables [Et } and, similarly, IJo on I induced by= =
eXt} . Then there is a subset N of X, with IJo (N) = 0 such that each XO , N

<:0 <:0 <:0

both satisfies the Cesaro summability property (with respect to b(x) and 1Jo)

and

has P (EO) = 0 •
<:0

PROOF. By Assumption 3, 1Jo= (Nl ) = 0 where

Nl = nc>on;=ou:=jeX=:3:\f(X) 1< b(x) 3 I - Jf dlJol > e} .

Moreover, Assumption 3 implies that P x IJo (F) = 0 where
.;Q <:c

F = n ou'» .[(e x ):3:!f(e,x)\ < b(e,x) 3 -Jrrf dPc J= n=J =, <:c -e=

Note that for ever-J x.o , EO x [XO} -= F whence= =
P (EO) = r 4o (e ) dP (e )= Je.l:!.i <:c = <:c

<:c

= Se dPCD(eCD )
CD

But

P :{ IJo (F) = Jr' S I .... ( e ,XO) d P (e ) d \-it (XO)
::0 CD

CD CD

whence PCD(EO) = 0 except for in some event N2 r..rith IJoCD (N2 ) = O. Let

N = N1U N2 . 0 ,
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It is necessary to introduce a dependence of the true

parameter on sample size in order to derive the non-null asymptotic distri-

bution of test statistics. Also, the large sample behavior of must ben

specified.

NOTATION.

S(y,T,A) =SS s[Y(e,x,y),X,T,A] dP(e)
I e

ASSUMPl'ION 4. *The parameter yO is indexed by nand 1- imn-lOJ = y for

which maximize S(y,T*,A)

It is seen

Uniqueness obtains if r. is positive definite and

•

,

* *some point y $ r . The sequence T converges almost surely to a point Tn

and - T*) is bounded in probability.Y There are unique points.n

* ° ° . * ° °A 'A2' corresponding to y = Y 'Yl'Y2'

over A. The function hC\) of the hypothesis H: h( AO) = 0 is a continuousn
* *vector valued function on A; the point A satisfies h(A ) == 0 and

To illustrate, consider the translog example with the iterated Aitken

estimation method. In this case,

s(yO 'T*'A) = -M/2 - ! S [f(x,e) - f(x,e°)J'l;-l[f(X,e) - ctJ.(x)
n I n

where r. = (R- l ) (R- l ) I provided T* is such that S* = s I * = r. .
'T'=T

at sight that

= (61' 82 , ... ,

-s (yO * )maximizes n ,T ,A .

> 0 when 8 * eO where

A = [x: f(x,e) * f(x,eO)l > 0
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Recall that x = (1.n};)l' 1.n};)2' 1.n};)3' 1.nI) eland is absolutely continuous

with res};)ect to Lebesque measure on 1 whence =0 if and only if

f(x,e) = f(x,eO) a.e. with res};)ect to Lebesque measure on 1 . Some algebraic

mani};)ulation shows that f(x,S) = f(x,eO) a.e. im};)lies 8 = 8° };)rovided that,

for example, 8],. , eO 4 are non-zero and at least one of the values e6 '
or 8S is non-zero.21 Thus, is uniquely determined for the translog

example with minimum distance estimation.

The almost sure convergence imposed in Assumption 4 lm};)lies that there
*is a sequence which takes its values in a neighborhood of T and is tail

equivalent to Thus, without loss of generality, it may be assumed that

*takes its values in a compact sphere T for which T is an interior point.n
*Similarly, r may be taken as a compact s};)here with interior y

Sufficient conditions such that A may effectively be taken as a compact sphere

are set forth in Theorem 4; they are patterned after Huber .(1964).

TrlEOREM 4. Let Assumptions 1 through 4 hold. Suppose that rand Tare

compact, that A is an unbounded closed set, and that there is a continuous

positive function W(A) such that
•

( . )\1.

(ii)

(iii)

is continuous and sUPAls[Y(e,x,y),X,T,>..]/w(Y)1

is dominated by b (e ,x)

r * *J
1
\:suPi\[s[Y(e,x,y ),X,T ,i"J.h.,(i,,)} S; -1

() - * * *1.im W A > -s(y ,T ,A )

*Then there is a com};)act set A' containing y such that there corresponds to

almost every realization of tXt} an N for which n > N implies

N depends on the realization but A' does not. ,
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The function S(y,x,T,A) is continuous on U x I x T X A' and

S(y,X,T,A.) S b[q(y,x,y),x] on 1J x I x T X A' x r. (The function b(e,x) is

given by Assumption 3.)
THEOREM 5. (Strong consistency) Let Assumptions 1 through 5 hold.

Then )"n and 1:n converge almost surely to ).,*

PROOF. Let let} be such that = T* , ((et,xt )} has the Cesaro

summability property, and e A' for large n ; almost every error sequencen ....
* * *. .

is such. Since A satisfies h().. ) = 0 and).. e A'it follows that reA'n

for large n. Since A' is the sequences and 1n corresponding to
let} have subsequences and converging to limit points and

m m
respectively. By the Corollary of Theorem 2,

• •

converges uniformly to S(y,T,A) on r x T x A' Then

S- (* * ') n;m S (0 ,. )y ,T ,,, = oJ. n yn ' Tn ' "n
m m m m

( 0" *)s y ,Tn n n .m m m

- * * *= s(y ,T ,A )

The assumption of a unique maximum, Assumption 4,

because in each finite sample ,Tn ) maximizes sn ,Tn ,A) while
m m m* m m n
because A satisfies h(A*) = 0 ,(yO ,T not.n n:n m

-** .. -***s(y ,1" ,/-.) s(y ,1" ,A ) •

implies = . . *A = A • *Then (A ) and [A ) have only the one limit point A . 0n n

4. Normalitv. The asymptotic normality of in is established

here. The verification that the "scores" are

asymptotically normally distributed is the critical result; the notion of

Cesaro slunmable sequences plays a key role in the proof. From this result
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PROOF. By (iii) there is a compact set A' and an c with 0 < e < 1

such that
() -s + einfA , A' w A > 1 - e

- - * * *where s = s(y ,T ,A ) < 0 By (i), (ii) and the Corollary of Theorem 2,

there exists Nl such that for n > N •

..
Then A , A' and n > Nl imply

By (i) and the Corollary of Theorem 2,

so there is an N2 such that n > N2

*Then if n > N = max(Nl ,N2} it follows that e A' and

Theorem 4 suggests that an assumption that it eventually suffices to

maximize s over a compact set is not as restrictive as might appear atn

every realization of (et } there corresponds an N for which n > N implies

sup ,s (A) = sun s (A)A n - A n
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asymptotic normality of follows by Taylor's series expansions andn

related arguments of the sort which are typical of nonlinear regression

theory.

A8SUMPrION 6. * * * * *There are open spheres r , T , and A with y ere r ,
* * * *T eTc T , and A cAe A' . The elements of ,

(02/0AOA ')S(y,X,T,A) , (02/0TOA ')S(y,X,T,A) , and [(O/OA)S(y,X,T,A)] x

C(O/OX)S(y,X,T,A)]' are continuous and dominated by b[q(y,x,y),x] on
-* -* -*x 1 x r x T x A the overbar indicates the closure of a set.

Moreover,
*S (%>.)s[Y(e,x,yO),X,T ,>.,0] dP(e) = 0e n n

SS (02/0TOA.')s[Y(e,x,y*),X,T*,A*] 1P(e) = 0
1 e

The two integral conditions imposed in Assumption 6 do not appear to

impede application of the results in instances which come readily to mind.

• Apparently they are intrinsic properties of reasonable estimation procedures.

The translog example with interated Aitken estimation serves to illustrate.

The score is

= [(%e')f(x,e)]' 8-1 [y - f(x,e)]

-Nhence

Since S e dP(e) = 0 , one notes at sight that the two integral conditions
e

are satisfied.

NOTATION.

,
I" . * ** * **,c9 = J S t(O/OA)s[Y(e,x,y ),X,T ,A JH(O/OA)s[Y(e,x,y ),X,T ,x J} dP(e)
1 e
. 2 * * *= - SS (0 /OAOA')s[Y(e,x,y ),X,T ,A ] dP(e)
1 e
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For the translog example with iterated Aitken estimation

J = S[(o!oe')f(x,e)]' (S*)-l (S*)-l [(o!oe')f(x,S)]
1.

* -1= S (S) [(o!oe')f(x,e)]
1.

*If = S then J = .
THEOREM 6. (Asymptotic Normality of the Scores) Under Assumptions 1

through 6

J may be singular.

PROOF. Given 1. with \11.\1 = 1 consider the triangular array of random

variables •
Each Ztn has mean, SeZtn(e) dP(e) , zero by assumption and variance

0t2 = t'S [(O!OA)s[Y(e'Xt,yO),Xt,T*,AoJH(o!OA)s[Y(e'Xt,yO),Xt,T*,)..O]}'dP(e)t .n e n n . n n

* *By the Corollary of Theorem 2 and the assumption that tim (yO ,)..0) = (y ,A )n n
it follows that Lim (l!n)V = t'J 1. where. n

Now (l!n)Vn is the variance of (l!Ji)r::=lZtn and if L'Jt = 0 then (l!./ri)r::=lZtn

converges in distribution to N(O,L'JL) by Chebyshev's inequality.

Suppose, then, that L'Jt > O. If it is shown that for every e > 0

tim B = 0 where ,
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B = (l/n)Etn_,S I [Zt (e)]z2t (e) dP(e)n e [lzl>eKJ n n
n

then tim (n/V)B = O. This is the Lindberg-Feller condition (Chung, 1974);n n

it implies that converges in distribution to N(O,t'Jt) .

Let n> 0 and c > 0 be given. Choose a> 0 such that B(y*'A*) < n/2

where

, * * * 2 .x [t (O/OA)s[Y(e,x,y ),X,T ,).. J) dP(e)

•

-( * *)This is possible because B y,A exists when a = 0 .
function and an Nl such that, for all n > Nl '

I (z)
[lzl>ea]

and set

Choose a continuous

,

= - e

x [t'(O/OA)s[Y(e,x,y),Xt ,T*,A]}2 dP(e)

'" ( ) -* -*By the Corollary of Theorem 2, Bn y,A converges uniformly on r x A to, say,

'B(y,)..) . By assumption tim (yO,'A 0
) = (y*,'A*) whence tim B (yO,'A0

) ='B'(y*, ",*) .n ''n n n n
'" (0 °) "'( * *) /Then there is an N2 auch that, for all n > N2 ' Bn < B Y ,A + h 2 .

But, for all n > N = max[Nl ,N2}, B S 13 (yO, 1..0) whencen n n n

'" ,.... * * / - * *) /B <B (yO,'A.0 )<B(y ,A )+h2SB(y ,A +h2<11n n n n

By Taylor's theorem

(l/Jn) =

+ T*)
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* * 21where \IT - 'i \I s \IT - 'i \I. By the Corollary of Theorem 2, the aJJnost suren n

'" r= A *convergence of 'i , and Assumption 5, the vector multiplying - T ) con-n n
verges aJJnost surely to zero. This and the assumed probability bound on

*In(T - 'i ) tmply that the last term converges in probability to zero whencen

N(O,t'Jt). This holds for every t with

\ltH = 1 whence the desired result obtains. 0
THEOREM 7. Let Assumptions 1 through 6 hold. Then p is nons ingular,

N(p6,J) ,

JO(""n- A*) N(6,p-1Jp-l) ,

In(\n) converges aJJnost surely to J , and Pn(\n) converges aJJnost surely to P •

PROOF. By the mean value theorem and the dominated theorem,

interchange of differentiation and integration is permitted whence

( ?/ ') -( * * *)P = - 0- OAoA s y ,T ,A

-( * * ) *By Assumption 4, s y ,'i,A has a maximum at A = A whence

S(y*,T*,A) must be negative definite at A= A*

By Taylor's theorem,

n A *(l/Jn) Lt=l(o/OA) s(Yt,Xt,'in,A )

= - PJOO.*-

where has rows

•

- l(o/OA')(O/O>...)s[Y(et,xt,yO),xt,T Jn n m

* *and - A \I s II - AOn\l . From the Corollary of Theorem 2 and the assumptionIn ,



19

... 0) * * * -that (yO ,T ,A converges almost surely to (y ,T ,A ) it follows thatn n n

*converges almost surely to Since A ) = 6 by Assumption,

the left hand side converges in distribution to 6,J) .
...

By Theorem 5 there is a sequence which is tail equivalent to and

*takes its values in A The remarks apply to the tail equivalent sequence

•

,

but a new notation is not introduced. Taylor's theorem applies to this

sequence whence

where is similar to 9 of the previous paragraph and converges almost surely

to for similar reasons. Now the first term on the right is the gradient

of the objective function evaluated at a random variable which is tail

equivalent to the optimizing random variable; it must, therefore, converge
r.: * S- -1-1almost surely to zero. Thus, ,yn(An- i-, ) ) by Slutsky's theorem.

By the -Corollary of Theorem 2 and the almost sure convergence of
0'" * * *) ...(Yn,Tn'An ) to (y ,T ,A it follows that = almost

surely. 0
Tests of the hypothesis

H: h(AO) = 0 against A: h(;"O) :\: 0

are considered here. A full rank assumption is imposed which is not strictly

necessary. However, the less than full rank case appears to be of no practi-

cal and a full rank assumption eliminates much clutter from the

theorems and proofs.

NOTATION
."-J

A maximizes sn(i-,) subject to h(A.) = 0n

= J ), 'J = J )n n n n
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= 9= (! )n n' n n

-1 -1 ... ... -1.... '" "'-1 "t( .-v-lJJ Jil

H(t..) = (%X')h()..) (the Jacobian of h of order r x p)

* h = '" hOh= h().. ) , h = =

* if = H(\ ) '" H(1' ) IfH= H(>.. ) , H = =n n

ASSUMPTION 7. The r-vector valued function h()..) defining the hypothesis

H: h(AO) = 0 is twice continuously differentiable with Jacobian

/ * -1 -1H()..) = (0 oA')h(t..) ; H()..) has full rank at ).. = ;., The matrix V = J

has full rank. The statement "the null hypothesis is true" means that

= 0 for all n .

8. Under Assumptions 1 through 7 the statistics

converge in distribution to the non-central Chi square distribution with r

degrees of freedom and noncentrality parameter 11

Under the null hypothesis, the limiting distribution is the central chi

square with r degrees of freedom.

PROOF. (The statistic W) By Theorem 5 there is a sequence which is

,

•

theoram applies to this sequence whence

tail equivalent sequence but a new notation is not introduced. Taylor's

*tail equivalent to and takes its values in A The remarks refer to the

,
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i = 1,2, ... , r

where - A.*\1 :S \I - A*\1 . By Theorem 5, 1, im II}:.. - )...*\\ = 0 almos t"J.n· n· I:H<X> J.n
sureJ.¥ whence 1,im (%"')h. = (%"')h. (",*) aJmost sureJ.¥. Now, in

I:H<X> J. J.n J.

addition, h(e*) = 0 so the Taylor's expansion may be writtenY

7, In has the
1

li')-2 exists for n

*In ) = [H + 0 (l)}Jn(t - '" ) • Then by Theoremn s ''n
A *same asymptotic distribution as H JD.( A. - ) • Nown

1
converges almost sureJ.¥ to (H V H')-2 whence

1 A

(H V H')-2H - ",*) have the same asymptoticn

sufficiently large and
A JIII.". .!. /It.(H V H')-2Jn h()... ) andn
distribution. But

•
whence W converges in distribution to the non-central chi-s,quare.

When the null hypothesis is true, it follows from Taylor's theorem that

Taking the limit as n tends to infinity this equation becomes

*o = (%>"')hi ()...)e whence He = 0 and>., = 0 .

(The statistic R) By Theorem 5 there is a sequence which is tail

- *equivalent to and takes its values in A . The remarks below refer to

the tail equivalent sequence but a new notation is not introduced. By

Taylor's theorem

,
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where \IL - A*\\ , lit - A*\1 s \11: - Aifo\l for i = i, 2, ••• , r • By tail'J.n J.n n
there is for. every realization of Let} an N such that = 0

*for all n > N. Thus h(A ) = 0 (1) and recall that h(e ) = O. Then then s
*continuity of H(A), the almost sure convergence of An to A given by Theorem

5, and the Corollary of Theorem 2 permit these Taylor's expansions to be

rewritten as

f"J *[H+ 0 (l)J(>-- - A) = 0 (1)s 'il s

These equations may be reduced algebraicly to

[H + Os (1) J(p + Os (1) rl(O/OA)Sn = [H + Os (1) J[p + Os (1) r l
*(O/OA)Sn(A ) + 0s(l) •

Then it follows from Theorem 7 that

[H + 0 (1) J[P + 0 (1) ] -1In(0/0A) s N(H 0, H V H')s s n n

The continuity of H(A), Theorem 5, and the Corollary of Theorem 2 permit the

conclusion that

whence R converges in distribution to the non-central chi square. This

completes the argument but note for the next proof that

THEOREM 9, Under Assumptions 1 through 6 the statistic

L = -2[ s (1' ) - s (\ )]n'n n n

•

,
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converges in distribution to the law of the form

y = Z

where Z is distributed as the multivariate normal

If J = then Y has the non-central distribution with r degrees

of freedom and non-centrality parameter

Under the null qypothesis Y is distributed as the central with r

degrees of freedom provided that J = .
PROOF. By Theorem 5 there are which are tail to

- *and An and take their values in A The remarks below refer to the tail

• but a new notatiQn is not intrQduced. By Taylor's theorem

-2n[ s (1 ) - s )]n n n n

= -2n[(%).,)s - A ) - - )'r(02/0AOA ')S no: - )n n n n n • n n - n 'n

where II>:. - }" 1\ il'r - \\ The Corollary of Theorem 2 and the almost suren n n n
(""'"' ") * *) 2/, \ -convergence of An' An to (A ,A imply that (0 oAeA )Sn(An ) = -CJ + 05(1)J

-2n[s - s )J = n(t. - )'[:; + 0 (l)J(>:: - ) + ° (1)nn n n J.'l n s ' 'n n s

By tail there is for every realizatiQn of an N such that
v

for all n > N. Then for n N there are Lagrange multipliers en such that
, -A solvesn

Max s (A)n subject to h(A.) = 0

..rn(2) /0A)s (\ ) - H' ) ,j;. 9 = 0, n n n n
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Thus, -[H + 0 (l)J'Jn e = In (o/OA.)s (A. ) + 0 (1)s n n n s

by a previous argument In(O/OA)S (1 ) = 0 (1) whencen n s

by Taylor's theorem and previous arguments

= [n + 0 (1)' - ) + 0 (1)if s ..l\IU - -n n s

From this string of equalities one has

H ,9-\H + 0 (1) J'In e = In rw-l(%A)s (X ) + 0 (1)s n n n s

whence by the last line of the previous proof

Thus

Again from the string of equalities one has

whence

•

Then converges in distribution to the distribution of the random

variable Z and t n ) = Opel) . From the first paragraph of the proof,

-2n[s (>: ) - s (). )Jn -n n n

= - ) '[,9 + 0 (1) J()" - 1: ) + 0 (1)n n s n n s

= n().. - ) ',9(1 - r ) + Opel) 0 (1) 0p(l) + 0 (1)n n -n n s s ,
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-1If J = then V = and

The conclusion that Y is chi-square follows at once from Theorem 2 of

Searle (1971, p. 57). 0
In a typical application, and Tare subvectors of y

The annoyance of having

the noncentra1ity

Thus, if yO is specified thenn n

and this will satisfy Assumption 4. Thus, in a

or some easily computed function of y •

and TO become specifiedn
typical application, (yO, TO, >..0) is specified andn n n
parameter ct = 0 'H' (HVH') is to be computed.

* * *to specify (y , T , A ) in order to make this computation may be eliminated

by application of Theorem 10.

•
NOTATION.

JO =
e
x e ,xt ,xt ' dP( e)

= dP(e)
e

VO = f1 JO )-1

THEOREM 10. Let Assumptions 1 through 7 hold and let [yO, TO ,AO)} be anyn n 'n
sequence with i.im (yO ,TO ,i-0 )n n n

* * * *= (y ,T ) and ) = 0 Then

,
PROOF. By the continuity of H( A), the Corollary of Theorem 2, and the

* * *assumption that tim (yO ,TO ,AO) = (y ,T ,>.. ) it follows that
IH'X' n n n



By Taylor's theorem

where A*\1 S; for i = 1, 2, ... , r. Thus,

FOOTNOTES

!I See Caves and Christensen (1978) for a detailed discussion of the

gj For a real valued function g(u,v) of the k-vector u and p-vector v,

domain of applicability of this demand system.

is illustrative, a simple expedient is adopted:

pact cubes in R8 and R4 such that on e x 1

Since the purpose here

let e and 1 be com-

•
(%u)g(u,v) denotes the k-vector [(%ul)g(u,v), .. " ,

and (o2/ouov ')g(u,v) denotes the k x p matrix with typical element

(02/ou ,ov.)g(u,v) For a k-vector valued function g(v) of the p-
J

vector v , (%v')g(v) denotes the k x p matrix with typical element

(%v.)g.(v) , For a k x p vector matrix function g(z), Sg(u)
J J

denotes the k x p matrix with typical element Sg . .(u) .

]I Typically depends on (Yl' ""y ,xl' •. "x ) and the dependence onn n n

enters via the relation Yt = ,

y Given 0 :> 0 there exists M and N such that pCJn lIT - ,.*\\ < M) > 1 - 0n
for all n :> N ,



•

•
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21 The weakest condition is that a particular matrix has full rank

but a display of this matrix would consume too much space.

§) The function;: may be taken as measurable; however, measurability ofn
Tn is not necessary for the validity of the proof.

11 Searle's (1971) definition of the non-central ch;-square is used.

The notation is standard: 0s(na ) denotes a matrix whose elements are

the random variables a.. each with tim a .. Ina = 0 almost surely,

o (na ) denotes a matrix whose elements are the randoms variable a ..s

each with a .. Ina is bounded almost surely. Similarly op(na ) and

0p(na ) for ccnvergence in probability.
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