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ABSTRACT

The majority of the estimators which have been proposed for nonlinear

econometric models are obtained as the solution of an opttmization problem.

Examples include single equation nonlinear least squares, minimum distance

and maximum likelihood estimators for nonlinear multivariate regression, and

two-stage least squares, three-stage least squares, and maximum likelihood

estimators for nonlinear simultaneous systems of equations. In the paper, an

optimization problem is proposed which encomposes all of these examples. The

almost sure limit and the asymptotic distribution of the solution of the

opttmization problem are found for data generated according to the general

nonlinear model q(y,x,Y) = e. The majority of the inference procedures used

with nonlinear models may be obtained by treating the objective function of

the opttmization problem as if it were the likelihood and deriving the Wald

test statistic, the likelihood ratio test statistic, and Rao's efficient score

test statistic. The null and non-null asymptotic distributions of these

statistics are derived. To obtain an asymptotic theory for a nonlinear model

with these results, the appropriate objective function is identified and the

asymptotic theory obtains at once by direct computation; several examples are

included in the paper. Since the model which motivated the optimization

problem need not be the same as the model which generates the data, these

results may be used to obtain the asymptotic behavior of inference procedures

under model misspecification.



1. INTRODUCTION

The Hartley-Booker (1965) estimator is, to our best knowledge, the

first use of the method of moments per se in nonlinear statistical models.

Their method was proposed for the univariate response nonlinear model

where e* is an unknown p-vector. The space "I of possible values for the

sequence tXt) is divided into p disjoint sets "Ii. The moment equations

i=1,2, ••. ,p

..
are computed and solved to obtain an estimator e. They used it as the first

step of a scoring method but we consider it as an estimator in its own right.

From our point of view, a handier notation results by letting

where ei is the i-th elementary p-vector. The :D.oment equations are now

written as

The Hartley-Booker estimator is, then, the solution of:D. (9) = 0 .n
A problem "t1ith this approach is that the equations :D. (e) = 0 :nay notn

have a solution. This problem is eliminated by defining eto be the maxi:::lU.m of

That is, redefine the estimator as the solution of an optimization problem

whose first order conditions bply :D.n (B) = 0 when the moment equations can

be solved.

This for:nulation of the Hartley-Booker estimator the need to

restrict the number of disjoint subsets of I to exactly ? The 'rectors '"'.... t
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of the moment equations

may have length greater than p. But in this case, one can argue by

to squares that an optimization with objective

function

more efficient estimators. One notes that this is the optimization

which defines the two-stage estimator

(Amemiya, Only the restriction that Zt be chosen according as xt e Ii

or not prevents the modified ..Booker estimator from being properly

considered a two-stage least-squares. estimator.

These remarks motivate a definition of the method of moments

estimator. To permit consideration of iteratively rescaled estimators such

as three-stage nonlinear least squares, both the moment equations

and the objective function

of the optimization are permitted to depend on a random

,. via the argument ,. in m(y,x, ,.,;.,) and in the distance function d[m,,.J •n

In this paper, the asymptotic distribution of an estimator defined as

that which maximizes sn(A.) is found for data generated according to the

model
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Then Sn(A) is treated as if it were the likelihood for the purpose of

deriving the Wald test statistic, the likelihood ratio test statistic, and

Rao's efficient score test statistic. The null and non-null asymptotic

distributions of these statistics are derived.

Estimators which are properly thought of as method of moment estimators,

in the sense that they can be posed no other way, are: The Hartley-Booker

estimator - Hartley and Booker (1965). Scale invariant M-estimators

Ruskin (1978). Two-stage least-squares estimators - Amemiya (1974).

Three-stage least-squares estimators - Jorgenson and Laffont (1974), Amemiya

(1977), Gallant and Jorgenson (1979).

A second group of estimators, termed M-estimators here, are of the form

"'n maximizes Sn(A) =

They can be cast into the form of method of moments estimators by putting

and d[m,,. J = -i m/m • This second group is: Single equation nonlinear least-

squares - Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b).

Multivariate least-squares - Malinvaud (197Ob), Gallant (1975c), Holly (1978).

Single equation and multivariate maximum likelihood - Malinvaud (197Ob),

Barnett (1976), Holly (1978). Maximum likelihood for simultaneous systems -

Amemiya (1977), Gallant and Holly (1980). M-estimators - Balet-Lawrence (1975),

Grossman (1976), Ruskin (1978). Iteratively rescaled M-estimates - Souza and

Gallant (1979).

If one's only interest is to find the asymptotic distribution of the esti-

mator, then posing the problem as a method of moments estimator is the more

convenient approach. One pays two penalties. The first, the problem is no
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longer posed in a way that permits the use of the likelihood ratio test.

The second, the consistency results are weaker. With the method of moments

approach one can prove the existence of a consistent estimator which solves

(O!OA)S (X) = O. With the M-estimator approach, one can prove that thatn
A
An which maximizes sn(A) converges almost surely. For the reader's convenience,

we include a precis of these stronger results.
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2. PRELIMINARIES

The M-variate responses Yt are generated according to

t = 1, 2, ... , n

with xt c I, Yt s lJ, et c e, and cr. The sequence (yt l is actuall;y
doubly indexed as (ytnl due to the drift of with n; the sequences tet]

and tXt] are singly indexed and the analysis is conditional on tXt} throughout.

Assumption 1. The errors are and identicall;y distributed

with common distribution Pee) •

Obviously, for the model to make sense, some measure of central tendency

of Pee) ought to be zero but no formal use is made of such an assumption. If

p(e) is indexed by parameters, they cannot drift with sample size as may yO .n
The models envisaged here are supposed to describe the behavior of a

physical, biological, economic, or social system·. If so, to each value of

(e,x,yO) there should correspond one and only one outcome y. This condition

and continuity are imposed.

Assumption 2. For each (x,y) s I X r the equation q(y,x,y) = e defines

a one-to-one mapping of e onto lJ denoted as Y(e,x,y). Moreover, Y(e,x',y) is

continuous on e X 1: X r .
It should be emphasized that it is not necessary to have a closed form

expression for Y(e,x,y), or even to be able to compute it using numerical

methods, in order to use the statistical methods set forth here.

Repeatedly, in the sequel, the uniform limit of a Cesaro sum such as

is required. In the nonlinear regression literature much

attention has been devoted to finding conditions which insure this behavior

yet are plausible and can be 'easily recognized as obtaining or not obtaining
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in an application (Jennrich, 1969; Malinvaud, 1970a; Gallant, 1977; Gallant

and Holly, 1980). Details and examples ms.y be found in these references;

we follow Gallant and Holly (1980).

Definition. (Gallant and Holly, 1980) A sequence [vt ) of points from

a Borel set 1I is said to be a Cesaro sum generator with respect to a probability

measure v defined on the Borel subsets of u and a dominating function b(v)
with Sb dv < CD if

for every real valued, continuous function f with If(v)1 S b(v) •

Assumption 3. (Gallant and Holly, 1980) Almost every realization of

[vt } with vt = (et,xt ) is a Cesaro sum generator with respect to the product

measure V(A) =SS IA(e,x) dP(e) and a dominating function b(e,x). The
Ie

sequence [x.} is a Cesaro sum generator with respect to and b(x) = Sb(e,x)dP(e) .e
For each Xc I there is a neighborhood Nx such that dP(E) < CD • e

Theorem 1. (Gallant and Ho1J.¥, 1980) Let As sumptions 1 through 3 hold. Let

f(y,x,p) be continuous on X I X K where K'is compact. Let

for all (y,x) c X 1 and all (O,y) in K X A where A is compact. Then both

(lin) and (lin) dP(e) converge uniformly
e

to

SS f[Y(e,x,y),x,p] dP(e)
I e

*except on the event E with P (E) = 0 given by Assumption 3.
In typical applications, a density pee) and a Jacobian

J(y,x,yO) =

are available. With these in hand, the conditional density



may be used for computing since

7

The choice of integration formulas is dictated by convenience.
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3. METHOD OF MOMENTS ESTD1ATOBS

Consider the moment equations

where is a random variable with almost sure limit T*. Suppose that

there is a natural association of A to y, say A = g(y) , which solves

Sm(Y(e,x,y) ,X,T*,A] dP(e) = 0 ,
e

for all x. The classical method of moments procedure is to equate sample

moments to their expectation

m (A) = 0n

and solve the equations for Xl These equations may not have a solution. To

eliminate this problem one may reason by analogy with regression methods and

maximize, say, m/(A) m (X) to find an estimator.n n In general, consider

maximizing

where d[m,T] is some measure of distance with dCO,T] = 0 and d[m,T]< 0 for

m :j: O. The constrained method of moments estimator is the solution ofn
the optimization problem

Maximize: d[mn(X), subject to h(A) = 0
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The assumptions are somewhat abstract due to the scope of applications

envisaged. As a counterbalance, an example is carried throughout this section.

The best choice of an example seems to be a robust, scale-invariant, M-

for the univariate model

due to both its intrinsic interest and freedom from tedious notational details.

The error distribution Pee) for the example is assumed to be symmetric

with J \e\dP(e) finite and J e2dP(e) > o. The reduced form is
e e

Y(e,x,y) = f(x,y) + e .

Proposal 2 of HUber (1964) leads to the moment equations

with A= (a',a)' • For specifity let

= t tanh (u/2) ,

a bounded odd function with bounded even derivative and let

A

There is no previous estimator T with this example so the argument T ofn
m(y,x,T,A) is suppressed to obtain

m(y,x,A)
= f(x,e)]/a}(a/ae) f(x,e»)

• L1. - f(x,e)J/a} - Ia
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The distance function is

d(m) = 1 I-2%D- m ,

again suppressing the argument T, whence the e.st1m.ator is defined as

that value of A which maximizes

Notation

mn(A) = (l/n)
i(y,T,A) = S. Sm[Y(e,x,y) ,X,T,A] dP(e)

xe
Sn(A) =

The identification condition is

*Assumption 4. The yO converges to a point y The sequencen .
.. * * aT converges almost surely to a point T and - T ) is bounded in probability.n n
There is an association of )" to y, denoted as A = g(y) , which satisfies

iD(y,T*,g(y)] = 0 .

The sequence = has - }.*) = 0 where ),,* = g(y*) and 0 is

*finite. The constraint he),,) = 0 is satisfied at)" .

For the example, let r:l solve Svl(e/a) dP(e) = \a, a solution exists
e

since G(a) = 1- S 'fee/a) dP(e} is a continuous distribution function if Pee)
e

does not put all its mass at zero. Define g(y) = (y,cr*). Then

J mCe + f(x,y),x, (Y,O'*)] dP(e)
e

= (Ie Y(e!r/) dP(e) f(X,V)).

J 'f2(e/cr*) dP(e) -
e
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As the integral is zero for every x, integration over I with respect to IJo

must yield

i[y,g(V)] =

as required by Assumption 4.
Notation

M=JJ dP(e) dlJo(x)
I e

D = (02/0mOm')

J=M'DSDM

= -M' D M

I n(A) = 0.) Dn (:A.) Sn0.. ) Dn(A) Mn0.) .

= Mn(A)

H =(0/0)..') h(h*)

For the example, direct computation yields
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s =

M=
dP(e) F'F

D = -I

where

F'F =S (a/oS) f(x,s) (a/as') f(x,S) *
I &·v

This computation the fact that e are odd and 1If.'(e/a*) , .f2Ce/a*)

are even. If Pee) does not put all its mass at zero and F'F is

then S, M, and D have full rank by inspection.
* * *Assumption 5· There are bounded, open spheres r, T, A containing y , T , A 4It

for which the of m(y,x,T,A), (%A. ) m(y,x,T,;") , (02/0A .OA J m(y,x,T,;")
J

are continuous and dominated by b[q(y,x,y),x] on X I X T X AX r ; b(e,x) is
that of Assumption 3 and the overbar indicates of a set. The distance

function d(m,T) and derivatives (a/om) d(m,T), (02/om am') d(m,T) are continuous

on X Twhere is some open sphere containing the zero vector. The constraining

function and its derivative H(A) are continuous on A. The matrix D is

negative definite, (a/om) d(O,T) = ° for all T, and M, H have full rank.

To illustrate the construction of b(e,x), consider for the

because \1If.(u)\ = tanh (u/2) \ What is required then is that
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,suPell (%e) f(x,8)11 be integrable with respect to lJ.. Or, since A is compact,

(%S) f(x,S) continuous in (x,e) and 'I compact would bound l\(%e)f(x,e)1I in

which case b. (e ,x) = const. One accumulates b. (e ,x) in this fashion to satisfyk . k

the assumptions. Then b(e,x) of Assumption 3 is b(e,x) = t bi(e,x). Because

Y(u) and its derivatives are bounded, this construction of b(e,x) is not very

interesting. More interesting, and detailed, constructions are given in

Gallant and Holly (1980).

Theorem 2. (Consistency) Let Assumptions 1 through 5 hold. There is a

sequence such that for almost every realization of = )..* and

there is an N such that (0/0)..) s (1 ) = 0 for n > N. Similarly, there is an n
sequence 1 and associated Lagrange multipliers e such that.tim 1:: =)..*n n n-teD"'n

"oJ '"'" f"oJand (0/0).,)[ sn(Xn) + = 0, h(in) = 0 for n > N •

Proof:
...

fixes. Tn .

• f"OJThe result wkll be proved for in . Fix a sequence (et1 4E, this

(%A.1) sn()..) = ta(%ma ) d[mn().,) ,

(02/0AiOAj) sn().,) = !:ate(02/omaome)

+ ta(0/oma)d[mn(A),Tn](02/0).,i°)..j)man(A)

The assumptions suffice for an application of Theorem 1 and the conclusion that
?

mn ()..) , (O/OAi) mn(A), and converge uniformly onA to

-( * * ) (/ )- * * ?/. - * *my ,T ,).. , ° o).,im(y ,T ,A), and (0- OAioAj)m(y ,T ,A); the domination

required to apply Theorem 1 permits the interchange of differentiation and

-( * * *)integration as needed. Since my, T ,A = 0, one can shrink. the radius of

A to AI so that m ()..) e for all A c AI and n suitably large whence s (A) ,n n
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(%)J s(y*"r*,)..), and (02/0A.o)..') s(Y*''1'*,A.) respective:l¥. As

(%m) d[O,'1'*] = ° and (02/omom ') d[O,'1'*] is negative definite, (%;')S(Y*''1'*,)..*) = °
and (02/0)..0)..')s(y*,/,>..*) is negative definite. Thus, one may shrink. the radius

of A' to A" so that S(Y*''1'*,)..) has a unique maximum at ).. = )..* on A" •

Let An InaXjmize sn()..) subject to h()..) = ° and).. c A" • Now h(A.*) = °
and sn()..) converges uniform:l¥ to s(y*,'1'*,A) on A" so that for large n the

solution In'"'cannot lie on the boundary of A" • The existence of the Lagrange

multipliers and satisfaction of the first order conditions follows.

As A" is compact, has at least one limit point let 1:n converge to
m

Then, by uniform convergence,

-( * * *= s y , '1' , A ) .

* -( * * . *But A. is the unique maximum of s y , '1' , )..) on A" whence A. = A o
One may note that the domination in Assumption 5 suffices for several

interchanges of integration and differentiation. One consequence is that

( / - * * *)M= 0 oA') m(y ,'1' ,)..

- * .* *whence, since ;n(y ,'1' ,A ) = ° and (o/dm)d(O,'1') =°,
( 2/ ' )-(* * *)= -d dAdA. s y ,'1' ,)..

Assumption 6. The elements ;n(y,x,'1',)..) m'(y,x,'1',A.) and

are continuous and dominated by b[q(y,x,y) ,x] on lj X I X T X AX r; b(e,x) is
that of Assumption 3. The elements' of Ct/o'1'dm')d(m,'1') are continuous on (§ X T
where is some open sphere containing the zero vector
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Jm(Y(e,x,yO),X,1'*,AOJ dP(e) = O·e n 'n·

Th.e first integral condition is central to our results and is apparent1;y

an intrinsic property of reasonable estimation procedures. It was verified

for th.e example as an intermediate step in the verification of Assumption 4.
The second integral condition is sometimes encountered in the theory of

maximum likelihood estimation; see Durbin (1970) for a detailed discussion.

It validates the application of maximum likelihood theory to a subset of the

parameters when the remainder are treated as if known in the derivations but

are subsequent1;y estimated. The assumption plays the same role here. It can

be avoided in maximum likelihood estimation at a cOst of additional complexity

in the results; see Gallant and Holl;y (1980) for details. It can probably be

avoided here but there is no reason to further complicate the results in view

of the intended applicat ions. For the example, there is no dependence on l'

hence nothing to verify. Had an iteritive1;y rescaled estimator been considered,

m(y,X,1',A) = - f(x,e)]/1'}(a/oA)f(x,e) with T supplied by a previous fit,n
the condition would have been satisfied as the off-diagonal corner of our

*previous1;y computed M is zero for any cr

Theorem 3. (Asymptotic Normality of the Moments) Under As sumptions 1

S may be singular.

Proof. Given 1- with \\1,1\ = 1 consider the triangular array of random
variables
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Each Zt has mean, J Zt (e) dP(e) , zero by assumption and variance
n e .n

dP(e)L •

* *By Theorem 1 and the assumption that = (y ,A ) it follows that.

Lim (l/n)V = L'S L wheren

Now (l/n)Vn is the variance of and if tSL = 0 then

converges in distribution to N(O ,LBL) by Chebyshev I s inequality.

Suppose, then, that LBL > O. If it is shown that for every yO

Lim B = 0 where

.. 2
B = I CZt (e)]Zt (e) dP(e)n 'e [I z 1>eJ[] n n-

n

then Lim (n/V)B = O. This is the condition (Chung, 1974);n n
it implies that converges in distribution to N(O,LSL) •

Let n> 0 and e > 0 be given. Choose" a > 0 such that < h/2 where

X dP(e)

-( * *)This is possible because B y ,A exists when a = 0 •

function and an Nl such that, for all n > Nl '

I (z) S S I . (z)
[lzl>eJV J (Izl>e:a)n

and set
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=
e-

x (t'm[Y(e,x,y),Xt ,T*,>..J)2dp(e) •

By Theorem 1, J3n (y,>..) converges uniform.l.y on r* X X* to, say, B(y,>..) • By

* * - - * *assumption tim = ("I ,>.. ) whence tim B ("1°,>..°) = B(y ,A ) .n '"n n n n
-. - * * /there is an N2 such that, for all n > N2 , Bn < B(y ,A ) + n 2 •

for all n > N = max{Nl ,N21 ,B < B ("10 , AO) whencen n n n

Now Tn is tail equivalent to a sequence contained in T. Thus, without
,.

loss of generality Tn may be taken to be in T and Taylor's theorem applied to

obtain

where \Ii- - 1'*\1 s - 1'*\1. By Theorem 1, the almost sure convergence of T ,n n· .. n
,. *and Assumption 6, the vector multiplying In(1' - T ) converges almost surely ton

zero. This and the assumed probabil..ty bound on - 1'*) imply that then
last term converges in probability to zero whence

£.. N(O,t'St). This holds for every t with \It \I = 1
whence the first result obtains.

The sequence (yO ,>..o,T ) converges almost surely to ("1*,>..*,1'*,>..*). Itn n n n
is then tail equivalent to a sequence with values in r X A X T X A. Without

( 0 0'" ... )los s of generality let "In ' , Tn' >"n e r X A X T X A •

and Theorem 1,

- * r.: r.:*In m (>.. ) = ",n m (/.,0) + [M + os·. (l)J ",n(A. - /.,0)n n n . n

By Taylor's theorem
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*which establishes the second result as JnCt.. _).0) - 6 by assumption. 0n
Theorem 4. Let Assumptions 1 through 6 hold. Then

J (t ) converges almost surely toJ and 9 ) converges almost surely to 9 .n . n n

( 0 0" A) (* * * *)Proof: By the almost sure convergence of 'Y ,X ,'l' ,A to 'Y ,). ,'l' ,t.. ,n n n 'n
tail equivalence, Taylor's theorem, and Theorem 1

A *= ..filM + 0 (1)] '[(%m)d(O,'l' ) + C-D + 0 (l)J m (). ))s n s· n

*= eM + 0 (1)] '[ - D + 0 (1)] Jh m (). )s s n

The first result follows from Theorem 3.

By the same type of argument

By Theorem 2

= 0 (1) + C {} + 0 (1)] jn(i - A*)s sn

To obtain results for estimation one holds yO fixed at 'Y*. Then forn
the example



.. *e - yn

.. *a - an

The variance formula

(a*)2 ey2 (ela*) (F'F)-l
CeY'(ela*)J2

o

19

o

is the same as that which would result if the generalized least squares estimator

were employed for the linear model

y = Me + e, e!'oJ (0,5) •

-1Thus, the greatest efficiency for given moment equations results when D = 5 .
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4 • TESTS OF HYPOTHESES

Tests of the

H: h(A,°) = 0 against A: h().O) * 0
are considered here. A full rank assumption is imposed below which is not

strictly necessary. However, the less than full rank case appears to be of

no practical importance and a full rank assumption eliminates much clutter

from. the theorems and proofs.

Notation:

\ maximizes sn (X)

maximizes sn0..) subject to h(A) = 0

3 = I n 'J = I nC1:n)

= n(in)' = n

V = V= V =g-l j r-l
H(A) = (%X') h(h) (the Jacobian of h of order r x p)

Assumption 7. The r-vector valued function h(A) defining the

H: h().O) = 0 is continuous.l;y" differentiable with Jacobian H(X) = (o/OX')h(A) ;

( ) * -1 -1H A has full rank at A = A • The matrix V = J has full rank. The

statement lithe null is true II means that h( ,,0) = 0 for all n •n
Theorem 5. Under Assumptions 1 through 7 the statistics

W= n )n n
R = n[ (O/OA)Sn (1n) J -l'H' (H V"H') -41 -l[ (%A)sn J

converge in distribution to the non-central chi square distribution with r
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of freedom and noncentrality parameter ex = 6'H' (H V Under thee null hypothesis, the limiting distribution is the central chi square with r

degrees of freedom.

Proof. (The statistic W) By Theorem 2 there is a sequence which is tail

equivalent to and takes its values in A. The remarks refer to the tail

equivalent sequence but a new notation is not introduced. Taylor's theorem

applies to this sequence whence

where II - A*11 s 1\ - A*11. By Theorem 2 1, imIl-9CX'1I - A*11 = 0 almost surely
- . *whence J.imn--(o!o)..)hi(>"in) = (o!oA,)hi(i. ) almost surely. Now, in addition,

h(A*) = 0 so the Taylor's expansion may be written JD. ) = [H + 0 (1) ]Vti(i - A*) •n 5 n
r:.... TT A *Then by Theorem 4 A/wJ.(tn ) has the same asymptotic distribution as nvn(An - ).. ) •

1
Now (R " H') -2 exists for n sufficiently large and c cnverges almost surely to
111

(H V H')-2 whence (H VH')-2,J'i and (H V H')-2HJi ().n- A*) have the same

asymptotic distribution. But

1 .r. 1
(H V H') -2HJi - A*) -+ Nt: (H V H') -2H 6, I ]n ·r

whence W converges in distribution to the non-central chi-square.

When the null hypothesis is true, it follows from Taylor's theorem that

Taking the limit as n tends to infinity this equation becomes

*0= (O!OA')hi (>.. )6 whence H6 = 0 and a = 0 •

(The statistic H) By Theorem 2 there is a sequence which is tail equivalent
,....

to A and takes its values in A. The remarks below refer to the tail ,equivalentn

sequence but a new notation is not introduced. By Taylor's theorem
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* - * *where - A II, IIAjn - A II s lI!n - A \I for i = 1, 2, ... , P

j = 1, 2, ••• , r. By Theorem 2 there is for every realization of {etJ an N

such that = 0 for all n > N. Thus h(\) = 0s(l/Jn) and recall that
* -h( A ) = o. Then the continuity of H().), the aJJnost sure convergence of An

*to A given by Theorem 2, and Theorem 1 permit these Taylor's expansions to

be rewritten as .

= (O/OA)Sn(A*) - + - l.*)

[H + Os (1))c\. - A*) = Os (l/JD.) •

These equations may be reduced algebraicly to

[H + 0 + 0 (l)r\fzl(%A)s ('X )..£ N(H 0, H V H') .s s n n

The continuity of H(X), Theorem 2, and Theorem 1 permit the conclusion that

1 1
(ff1t1t')-2HJ-l ,Jti(%A)s (1 )-- N[(H V H')-2H 0, I ]n'n r

whence R converges in distribution to the non-central Chi-square.
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This completes the argument but note for the next proof that

Under Assumptions 1 through 6 the statistic

converges in distribution to the law of the quadratic form Y = Z' Z where Z

is distributed as the multivariate normal

If J = then Y has the non-central chi-square distribution with r degrees of

freedom and. non-centrality parameter Ci = • Under the null

hypothesis Y is distributed as the central chi-square with r degrees of freedom

provided that J = (HVR' = will also sUf'fice.)

Proof. By Theorem 2 there are sequences which are tail equivalent to
*and A and take their values in A. The remarks below refer to the tailn .

equivalent sequences but a new notation is not introduced. By Taylor's theorem

-2n[ snCXn) - sn

= -2n[(%). - nan - -1..n )

- < - Theorem 1 and the almost sure convergence of

Xn) to (;.,*, ;,,*) imply that = + 9s (1)J. Now, by tail

equivalence, = 0s(l) whence

By tail equivalence, and Theorem 2 there is for every realization of tet} an

N such that for n > N there are Lagrange multipliers e such thatn
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Thus,
[H + Os (1)] '../Ii en = ../Ii(?J!o)..,)snrAn) + Os (1)

by a previous argument In(?J!oi..)s (1 ) = 0 (1) whencen n s

by Tay.lor's theorem and previous arguments

= c? + 0 (1) ] In(5,. -!) + 0 (1)s n n s

From this string of equalities one has

whence by the last line of the previous proof

H9-lcH + 0 (l)J'..,I'il e N(Ho, HV H') .s n

Thus

Again fran the string of equalities one has

+ 0 (1)] 'In e = 9-J.c9 + 0 (1)] ..;n(t - 'r ) + 0 (1)s n· s n n s
whence

Then -'\ ) converges in distribution to the distribution of the randomn n .
variable Z and -1: ) = 0p(l). From the first paragraph of the proof,n n

-2n(s - s (X)] = -1: + 0 ) + 0 (1)n n nn . n n . sn on s

,., -1If J = J then V = 9 and
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The conclusion that Y is chi-square follows at once from Theorem 2 of Searle

(1971, p. 57). 0
In a typical application, ), and Tare subvectors of y or some easily

computed function of y. If yO is specified then ),0 and TO become specified.n n n

Thus, in a typical application, (yO, TO, ),0) is specified and the noncentralityn n n
parameter ex = is to be computed. The annoyance of having to

specify (y*, T*, A.*) in order to make this computation may be eliminated by

application of Theorem 7.

NOTATION.

SO = dP(e)
e

= (0/0).' )m[Y(e ,xt ,xt ' J dP( e)- e
2

DO = (0 /omom') d(a , )

90 =
yo = (90 )-1JO (90 )-1

Theorem 7. Let Assumptions 1 through 7 hold and let [(yO, TO ,'t..0 )} be anyn n n
* * - *sequence with .Hm (yO ,To ,10 ) = (y*, T , A. ) and.tim In(io,° - 't.. ) = O. Thenn n 'n . n

n' 0 = 01 •

Proof. By the continuity of H(),), Theorem 1, and the assumption that

= (y*, T*' ).*) it follows that (HVH,)-l .

By Taylor's theorem

jn = Ji1[h.(;"O) - h.(A*)] = )]'jn(;"O - ;,,*)J. n J. n J.. J. J.n n

where I\}:.in - ;,,*11 $ II - ;,,*11 for i = 1, 2, ... , r. Thus = Ho • 0
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5. EXAMPLES

Invariant M-Estimators

Recent

Ruskin

Yt = f(xt,a*) + et

e is distributed symmetrically about zero

Moment equations:

A= (a', 0') ,

'1:'( u) is an odd function, 0 < < •

Distance function:

o

0"

22·
0/ r ['I:' (e/a*) dP(e)

"e
* *-(1/0 )S 'J:"(e/o ) F'F 0
e

S =

M=

Asymptotic distribution parameters:

J 'l:'2(e/0'*) dP(e) F'F
e

D = -I

S * *F'F = (%e) f(x,8 ) (0/08') f(x,8 ) d\Jo(x)
* x. 2f:1 solves S 'I:' (e/C') dP(e) = 1=

e
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Single Equation Nonlinear Least'Squares

Recent literature:

Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b)

Model:

Yt = + et

teet) = 0, teet2) = ('1*)2

Moment equations:

"" 2 "" ""2 ""''In( Tn - (0"*) ) is bounded in probability, Tn = (lin) et where et
are least squares residuals will suffice

A = e

Distance function:

d(m) = --!m'm

Asymptotic distribution parameters:

S = -M = (cr*)2 J f(x,S) d\Jo(x)
I

D = -I

V ",-1= )j



Multivariate Nonlinear Least Sg,uares

Recent literature:

Malinvaud (197Gb), Gallant (l975c), Holl;y' (1978)

Model:

Moment equations:

t = ; et are single equation residuals
A. = e

Distance function:

29

d(m) = 1 I-2tD- m

Asymptotic distribution parameters:

D = -I
V = 8-1



Single Equation Likelihood

Model:

yot = f(Xt , + et
2 *2teet) =0, teet ) = (a )

Moment equations:

Distance function:

() l'd m = -?m m

Asymptotic distribution parameters:

s -
- e(e3)f'

30

!-F'F
0'

D = -I
* *F'? = f(x,S ')(%e') f(z,e )

I
*of =J (%S)f(x,e )

I

iT = ... - ..
e(e3 )f / (F'F)-1

Comment:
Under symmetrJ t(e3 ) = 0 .
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Multivariate Maximum Likelihood

Recent literature:

Ma1invaud (197Ob), Barnett (1976), Holly (1978)

Model:

Moment equations:

mn(A) =
vec([Yt - f(xt,e)](Yt - - t}

).. = (6', a')'

a' = (all' 0')2' C123 , ••• , O'JM' a2M, ••• , upper triangle of t

?vec( t) = Aa, A an XM(M+l)/2 matrix of zeroes and ones

Distance function:

d(m) =
Asymptotic distribution parameters:

(S = . 1
eCvec(ee')e']t- f

D == -I
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t-1f = (t*)-lJ (%e') f(x,e*)
X.

V=

Comment:

vee' (ee') ]A (A '
I

(A 'A)-lA'Van: vee(ee' ) }A (A 'A) -1 )

Under normality e( veeCee')e'J = 0, A'Vare veeCee')]A = 2A' Ct*® t*)A .
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Two-Stage Nonlinear Least-Squares

Recent literature:

Amemiya (1974), Gallant and Jorgenson (1979)

System:

*= 'E

Equation of interest:

*=aaa

Moment equations:

)., = ea
Zt = Z(x) , z(x) continuous

Distance function:

( )
1, -1

d m, '1' = -2!ll '1' m

JiiC; - (/ ) is bounded in probability, 0- = 1aa aa aa a
...

where eat are two-stage least-squares residuals will suffice

Asymptotic distribution parameters:

* 2S = ((j ) z 'zaa

M = Z'Q
a

D -1= -S



Z'Z = sz(x) z'(x)
I .

Z'Q = SS z(x)(%e') [Y(e,x,e*),x,e J dP(e)
Of Ie Of Of Of Of

Comment:

J =

I. *
a=e
Of Of



Three-stage Nonlinear Least-Squares

Recent literature:

Jorgenson and Laffont (1979), Gallant (1977), Amemiya (1977),

Gallant and Jorgenson (1979)

Model:

Moment equations:

mnO,,) = (lin) q(Yt,xt,e) ® Zt

A. = a

Distance function:

( ) 1,-1d m, or = -2IIl or m

,., (/)n ,.,A, ,.,E = 1 n !t=l etet ; et are two-stage least-squares residuals

Asymptotic distribution parameters:

* *S = E ® (Z 'Z) = E 0 J z (x) z' (x) dlJo(x)
1.

*M = Q 0 Z = S(aloe') q[Y(e,x,e ), x,e] ® z(x) d\Jo(x) I *
I

-1D = -s

35
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6.M-ESTIMATORS

,.
An M-estimator An is defined as the solution of the optimization problem

Maximize:

where Tn is a random variable which corresponds conceptually to estimators of

nuisance parameters.

optimization problem

A constrained M-estimator is the solution of then

Maximize: sn(A) subject to h(A) = 0

where h(A) maps RP into Rr . The objective of this section is to establish

conditions such that these estimators are asymptotically nonnally distributed.

These results are due to Souza and Gallant (l979) where proofs may be found.

Two examples are carried throughout the discussion to provide the reader

with the flavor of the details in an application. In both cases the data

generating model is

The first estimator is a robust estimator with distance function

where p (u) = J,n cosh (u/2). The second is an iteratively rescaled robust

estimator. The distance function is

The scale estimator Tis obtained by computing eto maximize
and then solving

f(xt,e)]!-r} - S'l.'2(e) dHe)

for,. where 'l.'(u) = P '(u) = -! tanh (u/2) •
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NOTATION.

S(y,T,A) = SSs[Y(e,x,y),X,T,A] dP(e) •
I.e

The identification is

*Assumption 4 ' . The parameter yO is indexed by n and.tim :t =y for some
!HOD n

point y* cr. The sequence Tn converges almost surely to a point T* and

- T*) is bounded in probability. There is a compact subset A' of A andn
there are unique points ;..*, ... corresponding to y = Y*, ...

-( * * ) -( 0 * ) -( 0 * )which maximize s y , T , A , S Yl'T ,X , s Y2,T ,X , •.. over A. The function

h(X) of the hypothesis H: h(AO) =0 is a continuous vector valued function on A ;n
the point ;..* satisfies h(A*) = 0 and.tim Jr;.(AO - A*) = 0 •n

A verification that has the requisite properties is straightforward inn
typical applications. A verification for the example is deferred until end of

the section.

A verification of unique maxima of S(y,T*,X) usually commences by proposing

an obviously minimal identification condition. Then known results for the

location problem are exploited to verif,y a unique association of Ato y. To

illustrate with the example, it is clearly impossible to identif,y ;.. by observing

{Yt'xt } if f(x,A) = f(x,y) a. e. for some;" * y. Then a minimal identification

condition is

;.. '* y => f(x,;") * f(x,y)} > 0 •

Now (('(0) = Sp(e + 0) dP(e) is known to have a unique m:inimum at 0 = 0 when P(e)

is sYmmetric about zero and assigns positive probability to every nonempty, open

interval. If;" '* Y and o(x) = f(x,y)- f(x,;") then cp[o(x)J 2: cp(O) for every x and

by the identification condition cp[o(x)] > cp(O) on some set of positive measure whence



= -J qt6(x)] < -J =
1. 1.

as required.

The almost sure convergence Unposed in Assumption 4' implies that there is
*a sequence which takes its values in a neighborhood of T and is tail equivalent

,.
to Tn' Thus, without loss of generality, it may be assumed that Tn takes its

*values in a compact sphere T for which T is an interior point. SUnilarly, r

may be taken as a compact sphere with interior point y* Thus, the effective

conditions of the next assumption are domination of the objective function and

a requirement that eventually it suffices to minimize s (A) over A' •n

ASSUMPUON 5'. The sets r and T are compact spheres containing y* and T*,

respectively. To almost every realization of ret} there corresponds an N for

which n > N implies suPA,sn(A) = sUPAsn(A). The function S(y,x,T,A) is continuous

on y. x 1. x T X A' and IS(y,x,T,A)! $ b[q(y,x,y),x] on y. x 1. x T X A' x r. (The

function b(e,x) is given by Assumption 3.)
The exhibition of the requisite dominating function is an ad hoc process

and one exploits the special characteristics of an application. For the example

\Sl(y,X,A)\ =pee + f(x,y) - f(X,A)]

s tl e + f(x,y) - f(x, A)I
s lei + sUPrlf(X,y)\ + SUP1\,jf(X,A.)I .

The domination condition obtains if Pee) has a finite mean and if can

accomodate the tail behavior of sUPr If(x,y) \ and suptl f(x, A)l. Or, take I

compact so that these functions are b'ounded in view of Assumption 2. Some

carefully worked examples for more complex situations may be found in Gallant

and Holly (1980) and Gallant (1977).
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The construction of A' is also ad hoc. Most authors have adopted the sUnple

expedient of taking A compact and putting AI = A. There has been some reluctance

to impose bounds on scale parameters and location parameters which enter the

model linearly. General treatments for unbounded location parameters with least

squares methods may be found in Malinvaud (19'70) and Gallant (1973). For

redescending p functions, the use of an initial consistent estimator as a ptart

value for an algorithm which is guaranteed to converge to a local minimum of

suffices to confine to A' eventually. A construction of A' for scale

parameters with maximum likelihood estimation of the parameters of the general

multivariate model is in Gallant and Holly (1980).

However, one does not wander haphazardly into nonlinear estimation. Typically

one has need of a considerable knowledge of the situation in order to construct

the model. Presuming knowledge of AI as well is probably not an unreasonably

assumption. Most authors apparently take this position.

THEOREM 2 ' . (Strong consistency) Let Assumptions 1 through 5/hold. Then

and \ converge almost surely to A.* ..

NOTATION.

J = SJ [(%h)s[Y(e,x,y*),X''l'*''''*]J[(o/OA.)s[Y(e,x,Y*),X''l'*,A,*]1 'dP(e)
1. e

P = -S S (o2/0A.OA. / )s[Y(e,x,y*),X''l'*,A*] dP(e)
1.e -

Jn0..) =

Pn(A) = .
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I * * * *ASSIlMPTION 6 . There are open spheres r , T , and A with y* erer , A
* * * * 2T eTc T, and A e A C A' The elements of (O/OA)S(y,x,T,A), (0 /OAOA/)S(y,x,T,A.) ,

(o2/0TOA/)S(y,X,T,A), and C(%).,)S(y,x,T,A)]' are continuous and
-* -* -*dominated by b[Q.(y,x,y),x] on lj x X, x r x T x A where the overbar indicates the

closure of a set. Moreover, p is nonsingular and

J dP(e) = 0 ,
e

J J dP(e) = 0 .
x,e

The first integral condition is that the expectation of the "score" is zero.

It is central to our results and is apparently an intrinsic property of reasonable

estimation procedures. The second integral condition is sometimes encountered in

the theory of maximum likelihood estimation; see Durbin (1970) for a detailed

discussion. It validates the application of maximum likelihood theory to a sub-

set of the parameters when the remainder are treated as if known in the

but are subsequently estimated. The assumption plays the same role here. It

can be avoided in maximum likelihood estimation at a cost of additional complexity

in the results; see Gallant and Holly (1980) for details. It can probably be

avoided here but there is no reason to further complicate the results in view of

the intended applications.

Consider the verification of the integral conditions for the example with
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Now
(O/OA)S2(y,X,T'A*) = f(x,;") ,

(o2/oTo)!)s2(y,X,T'A*) =(-1/T2)CY(e/T) + f(x,)...) •

Both Y(e/T) and y'(e/T)(e/T) are odd functions and will integrate to zero for

symmetric P(e). Thus, both integral conditions are satisfied.

THEOREM 3'. (Asymptotic Normality of the Scores) Under Assumptions 1

through 6'

J may be singular.

THEOREM 4'. Let Assumptions 1 through 6' hold. Then

,r.:(A *) S- . ( -1 -1)An -;.. -7 N ,

I n converges almost to J, and converges almost to •

For the example with sl(Y'x,;") defining the estimator and with Pee) symmetric

J = S y2(e) dP(e) (F'F) , = -s ,¥2(e) dP(e) (F'F)
e e

where (F'F) = S [(%A)f(x,;,,*)][(%A) feX,;"*)J'
X,

whence - N(o, ey2 (F'F)-l];n
(eY' )2

with defining the estimator
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The choice of p (u) = J,n cosh (u/2) to obtain these resu.lts for sl'ecificity

in discussing the tall 'behavior of P and IJo and to. suggest constructions of the

requisite dominating function b(e,x). Other than this, these resu.lts to aI!Y'

p (u) which. is a twice continuously differentiable even fUnction l'I"ovided that p( e)

is symmetric and that J P (e + 5) dP( e) !:las a. unique :II; nimu:n at 5 =0 •
e

A verification that Tn of the example satisfies Assumption 4',..ras promised.
,

Assume that f, 1Jo, and P are such that Assumptions 1 through 6 are satisfied for

the preliminary estimator en which :nax';mizes and take P

* * ,. *' *'symmetric so that (9 ,yO) converges almost surely to (y ,y ) and /Iit (9 yO) - (y' y )]n n . n n
is bounded in probability. Define

6(x,y,e) = f(x,y) - f(x,S)

l-n ? / /= ,. + 6(xt ,y,a) ,.1 -

= + 6(x,'(:S)/"] - ::P(e) d\Jt(x)

and recs.ll ths.t solves (,.,yO,8 ) = 0 for a = \,!2(e) di(e) Both q) 3.ed
:J. !l nn . Ii n

*' *' *' *'strictJ.y decres.si:lg functions or:' ,. and there is 3.,. !t1ithq;(,.· ,y' ,y') = 0 .



e B7 Theorem 1 anc1 the almost sure convergence of , given c >0 there is an

( * 0 "') (* 0'"N such that n > Ii implies "n 'I" + C, Yn ' Sn <·CIh 'I" - C, Yn ' Sn) tor almost every'

* ... * '" *reaJ.ization. Thus 'I" -. < 'l"n < 'I" + c whence 'l"n converges almost sure.4r to 'I" •

Applications of theoren and Theorem 1 yield

and

+ ( .(a/aS) Jii"Csn

+ (Co/as) ;C'I"*,y*,y*) + O's(l)] JIiCsn •
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,
The resuJ.ts on inference in Section 4 may be used in conjunction with

the resuJ.ts of this section by substituting

as defined in this section for the definitions of Section 3. For the

notation in connection with Theorem 7, substitute

NOTATION

,fJ = e.
x 'dP(e)

= dP(e)e. .
va = -lof ) -1



7. EXAMPLES

Robust Nonlinear Regression

Recent literature:

Balet-Lawrence (1975), Grossman (1976), Ruskin (1978)

Model:

et symmetrically distributed

Objective function:

= p[Yt - f(xt,e)]

e =
p(u) an even function with p(O) S p(u)

Asymptotic distribution parameters:

J = e'i'2(e)(F /F)

9 = e'i' I (e) (F 'F)
F/F = J (%e)f(x,e*)(%A / ) f(x,e*)

X
'i'(u) = (d/du) p(u)

'i"(u) = (d/du) 'i'(u)

45



Iteratively Rescaled Robust Nonlinear Regression

Model:

et symmetrically distributed

Objective function:

p (u) an even function with p (0) S P(u)

,JiiC'T - T*) is bounded in probabilityn

Asymptotic distribution parameters:

J = (1/T*)2

9 = (1/T*)2

F'F = j (%e)f(x,el(%e') f(x,elX .,
= (d/du) p(u)

= (d/du)

46



Single Equation Nonlinear Least Squares

Recent literature:

Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b)

Model:

Yt = + et
2 2e(et ) = 0, e(et ) = 0

Objective function:

= s
Jii(T - 0

2) is bounded in probabilityn

Asymptotic distribution parameters:

47

J = = a-2S (%e) f(x,S*)(%S')
1

V = J-l

Comment:

J =

*f(x,S) d\JI(x)



Multivariate Nonlinear Least Squares

Recent literature:

Malinvaud (197Ob), Gallant (1975c), Holly (1978)

Model:

Objective function:

A= e
is bounded in probabilityn

Asymptotic distribution parameters:

J = = = S[(%e')
1

V =

Comment:

48



Single Equation Maximum Likelihood

Model:

Objective function:

F'F = S (%S)f(x,if)(%S') f(x,e*) dlJo(x)
1.

f =S (%S) dlJo(x)
1.

Comment:

For any hypothes is of the form h(S) = 0, INH' = HgH' . Under normality,

c:9 =p .
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Multivariate Maximum Likelihood

Recent literature:

Malinvaud (197Ob), Barnett (1976), Holly (1978)

Model:

Objective function:

A= (a' ,0')'

0' = (011 , 0'12' .•• , O'lM' 0'2M' .•. , 'i1M), upper triangle of x:

vee( t) = Ar:J, A an M2 x M(M + 1)/2 matrix of zeroes and ones

Asymptotic distribution parameters:

!f,x:-le[e ® )

tA'(x: ® ® x:)-lA

o )
= J d\.L(x)

I
= (%e') r(x,e*) d\.L(x)

I
® x:) = (x:* ®

Comment:
For any hypothesis of the form h(e) = 0, HVH' = • Under normality,
J = t? •
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