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ABSTRACT

The majority of the estimators which have been proposed for nonlinear
econometric models are cbtained as the solution of an optimization problem.
Examples include single equation nonlinear least squares, minimum distance
and maximum likelihood estimators for nonlinear multivariate regression, and
two-stage least squares, three-gstage least squares, and maximum likelihood
estimators for nonlinear simultaneous systems of equations. In the paper, an
optimization problem is proposed which encomposes all of these examples. The
almost sure limit and the asymptotic distribution of the solution of the
optimization problem are found for data generated according to the general
nonlinear model q(y,x,y) = e . The majority of the inference procedures used
with nonlinear models may be obtained by treating the objective function of
the optimization problem as if it were the likelihood and deriving the Wald
test étatistic, the likelihood ratio test statistic, and Rao's efficient score
test statistic. The null and non-null asymptotic distributions of these
statistics are derived. To obtain an asymptotic theory for a nonlineaf model
with these results, the appropriate objective function is ldentified and the
asymptotic theory cbtains at once by direct computation; several examples are
included in the paper. Since the model which motivated the optimization
problem need not be the same as the model which generates the data, these
results may be used to cbtain the asymptotic behavior of inference procedures

under model misspecification.



The Hartley-Booker (1965) estimator is, to our best knowledge, the
‘ first use of the method of moments per se in nonlinear statistical models.

Their method was proposed for the univariate response nonlinear model
*
Y-t = f(xt,e ) + et

where e* is an unknown p-vector. The space L of possible values for the

seguence {xt} is divided into p disjoint sets Ii . The moment equations

’ zxtcliyt B zxtcxif(xt’e) i=1,2,...,p

are computed and solved to cbtain an estimator 8. They used it és the first

step of a scoring method but we consider it as an estimator in its own right.

Prom our point of view, a handier notation results by letting

zZ, = e, if x XL,
‘ t i g &
whers e, is the i-th elementary p-vector. The moment equations are now
written as

mn(e) = (l/n) ﬂ;l zt]:yt - f(,Xt,S)] .

The Hartley-Booker estimator is, then, the solution of mn(e) = 0,
A problem with this approach is that the equations mn(e) = 0 npay act

have a soluticn. This problem is eliminated by defining é t0 be the meximum cf
= L !
5,(8) = -3 m/(8) m,(8)

That is, redefine the estimator as the solution of an optimization prcblenm
whose first order conditicns imply :nn(e) = 0 when the mcment equations can
be solved.

This formulation of the Hartley-Booker estimator eliminates the need tc

restrict the number of disjoint subsets of X to exactly p. The vectors .



- of the moment equations

m (8) = (/n) ., z,[y, - £(x,,8)]

may have length greater than p. But in this case, one can argue by analogy
to generalized least squares that an optimization problem with cbjective

function

(5,(8) = - m!(8) [(3/0) £ z,2/1"m ()

will yield more efficient estimators. One notes tﬁat this is the optimization
broblem which défines the two-stage nonlinear least-squares estimator
(Amemiya, 1974). Only the restriction that zt be chosen according as xt e Ii
or not prevents the modified Hartley-Booker estimator from being properly
considered a two-stage nonlinear least-squares estimator.

These remarks motivate a general definition of the method of moments
estimator. To permit consideration of iteratively rescaled estimators such

as three-stage nonlinear least squares, both the moment equations
n ~

m (M) = (1/n) g_; m(y,,x T 5
and the objective function

s, (M) = dlm (N),7,]
of the optimization problem are permitted to depend on a random variable
;n via the argument r in m(y,x,r,\) and in the distance function d{m,r] .

In this  paper, the asymptotic distribution of an estimator defined as

that Xn which maximizes sn(k) is found for data generated according to the

multivariate nonlinear model

]
q.(y.t ?Xt Nn) = e't




Then sn(l) is treated as if it were the likelihood for the purpose of‘
deriving the Wald test statistic, the likelihood ratio test statistic, and
Rao's efficlent score test statistic. The null and non-null asymptotic
distributions of these statistics are derived.

Estimators which are properly thought of as method of moment estimators,
in the sense that they can be posed no other way, are: The Hartley-Booker
estimator - Hartley and Booker (1965). Scale invariant M-estimators -
Ruskin (1978). Two-stage least-squares estimators - Amemiya (197h4).
Three-stage least-squares estimators - Jorgenson and Laffont (1974), Amemiya
(1977), Gallant and Jorgenson (1979).

A second group of estimabtors, termed M-estimators here, are of the form
A, meximizes sn(k) = (l/n)z€=l s(yt,xt,Tn,k) .
They can be cast into the form of method of moments estimators by putting

m (W) = (1/)5_; (3/3M)s(y, %, > »3)

and d[m,r] = -2 m’m . This second group is: Single equation nonlinear least-
squares - Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b).
Multivariate least-squares - Malinvaud (1970b), Gallant (1975c¢), Holly (1978).
Single equation and multivariate maximum likelihood - Malinvaud (1970b),
Barnett (1976), Holly (1978). Maximum likelihood for simultaneous systems -
Amemiya (1977), Gallant and Holly (1980). M-estimators - Balet-Lawrence (1975),
Grossman (i976), Ruskin (1978). Iteratively rescaled M-estimates - Souza and
Gallant (1979).

If one's only interest is to find the asymptotic distribution of the esti-
mator, then posing the problem as a method of moments estimator is the MOre

convenient approach. One pays two penalties. The first, the problem is no



longer posed in a way that permits the use of the likelihood ratio test.

The second, the consistency results are weaker. With the method of moments
approach one can prove the existence of a consistent estimator which solves
(a/ax)sn(x) = 0. With the M-estimator approach, one can prove that that

in which maximizes sn(x) converges almost surely. For the reader's convenience,

we include a préeis of these stronger results.




2. PRELIMINARIES

The M=-variate responses ¥, are generated according to
Q.(y.bsxt:\(;> = et t = l’ 2, LY n

withx eX, v e, e &, and y; ¢ T . The sequence {yt} is actually
doubly indexed as {ytn} due to the drift of y; with n; the sequences {et}
and {xt} are singly indexed and the analysis is conditional on {xt} throughout.

Assumption 1. The errors are independently and identically distributed

with common distribution P(e) .

Obviously, for the model to make sense, some measure of central tendency
of P(e) ought to be zero but no formal use is made of such an assumption. If
P(e) is indexed by parameters, they cannot drift with,sam‘ple size as may y; .

The models envisaged here are supposed to describe the behavior of a

physigal, biological, economic, or social systemf. If so, to each value of

- (e,x,vy°) there should correspond one and only one outcome y . This condition

and continuity are imposed.

Assumption 2. For each (x,y) ¢ X X I the equation q(y,x,y) = e defines

a one-to-one mapping of & onto Y denoted as Y(e,x,y) . Moreover, Y(e,x,y) is
continuous on.a XL xT.

It should be emphasized that it is not necessary to have a closed form
expression for Y(e,x,y), or even to be able to compute it using numerical
methods, in order to use the statistical méthods set forth here.

Repeatedly, in the sequel, the uniform limit of a Cesaro sum such as
(l/n)z,’g:lf(yt,xt,y) is required. In the nonlineé.r regression literature much
attention has been devoted to finding conditions which insure this behavior

yet are plausible and can be easily recognized as obtaining or not obtéining
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in an application (Jennrich, 1969; Malinvaud, 1970a; Gallant, 1977; Gallant
and Holly, 1980). Details and examples may be found in these references; ‘
we follow Gallant and Holly (1980). |
Definition. (Gallant and Holly, 1980) A sequence {vt] of points from
a Borel set ¥ is said to be a Cesaro sum generator with respect to a probebility
measure vV defined on the Borel subsets of ¥ and a dominating function v(v)

with jb dv < @ if

J&imn*n(l/n) Z:____l f(vt) = ‘ff(v) dv(v)

for every real valued, continuous function f with |£(v)| < b(v) .

Assumption 3. (Gallant and Holly, 1980) Almost every realization of

{vt} with v, = (et,xt) is a Cesaro sum generator with respect to the product

measure v{A)

j‘ j‘ IA(e,x) dP(e) dw(x) and a dominating function b(e,x) . The
Xe

sequence {xt} is a Cesaro sum generator with respect to u and b(x) = f b(e,x)dP(e) .

For each x ¢ X there is a neighborhood N_ such that f suRy ble,x) dP(E) < = . .

' = e x

Theorem 1. (Gallant and Holly, 1980) Let Assumptions 1 through 3 hold. Let
£(y,x,p) be continuous on Y X X X K where K is compact. Iet |£(y,x,p)|la(y,x,y),x]
for all (y,x) ¢ Y XX and all (p,y) in K X A where A is compact. Then both

n ‘ .

(1/n) :,c=lf(yt,xt,p) and (1/n) ilfgf[Y(e,xt,y),xt,p] dP(e) converge uniformly
to

Y(e,x,v),x,p] dP(e) d
fxfafﬂ( x,v),%,p] dB(e) du(x)

*
except on the event E with P (E) = O given by Assumption 3.

In typical applications, a density p(e) and a Jacobian

I(y,x,v°) = (3/3y Naly,x,x°)

are available. With these in hand, the conditional density

P(yxxa‘(o) = ‘det J(Yaano)!:g:Q.(yaano)]



mey be used for computing limits since

[ ] fy(e,zy°)sx,y] aP(e) du(x) = [ [ £(y,xy) ply|xy°) dy dnlx) .
x'e Ly

The choice of integration formulas is dictated by convenience.



3. METHOD OF MOMENTS ESTIMATORS

Consider the moment equations
m () = (1/n)Ep_; mly,x,,7,,0)

where ;n is a random varisble with almost sure limit 7~ . Suppose that

there is a natural association of A toy, say A = g(y) , which solves
f mEY(eyan):X:T*:X] dP(e) =0,
(o .

for all x. The classical method of moments procedure is to equate sample

moments to their expectation

m (A) =0

and solve the equations for A. These equations may not have a solution. To
eliminate this problem one may reason by analogy with regression methods and
maximize, say, -= mé(k) mn(X) to find an estimator. In general, consider ih
maximizing

d[mn(x)a Tn]
where d{m,r] is some measure of distance with dfo,t] = O and dm,r] < O for

m % O. The constrained method of moments estimator'xn is the solutian of

the optimization problem

Maximize: dlm () ,7,] subject to h(A) = O




The assumptions are somewhat abstract duée to the scope of applications
envisaged. As a counterbalance, an example is carried throughout this section.
The best choice of an example seems to be a robust, scale-invariant, M-

estimator for the univariate model -
= °) +

due to both its intrinsic interest and freedom from tedious notational details.
The error distribution P(e) for the example is assumed to be symmetric

Wi‘bh‘f |e|aP(e) finite and ‘r e2dP(e) > 0. The reduced form is
e e
Y(e,x,y) = £(x,y) + e .

Proposal 2 of Huber (1964) leads to the moment equations

¥{ly, - £(x;,8)1/0} (3/28) £(x,,0)

(\) = (1/n)z
m n)Se; Yz{tyt- £(x,,6)1/a} - 8

with A = (¢,¢). For specifity let
¥(u) = 3 tanh (u/2) ,
a bounded odd function with bounded even derivative and let
2 "
B=[¥(e) aa(e) .

There 1s no previous estimator ;n with this example so the argument r of

m(y,x,t,\) is suppressed to obtain

¥{{y - £(x,8)1/0}(3/38) £(x,8)

(Y, 3>\) =
e Ly - #(x,8)1/a) - 8
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The distance function is

d(m) = -3m'm ,

again suppressing the argument » , whence the estimator in is defined as

that value of A\ which maximizes
s,(A) = -2 (M) m (N) .
Notation
m () = (1/n) Z_im(yy,x,,7 A)

i("{y"'»x) = IIJ‘EWEY(39X:Y)3X3T:>\] dP(e) du(x)
s (0) = dlm_(0),%]

s(y,m,A) = dlmly,T,0) 1]

The identification condition is

*
Assumption 4. The sequence y; converges to a point v . The sequence

7, converges almost surely to a point +* and "/E(;n - 1) is bounded in probability.

There 1s an association of \ to y , denoted as \ = g(y) , which satisfies

my,t ely)] =0 .

°o _ o : o a¥y _ * _ * .
The sequence A} = g(yn) has zugaqﬁdﬁ(kn - N ) =06 where \" = g(y") and § is
* ,
finite. The constraint h()\) = O is satisfied at A\ .
For the example, let g solve f Ye(e/c) dP(e) = 8, a solution exists
&
since G(g) = 1- f ¥(e/a) dP(e) is a continuous distribution function if P(e)
E

does not put all its mass at zero. Define g(y) = (y,g*) . Then
j‘ m-Ee + f(X,‘Y),X, (v,c*)] dP(e)
e

Ie ¥(e/s") aP(e) (3/3n) £x,y)

ngz(e/d*) dP(e) -~ B

(9




As the integral is zero for every x, integration over X with respect to u

. must yield .
- 0
m[‘Ysg('Y)j = (O.)

as required by Assumption k.

Notation

S = J‘I‘remEY(e’x,Y*) 3x:T*3)\*] ml[Y(e,X,Y*),X,T*,)\*] dP(e) dp,(x)

M

- yIJ"&(a/awth(e,x,y*),x,T*,x*j aP(e) du(x)

D

(3°/amdm’) a(0,7)

S,(\) = (1/n)Z_im(¥y %, T 50 m'(yy,%, 7 ,0)
M (M) = (/)5 (3/aM aly, »x,,7 )

® p,(\) = (3%/emém’) alm (),7 ]

d=M'DSDM
g=-MDM

I, (N = (\) D () s (W) D (A) M (N)
g, (0) = M(W) D_(A) M_(A)

5= (3/30') n(0")

5O = (3/o0') B(X)

For the example, direct computation yields



[ ¥P(e/d") ar(e) F'F 0

5§ = © 2 * 2
0 j‘e[*f (e/e”) - B8] dP(e)
YL ~(3/a")[ ¥'(e/a") az(e) F'F 0
0 ~2(1/0")? J (/") (/) & a(e)
D= I
where

FF

= [ (3/20) £(x,8) (3/28") £(x,0) dulx)| -
T | gy

This computation exploits the fact that Y(e/g*), e are odd and ¥’(e/d*) , Yz(e/c*)
are even. If P(e) does not put all its mass at zero and F’F is non-singular

then S8, M, and D have full rank by inspection.

¥* *
Assumption 5. There are bounded, open spheres I'y T, A containingy , T, x*

for which the elements of m(y,x,T,\), (3/3a, ) m(y,x,m5A) 5 (az/axiaxj) n(y,%,7,N)
are continuous and dominated by bla(y,x,y),x] on Y XL x T x A X T ; b(e,x) is
that of Assumption 3 and the overbar indicates closure of a set. The distance
function d(m,t) and derivatives (3/3m) d(m,«~), (Bz/am 3m’) d(m,r) are continuous
on & x T where & is some open sphere containing the zero vector. The constraining
function h(\) and its derivative H(\) are continuous on A . The matrix D is
negative definite,v(a/am) d(0,7) = O for all v, and M, H have full rank.

To illustrate the construction of b(e,x), consider for the example

oy @zl = |y - £(x,8)1/a}] -[|(3/30) £(x,8)]|

< [|(3/28) £(x,8)l)

because |¥(u)| = |% tanh (u/2)| £ 4 . What is required then is that




‘supeH(a/aa) £(x,8)|| be integrable with respect to w . Or, since A is compact,
(3/38) f(x,8) continuous in (x,4) end ¥ compact would bound Il (3/38)£(x,0)|| in
which case bi(e,x) = const. One accumulates bi(e,x) in this fashion to satisfy
the assumptions. Then b(e,x) of Assumption 3 is b(e,x) = z‘bi(e,x) . Because
¥(u) and its derivatives are bounded, this construction of b(e,x) is not very
interesting. More interesting, and detailed, constructions are given in

Gallant and Holly (1980).

Theorem 2. (Consistency) Let Assumptions 1 through 5 hold. There is a
+ *
sequence {in} such that for almost every realization of {et}’zimnamxn = A and
there is an N such that (3/3)\) sn(in) = 0 for n >N. Similarly, there is a

~ . . ~ . o a%
sequence Xn and associated Lagrange multipliers en such that Zlmnamxn = A

and (a/ax)[snﬁi;) +'§£hfxn)] =0, h(x;) =0 forn>N.

Proof: The result will be proved for ?; . Fix a sequence {et} * E, this
fixes. ?-n. '

(3/3rg) s, (M) = £ (3/3m) alm (A),m 1(3/30 m (M) ,

(F/ar2a0) s, () = 5,7,(%/am 2my) alm, (M), 7, 1(3/0h; Im (M) (3/3h mg ()

+ 2, (3/am )alm, (1), 7, 1(3%/3M 30 ()

The assumptions suffice for an application of Theorem 1 and the conclusion that

mn(k), (a/axi) mn(k), and (ag/axiaxj)mn(x) converge uniformly on A to

-, % % -, ¥ * 2 =, ¥ ¥ . .

m(Y > T QX) ) (B/Bkl)m(v s T ,K) , and (a /Bklaka)m(v 5T ,>\) ;3 Tthe domination
required to apply Theorem 1 permits the interchange of differentiation and
integration as needed. Since ﬁ(y*,w*, X*) = 0, one can shrink the radius of

A to A! so that mn(k) e & for all A ¢ A’ and n suitably large whence sn(k) s



1k

' (a/ax)sn(x) and (aa/axax')sn(x) converge uniformly on A’ %o E(y*,»r*,x) s

-, % ¥ 2 N o=, ¥ ¥ s .
(3/3\) s{y",7 LA) , and (3%/3%d\’) s(y »7 »\) respectively. As
* - *
(3/am) a0, 1= 0 and (3%/2mdm’) d[0,r ] is negative definite, (3/3A)E(y 7 s\ )=0
2 - ® ¥ Ry . e - X .
- and (3°/aMN)s(y >t ,A ) is negative definite. Thus, one mey shrink the radius
- * *
of A/ to A” so that S(-y*,'\' sA\) has a unique maximum at A\ = A on A"
Let "Kn maximize sn(k) subject to h(\) = O and A ¢ A” . Now h(0\*) =0
and sn()\.) converges uniformly to ;(‘Y*,T*,}\) on A" so that for large n the
solution 'Xnﬂcan.not lie on the boundary of A” . The existence of the Lagrange
multipliers and satisfaction of the first order conditions follows.
As A" is compact, 'Xn has at least one limit point }:; let Kn converge to

m
A . Then, by uniform convergence,

- * o
S('Y*:T :A)

. o ~ ~
'q'mn—)co.sn (Yn 5 Ty 2 >‘n )
m m m m

o ~ *
neeosn(yn"rn’;\')
m m

2 4im

5('\(*7 T*: K*) .

* - . *
But A is the unique maximum of s(y*, r\-*, A) on A whence A=\ . ]
One may note that the domination in Assumption 5 suffices for several

interchanges of integration and differentiaticn. One consequence is that
- * ¥
M= (3/aN) mly*,7 ")
oo % % '
whence, since m(y ,t ,A ) = O and (3/3m)d(0,r) = 0,
L=, ¥
g = -(52/37\57\’)3(‘Y ,T*,)\*) . )

Assumption 6. The elements of m(y,x,7,\) m'(y,x,7,\) and (3/3)m(y,x,v,\)

are continuous and dominated by bla(y,x,y),x] on Y Xx X X T x A X T'; ble,x) is
that of Assumption 3. The elements of (?/B'ram')d(m,q—) are continuous on @ X T

where & is some open sphere containing the zero vector



J‘em[Y(e:x:Yon):xsT*:)\;] dP(e) =0

j'xj‘e(a/a-r')mCY(e,X,v*),x,'r*,k*'_\ ap(e) au(x) = 0 .

The first integral condition is central to our results and is apparently
an intrinsic property of reasonable estimation procedures. It was verified
for the example as an intermediate step in the verification of Assumption L.

The second integral condition is sometimes encountered in the theory of
maximum likelihood estimation; see Durbin (1970) for a detailed discussion.

It validates the application of maximum likelihood theory to a subset of the
parameters when the remainder are treated as if known in the derivations but
are subsequently estimated. The assumption plays the same role here. It can
be avoided in maximum likelihood estimation at a cost of additional complexity
in the results; see Gallant and Holly (1980) for details. It can prdbably be
avoided here but there is no reason to further cémplicate the results in view
of the intended applications. For the example, there is no dependence on ~
hence nothing to verify. Had an iteritively’rescaled estimator been considered,
n(y,x,7,A) = ¥{{y - £(x,08)1/+3(3/38)f(x,8) with ;n supplied by a previous Fit,
the condition would have been satisfied as the off-diagﬁnal corner of our
previously computed M is zero fér any c* . |

Theorem 3. (Asymptotic Normality of the Moments) Under Assumptions 1
through 6

B m_(02) 2> 1(0,8)
Jon () e m(ae s, 8)

S may be singular.

Proof. Given 4 with HZH = 1 consider the triangular array of random

variables
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M _
Zy, = z’m[Y(et,xt,y;),xt,'r ,X%] t=1l, oo, n3n=1,2, ... . '

Each Z,_ has mean, ‘f Z, (e) dP(e) , zero by assumption and variance
tn e tn

2 . * *
ctn = LlfemEY(e,xt:'Yon) ’x‘b’T ’)\;] m'[Y(e,Xt,-Y;),xt,T ,)\on] dP(e)Z .

*
By Theorem 1 and the assumption thet Lim  (v2,2) = (v¥,A") it follows that

. = ?
ﬂmw(l/n)vn 4's 4 where

Vn = Zf;lcin

. . . _ n
Now (1/n)V, is the variance of (1/J£)z€=lztn and if £54 = O then (L/VR)E,_ 2,
converges in distribution to N(O,E’SL) by Chebyshev's inequality.
Suppose, then, that £8¢4 > 0. If it is shown that for every &0

‘elmn—ann = 0 where

B_= (1 I | (z 72 aP(e
g = /n)Z:___l_fa eledt) en(®) 12, () aP(e)

then Limn_m(n/vn)Bn = 0. This is the Lindberg-Feller condition (Chung, 1974);
it implies that (1./A/E)zf;'=lz,Gn converges in distribution to N(0,254) .

- *
‘Let N> 0 and ¢ > O be given. Choose a > O such that B(y™,\ ) < /2 where

é( *:x*) = I fo'nlY €,X, *)9 s *J)\*
Y fm‘re E|Z\>ea]{ (e52,y )zt ;0 1)

X {2 ,mEY(e,X,Y*),X,T*,)\*]}z dP(e) du«(X)

- ¥ ¥ ' : '
This is possible because B(y ,\ ) exists when a = 0. Choose a continuous

such that, for all n > N

function ¢(z) and an N 1

1

z) < w(z) I z
L\Z‘>ea]

I (
Hz‘>eﬁn]

and set




B (vs\) = <1/n>z‘;Lreepu'th<e,x,y),xt,f*,.x.n
X {L’MEY(G,X,Y),xt,T*,)‘,]}zdP(e) .

% ¥ ~
By Theorem 1, 'ﬁn(y,)\) converges uniformly on ' x A to, say, B(y,\) . By
* * ~ * %
assumption zimmm(y;,)\;) = (y ,A ) whence ziman(y;,).;) = 'ﬁ‘(y oA ) . Then
*
there is an N, such that, for all n >N, , B (v2,02) <B(y",A") + n/2 . But,
for alln>N = ma.x{l\ll, 2}’Bn < %‘n(y;,)\;) whence

~, ¥ _* -, ¥ %
ani‘a‘n(y;,x;) <Bly ,A)+n/2<sBy ,\)+n/a<sh .

Now :rn is tail equivalent to a sequence contained in T. Thus, without
loss of generality ;n may be taken to be in T and Taylor's theorem applied to

obtain

(VR B2y = (LB B gy sy 7505
+ [(L/0) (3/30" )8 B m( s, 57 A WR(T - 1)

- * ~ *
where H'rn- T H = H'rn -7 H « By Theorem 1, the almost sure convergence of "'rn s
~ *

and Assumption 6, the vector multiplying .“/E(Tn - ¢ ) converges almost surely to
zero. This and the assumed probabil.ty bound on A/:':'1'(:;'13 - *) imply that the
last term converges in probability to zero whence

~ L ’ . X
(l/ﬁ)z'22=lm(yt,xt,'rn,)\,;) —-> N(0,4'84) . This holds for every & with [[2|| = 1
whence the first result obtains.

0 (o A~ ¢ * ¥ % ¥

The segquence (Yn’ n’Tn’}‘n) converges almost surely to (y ,\ ,7 ,A ). It

is then tail equivalent to a sequence with values In ' X A X T X A . Without

loss of generality let (y;,kg,?n,kn) e T XAXTXA. By Taylor's theorem

and Theorem 1,

Jm (V) = am (2) + M+ o (1)] JE(- 2)
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which establishes the second result as Ja() - k;) - - § by assumption. []

Then ‘l'

Theorem 4. Let Assumptions 1 through 6 hold.
J/20Ns (V)2 N7 5, 9)
iR - A B e, g g

Jn(in) converges almost surely to J and 9n(in) converges almost surely to ¢ .
~ -~ »* * *
Proof: By the almost sure convergence of (y;,k;,rn,xn) $0 (y SN 5T 5N ),

tail equivalence, Taylor's theorem, and Theorem 1
(/208 (N) = JB(3/3Mm) (N) (3/am)alm (M), 7]
= VLM + o (1))((3/3m)a(0,m) + [-D + o (1)] m (A"))

= [M+ o (1)][-D+ o (1)] ¥ m (")

The first result follows from Theorem 3.

By the same type of argument

J(a/aNs, (X) = Ja(/ANs, () + [ 7+ o (DWER, - ¥ .

L}

By Theorem 2

0,(1) + [ g+ o (1)] A, - \)

and the second result follows from the first.
By Theorem 1 and the almost sure convergence of (y;,xg,;n,in) to
SR S a - o
(v 5A 7 ,A ) it follows that [Sn(kn), Mn(kn), Dn(kn)] — (8, M, D) whence
(3,005 2,001 (8, 7).
To obtain results for estimation one holds y; fixed at y* « Then for

--theée example




5 -yt o\ [("°eR (/) @m0
g [ey’(e/d*)
& = /e (") erPle/d®) - 572
3 -a 0 o b [ee¥(e/a™)¥(e/c*)]

The variance formula
7% g7 s u'pM)twdDs o M) D u)t

is the same as that which would result if the generalized least squares estimator
8= o) MDy
were employed for the linear model

y=MB + e, e~(0,S) .

Thus, the greatest efficiency for given moment egquations results when D = S'l .
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4. TESTS OF HYPOTHESES

Tests of the hypothesis

H: h{()°) = 0 against A: h(N°) £ 0

are considered here. A full rank assumption is imposed below which is not
strictly necessary. However, the less than full rank case appears to be of
no practical importance and a fﬁll rank assumption eliminates much clutter
from the theorems and proofs.

Notation:

A, meximizes s (A)

X, meximizes s () subject to h(A) = 0
3 = Jn(xn)’ 3 = Jn(xn)

2= ?n(in), 7= ?q(’xn)

“l, =1 8 _ aela ael oy meley
V=239 ,V=J Jyl,v=313?-l.

H(A) = (3/3\') n(A) (the Jaccbian of h of order r x p)

n=n(\), B=n{), ¥=nk) ,
H=20), B=8R), ¥=8X)

Assumption 7. The r-vector valued function h()\) defining the hypothesis
(3/37")n(\) ;

H: n(\°) = O is continuously differentiable with Jacobian H()\)
* - -

H(A) has full rank at A = A . The matrix V=79 l& g L has full rank. The

statement "the null hypothesis is true" means that h(k‘;l) = 0 for all n.

. Theorem 5. Under Assumptions 1 through 7 the statistics

Wenn'(R)ER) ™ @) |
R=n{(3/0M)s, (31T TR ATVEN)RY L a/an)s ()]

converge in distribution to the non-central chi square distribution with r degree‘



of freedom and noncentrality parameter o = §'H'(H V H')-lHé/a . Under the
null hypothesis, the limiting distribution is the central chi square with »
degrees of freedom.

Proof. (The statistic W) By Theorem 2 there is a sequence which is tail
equivalent to in and takes its values in A . The remarks refer to the tail
equivalent sequence but a new notation is not introduced. Taylor's theorem

applies to this sequence whence
‘ Lo (R) - 0, (A1 = @/ In (R WB(R, - X)) 1=1,2, ooy x

where Hxié -\ = Hin -2l . By Theorem 2 aim IR, - Al = 0 almost surely
whence Limnew(a/BX)hi(Xin) = (a/ax)hi(x*) almost surely. Now, in addition,

h(k*) = 0 so the Taylor's expansion may be written h(in) = [H + os(l)}dﬁ(in- ) .
Then by Theorem L th(Xn) has the same asymptotic distribution as HJE(in -V .

Now (B ¥ ﬁ')-% exists for n sufficiently large and coanverges almost surely to

(L v H')-% whence (H V fx')'*%/ﬁ h(in_) and (HV H')'%HJE ('}ln- \') have the same

asymptotic distribution. 3But
l"'L ~ * S: __1.
(EvVE)ZER (A, - V) > MEVE)ES, 1]

whence W converges in distribution to the non-central chi-square.

When the null hypothesis is true, it follows from Taylor's theorem that
_ o Fya ’ Y o _ 3 ¥
Taking the limit as n tends to infinity this equation becomes
*
0= (a/ax')hi(x )8 whence H§ = O and ¢ = O .

(The statistic H) By Theorem 2 there is a sequence which is tail equivalent
to ?£ and takes its values in A . The remarks below refer to the tall eguivalent

sequence but a new notation is not introduced. By Taylor's theorem



ac

(3/2hy)s (X)) = (3/2n)s (A) + [(2B/anan)s_ (K, )17 (K- %)

n(X) = by (W) + [(3/aa)n, (R, IR, - X

where %, - A7, Iy - NIR, - A fori=1,2, ..., p

j=1,2, .., *. By Theorem 2 there is for every realization of {et} an N
such that h(xn) =0 for all n >N . Thus h(xn) = os(l/JE) and recall that
h(x*) = 0 . Then the continuity of H(\), the almost sure convergence of'xn
to X* given by Theorem 2, and Theorem 1 permit these Taylor's expansions to

be rewritten as -

(3/aM)s, (%)) = (3/a0)s (A7) = [g + o (IR, - V)

(8 + o (IR, - M) = o (3/4B) -

These equations may be reduced algebraicly to

[+ o (1)Lg + o (1)1 (a/a0)sy (X)) = [H+ o (1)I0g + o (1)17H(3/2M)s (N )+ o_(1/y) .

Then it follows from Theorem 4 that

(2 + o (1)]g + os(l)]‘lﬁ(a/ax)sn('xn)-é N(H 5, HV H') .

The continuity of H()\), Theorem 2, and Theorem 1 permit the conclusion that
I P | ~ L L
@YR)ZRT /aGR/ANs (R )= M (HV &)™ 6, 1]

whence R converges in distribution to the non-central chi-square.




This completes the argument but note for the next proof that
-1 ~ oy L ’
H g ﬁ(a/ax)sn(xn)—-» NHS HVH) . [
Theorem 6. Under Assumptions 1 through 6 the statistic
L= -2n[s (X)) - s ()]

converges in distribution to the law of the quadratic form Y = Z’ 3 Z where Z

is distributed as the multivariate normal
7~ Mg m (g~ ) s, g m (ag )" ) (st e

If 3 = 7 then Y has the non-central chi-square distribution with r degrees of
freedom and non-centrality parameter o = §'H’(HVH’ )-17-16/2 . Under the null
hypothesis Y is distributed as the central chi-square with r degrees of freedom
provided that d = ¢ . (HVH' = Hg-lH' will also suffice.)

Proof. By Theorem 2 there are séquences which are tail equivalent to 3“:1
and ’Xn and take their values in A%. The remarks below refer to the tail

equivalent sequences but a new notation is not introduced. By Taylor's theorem
e, (K) - 5,001 |
= -2nf (3/aM)s (R )17 (X - &) - n(R_ - &) T (3% /aan)s (X )% -%)
where Hin - iﬂ\\ < H’)Tn - anl . Theorem 1 and the almost sure convergence of

(X, %) to (A%, \") imply that {3%/aMn)s (X)) = -[g + o (1)]. Now, by tail

equivalence, -2n(3/3k’)sn(in) = os(l) whence
2fs, (X)) - 5, )1 =0k - R )Tg+ o (VIR -3 )+ o (1) .

By tail equivalence, and Theorem 2 there is for every realization of {et} an

N such that for n » N there are Lagrange multipliers en such that
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JBR/ANs, (X ) - B'R VT 8, =

Thus, ‘
[E+ o (1)1 8, = J/a(3/aM)s (R)) + o (1)

by a previous argument ﬁ(a/aX)sn(Xn) = os(l) whence
= /2 (3/a)s,(R,) - Ju(3/aM)s(R) + o (1)
by Taylor's theorem and previous arguments
=7+ o, (M1/EG - %) + o (1)
From this string of equalities opne has

€ g7HE + o (DIWT 8, = /T 87-(3/3M)s, (X)) + o (1)

whence by the last line of the previous pi'oof

Hg7m+ 0 (1)1WT 8, L, w(ms, wvoa’) .

JT oo % m ) s, () HavE) e
Again from the string of equalities one has

g'JtH + osu.)w? 8,29 7 + o (1)1 /T(5,-%) + o (1)
whence

JEG ) Mgt () bas, g5 (e~ ) tam ) (e tm g

Then ./ n (Xn - )‘n) converges in distribution to the distribution of the random

variable Z and A/z:L('):n-A)l'n) = OP(J.) . From the first varagraph of the proof,

2nfs, (X)) - s, (A )1 =a(R_-X)Tg + os(l)](in -%) * o (1)

n(h, -%) 3R, -X)) + 0p(1) o (1) 0(1) + o (1) .

If'J=}thenV=}'l and , .



z ~ Mgt (mg ™) s, g7 MH (g E) e

The conclusion that ¥ is chi-square follows at once from Theorem 2 of Searle
(1971, . 57). 0

In a typical application, A\ and t are subvectors of y or some easily
computed function of y . If y; is specified then k; and ¢g become specified.
Thus, in a typical application, (y;, T;, K;) is specified and the noncentrality
parameter o = 6'H’(HVH')-1H6/2 is to be computed. The annoyance of having to
specify (y*, . 3%) in order to make this computation may be eliminated by

application of Theorem 7.

NOTATION.
s° = (l/n>zlg=ljemEY(e:Xt:Y;) ,Xt:’f;:)w;_] ml[Y(esxt:'Y;) ,Xt,'r;,h;] aP(e)
M = (l/n)Z:;.lj'e(a/a)\')mEY(e,xt,v‘r’l),xt,r‘r’l,k;] dP(e)
° = (Bz/amam’) d(O,T;)
L = (M°)’D°s°D°W°
go = -(M°)/D°M°
v = () e e
oy = n h?’EH9V°H9’]-1h°/2

Theorem 7. Let Assumptions 1 through 7 hold and let {(y;,wz,kz)} be any

\ . * 0¥ . - *
sequence with Zlmnﬁm(V;’T;’k;) = (y*, +7, \") and lenemvh(kg -2\ )=8. Then

. (o] -
Lim @

Proof. By the continuity of H(A), Theorem 1, and the assumption that

& .

pin_ (v25 12, 02) = (v, 75 NF) 1t follows that Lin_ [HOS)WH/(A2)]1 7= (avE’)™ .

By Taylor's theorem
VB 0, (02) =y (42) - by (W) = [(3/aM), (R, )TWVRGS, - A7)

where |[%, - A< ) A - A|| for 1=1,2, ..., r. Thus, gin o n(X) =8 .
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Scale Invarisnt M-Estimators

Recent literature:

Ruskin (1978)
Model:
' *
vy = £(x,,87) + e ]
e is distributed symmetrically about zero
Moment equations:
¥y, - £(x;,8)1/a} (3/28) £(x,,0)
iy, - £(x,,8)1/c} - 8

A= (6',0') !

¥Y(u) is an odd function, 0<g<1l.

Distance function:

d(m) = -3m'm

Asymptotic distribution parameters:

J ¥2(e/a ) dP(e) F'F 0
g = e .
o’ [ [¥P(e/a") - 8T ar(e)
, e ,
-(1/5*)jew’(e/c*) dP(e) F'F 9
M=
0’ -z(i/c*)?f6¥(e/c*)Y(e/c*)e ap(e)
D= -I
P'F = [ (3/38) £(x,0") (3/38") £(x,8%) au(x)

& solves [ ¥(e/a) aB(e) = 8 |
. ®



\

ey’ (e/d*) P

OI

/ (6)2 e¥i(e/s) (F'F)~: 0
v

() ervB(e/a) - 872

Le e ‘l’(e/c*)“! '(e/c‘*)]2

<
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Single Equation Nonlinear Least Squares

Recent literature:
Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b)

Model:
- (<)
yt = f(XtaSn) + e‘t

ele,) = 0, (%) = (6)° | :

s)
Moment equations:
n () = (1/n)_,(3/20)2(x,,a)ly, - £(x.,8)1/7

A2 ~
e, Where e

V(T - (¢%)2) 1is bounded in probsbility, T, = (1/a) N s

t=1
are least squares residuals will suffice

Distance function:

d(m) = -Im’m

Asymptotic distribution parameters:

(2]
[}

M= (0)? ;-,“I<a/ae>f<x,é‘><a/ae'> £(x,8) du(x)

D= I

v =gt




Multivariate Nonline

Recent literature:

Malinvaud (1970b), Gallant (1975c), Holly (1978)
' Model:

[+
yt = f(x‘t’en) + e'b
ele,) =0, e(e,e!) =3
% ? it A

Moment equations:

n () = (1/n)m [ (3/20°) £(x,,0)]" £y, - £(x,,8)]

ol

T= (l/n)z:;l 'ét 43 ét are single equation residuals
A=8
Distance function:
d(m) = ~im'm
ASymptotic distribution parameters:

S

D= -I

v=s'l

M = jxt(a/ae’)f(x,e*)]’(z*)'lt(a/ae’) £(x,6 )] du(x)

ey
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Single Equation Maximum Likelihood

Model:
- Q X
Ty = £(xg:03) * ey
2 *,2
ele,) = 0, &(e,”) = ()

Moment equetions:

- £ ) 3/3 f "-
m (\) = (1/n)g; Uy~ £(x,,0)1(3/38) £(x.,8)

Iy, - £(x,,0)1° - &

A= (8 0°)

Distance function:

/

d(m) = =3m'm

l\a»—'

Asymptotic distribution parameters:

F'F 8(e3)f\
S = |
g(e3)! Var(e?)!
(57 0
M= ,
0 -1
D= I

’ p * A ! :
7’7 = [ (3/38) £(x,8 )(3/28") f(x,e+)_du(x)
X

£= J‘I(B/Be) £(x,8 ) du(x) | ' . -

2 - | -1
o [FEDT e()(F'T) e
Var(ez)

Comment :

Under symmetry 8(e3) =0 .
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Multivariate Maximum ILikelihood

Recent literature:
Malinvaud (1970v), Barnett (1976), Holly (1978)
Model:
yt = f(xt’g;l) + e't
e(e,) =0, &(e_,e!) = <*
t/ - 7 7%
Moment equations:

[(3/28") £(x,,0)1'T [y~ £(x,,0)]
m (\) = (1/n)%_; ‘
vee(ly, - £(x,,0) Xy, - £(x,,8)]" - £}

A= (8, 0"’

G’ = (cll’ T1ps O35 =wes Oqys Tgyps +oes GMI'II)’ upper triangle of ¥
2

vee(E) = A0, A an M- X M(M+1)/2 matrix of zeroes and ones

Distance function:

d(m) = -3m'm
Asymptotic distribution parameters:

F'giE iy 'E-lé';\:e vee'(ee’)]

S = .
8[vec(ee')e’]2-lf‘ Var{ vec(ee’)]
-F'slE 0

M=

0! -A
D=-I

Fsly = fIE(a/ae') £(x,8 )1 (2) L (3/207) £(x,67)] du(x)
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-1 ¥\ =1 * ) '
T f=(2)7) (3/e8') £(x,07) du(x) ‘
; ux o
’ \
r'ip)t 'z i) ersYele vee!(ee’)a(a’a)t
V= ‘
(A ’A)'lA ‘el vec(ee’)e 'jz-lf(F'Z-lF)-l (A 'A)-lA’Var[ vec(ee’)]a(A 'A)'l
|
Comment:

Under normality €{vec(ee’)e’] = 0, A'Var{vec(ee’)]a = 24'(z¥® £)a .
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Two-Stage Nonlinear Least-Squares

Recent literature:

Amemiya (1974), Gallant and Jorgenson (1979)
System:

( 0) =
q. y’t’xt’en b e't

8(et) =0, C(etet =5
Equation of interest:
J
oy
qa(yt3xtsea) = eo{‘b
ele,) = 0, Var(e ) = o

Moment equations:

m (W) = (1/n)5_;2,0 (7, %, »0,)

Zy = z(x) , z(x) continuous

Distance function:

a(m,7) = ~dm'r"'m

a ~ n
= g t
™ (1/n) ztglztz "

~ * R 7 R em e ~ - ~2
ﬁ(c‘aa- cao:) is bounded in probability, T = (l/n)zil:l et

N
where e ., are two-stage least-squares residuals will suffice

at
Asymptotic distribution parameters:
S = (c:a)zz’z
M = Z'Qa

D= g%
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Z'7 = I z(x) zA'(x) dp(x)

X
JI

219, = [ ], 2)(3/00.) a [ ¥(e,x,0,)3,8,] aB(e) au(x)

g = *
Q’_ecl

I PNy N P i )
V=g 0z Z)lZQ,a

Comment:

3=7




Three-Stage Nonlinear Least-Squares

Recent literature:

Jorgenson and Laffont (1979), Gallant (1977), Amemiya (1977),

Gallant and Jorgenson (1979)

Model:
0y -
Q.(yt3x.t’en) - e't
A *
- 4 -
e(et) o, c(e,ce,G T
Moment equations:

m (A\) = (1/n) 5_; ay,.%.0) ® 7,

A=8

z, = Z(Xt) , z{x) continuous

Distance function:

d(m,r) = -%m'¢-%n
jod ’
Tn = EZ ® (l/n)Z;l:thZt]
A - n ~ 4\, . A - - .
3= (l/n)2%=l e.8 3 e, are two-stage least-squares residuals

Asymptotic distribution parameters:

S=3 ©(2'2) =19 [ 2 2 () aux)

M=Q®Z = jx(a/ae’> al¥(e,x,68 ), %,8] ® z(x) du(x) -
D=5t

ver@e2) () e (22 Neen)

32
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6. M-ESTIMATORS

An M-estimator in is defined as the solution of the optimization prdblem
s - n A
Maximize: s (A) = (1/n)Z _; s(y,,x_ 7 ,}\)

where ?n is a random variable which corresponds conceptually to estimators of
nuisance parameters. A constrained M-estimator 7% is the solution of the

optimization problem

Maximize: sn(X) subject to h()\) = O

where h(\) maps RP into RY . The objective of this section is to establish

conditions such that these estimators are asymptotically normally distributed.

These results are due to Souza and Gallant (1979) where proofs may be found.
Two examples are carried throughout the discussion to provide the reader

with the flavor of the details in an application. In both cases the data

generating model is
= °Y) +
vy = flxgavg) +oey
The first estimator is a robust estimator with distance function

s1(y>x,0) = -ply = £(x,0)]

“where p(u) = gn cosh (u/2) . The second is an iteratively rescaled robust

estimator. The distance function is
s, (7>%,7,0) = plly - £(x,0)/r} . :
The scale estimator t is cbtained by computing § to maximize (l/n)22=lsl(yt,xt,e)

and then solving

(1/m)zl (v, - £(x,,8)1/7) - [¥3(e) at(e)

for = where ¥(u) = p'(u) = %tanh (u/2) . ' ‘ : '



NOTATION.
Sn()\-) = (l/n)Zf;lS (y‘t ’X't :?rn:X)

E(Y:Ta)\.) = I_LJAGS[Y(e:Xs'Y):X,Ta)\J dP(e) dp.(X) .

The identification is

Assumption 4’ . The parameter y° is indexed by n and Limnasy;==y* for some
point y* ¢ ' . The sequence }n converges almost surely to a point ¢* and
JE(;n"T*) is bounded in probability. There is a compact subset A’ of A and
there are unique points X*, xi,.k? s, ... corresponding to Y==y*, yi, y; ,
which maximize s(v*, v, A), §(yi,7*,k), §(y;,7*,x), ... over A . The function
h(\) of the hypothesis H: h(k%)::O is a continuous vector valued function on A ;
the point A satisfies h(A") = O and 4im __/a(X® -A") = & .

A verification that ;n has the requisite properties is straightforward in
typical applications. A verification for the example is deferred until end of
the section.

A verification of unique maxima of S(y,t ,A) usually commences by proposing
an cbviously minimal identification condition. Then known results for the
location problem are exploited to verify a unique association of A toy . To
illustrate with the example, 1t is clearly impossible to identify A\ by observing
{yt,xt} if £(x,\) = f(x,y) a. e. u for some A ¥ y . Then a minimal identification
condition is

AME oy = pfx: £f(x,A\) £ f(x,y)} >0.

Now o(3) = fp(e + §) dP(e) is known to have a unigue minimum at & = O when P(e)
is symmetric about zero and assigns positive probability to every nonempty, open
interval. If A % v and §6(x) = f(x,y)- £(x,\) then ¢[8(x)] = @(0) for every x and

by the identification condition o[ 5(x)] > ¢(0) on some set of positive u measure whenc

5
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5.(v,2) = -fx¢£6(X)] du(x) < -jxw(o) dp(x) = 51 (y,y)

as required.
The almost sure convergence imposed in Assumption 4’ implies that there is
*
a sequence which takes its values in a neighborhood of v and is tail equivalent

~

to Tn * Thus , without loss of. generality, it may be assumed that ;n takes its
values in a compact sphere T for which T* is an interior point. Similarly, I
may be taken as a compact sphere with interior poiﬁt y* . Thus, the effective
conditions of the next assumption are domination of the objective function and
a requirement that eventually it suffices to minimize sn(k) over A .

ASSUMPTIQN 5’ . The sets I" and T are compact spheres containing y* and T*,
respectively. To almost every realization of {et} there corresponds an N for

which n > N implies supA,sn(k) = supAsn(x) . The function s(y,x,T,\) is continuous

onlYxXxTx A’ and |s(y,x,7.0)] < bla(y,x,y)sx] on Yy x L x Tx A" xT . (The

function b(e,x) is given by Assumption 3.) ‘
The exhibition of the requisite dominating function is an ad hoc process
and one exploits the special characteristics of an applicétion. For the example
|s (yox,0)| = ple + £(x,v) - £(x,0)]
S zle + £(x,y) - £(x,M)]

< lel + suprlf(X,y)| + SUPAllf(X>X)|

The domination condition obtains if P(e) has a finite mean and if w(x) can

accomodate the tail behavior of suprlf(x,y)l and sggx!f(x,k)] . Or, take X

compact so that these functions are bounded in view of Agssumption 2. Some -
carefully worked examples for more complex situations may be found in Gallént

and Holly (1980) and Gallant (1977).




The construction of A’ is also ad hoc. Most authors have adopted the simple
expedient of taking A\ compact and putting A’ = A . There has been some reluctance
to impose bounds on scale parameters and location parameters which enter the
model linearly. General treatments for unbounded location parameters with least
squares methods may be found in Malinvaud (1970) and Gallant (1973). For
redescending p functions, the use of an initial consistent estimator as a gtart
value £6r an algorithm which is guaranteed to converge to a local minimum of
sn(k) suffices to confine &n to A’ eventually. A construction of A’ for scale
parameters with maximum likelihood estimaﬁion of the parameters of the general
multivariate model is in Gallant and Holly (1980).

However, one does not wander haphazardly into nonlinear estimation. Typically
one has need of a considerable knowledge of the situation in order to construct
the model. Presuming knowledge of A’ as well is probably not an uﬁreasonably
assumption. Most authors apparently téke this position.

THEOREM 2/ . (Strong consistency) Let Assumptions 1 through 5’'hold. Then

&n and R; converge almost surely to k*.
NOTATION.

d = Ixfe{(a/ak)SEY(e:X:Y*) ,X,T*,)\*]}{(B/BX)S[Y(S,X,'Y%),X,'r*,}\*]} 'dP(e) du(X

g = -fxfe(ae/ahak')s[Y(e,x,y*),X,T%:X*] dP(e) du(x)

3,(0) (l/n)ZQ;lﬁ(B/ax)S(yt,xt,?n,A)JE(B/BX)S(yt,Xt,;n,k)])

9.0 = -(1/n)5_; (3%/3NN )8 (3, % s 7N -
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*
ASSIMPTION 6’ . There are open spheres I'*, T, and A" with y* ¢ T T,

* * *
T ¢ TCT, and A ¢ A A’ . The elements of (3/30\)s(y,x,7,0), (az/akak')s(y,x,w,k),
(32/3T3K')S(V;X:T,X), and [ (3/30\)s(y,x,7,M)] C(3/3\)s(y,x,7,A)]’ are continuous and
- % ¥
dominated by b[q(y,x,y),x] on 4 x X x r* x T x A where the overbar indicates the

closure of a set. Moreover, 7 is nonsingular and

Ie(a/a)\)SEY(e:xa'Y;) ,X,T*,X;] dP(e) =0,
I1I8<az/a¢ax')sEY(e,x,y*),x,f*,x*] aP(e) du(x) = 0 .

The first integral condition is that the expectation of the "score" is zero.
It is central to our results and is apparently an intrinsic property of reasonable
estimation procedures. The second integral condition is sometimes encountered in .
the theory of maximum likelihood estimation; see Durbin (1970) for a detailed
discussion. It validates the application of maximum likelihood theory to a sub-

set of the parameters when the remainder are treated as if known in the derivations ‘

but are subsequently estimated. The assumption plays the same role here. It

can be évoided in maximum likelihood esgtimation at a cost of additional complexity
in the results; see Gallant and Holly (1980) for details. It can probably be
avoided here but there is no reason to further complicate the results in view of
the intended applications.

Consider the verification of the integral conditions for the example with

s,(7,x,mA) = ~p{ly - £(x,0)1/} .




Now

(B/Bk)sz(y,x,w',)\*) = (l/'t)‘f(e/T)(a/aX) f(X,)\) 9

*
(3%/213N)s, (7%, 15N ) =(=1/72)[¥(e/n) + ¥'(e/7)(e/7)1(3/2M) £(x,A)
Both ¥(e/tr) and ¥'(e/r)(e/r) are odd functions and will integrate to zero for
symmetric P(e) . Thus, both integral conditions are satisfied.
THEOREM 3’ . (Asymptotic Normality of the Scores) Under Assumptions 1

through 6’
(VBT (3/3N)s (7, %, T 502) S1(0,9)

d may be singular.

THEOREM L4/ . Let Assumptions 1 through 6'hold. Then
(LR (3/3N)s (%, 7N )20 N(98,9) ,
BEO -0 B,

Jn(xn) converges almost surely to 4, and gn(in) converges almost surely to .

For the examdle with sl(y ,X,\) defining the estimator and with P(e) symmetric

J = jave(e) ap(e) (F'F) , g = -jave(e) dP(e) (F'F)
where (F'F) = 'J‘I,E (a/ak)f»(X,X*)][(a/ax) f(X,X*)]I dp(x)

whence JA(X - N Ws, £¥2 (F'F)7M;
(ey’)?

with sz(y,x,T,x) defifing the estimator

JO -2 s ws, ()2 e/ @)Yy .
n ¥\ -2
fey’(e/7)]
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The choice of p(u) = 4n cosh (u/2) to sbtain these results was for specificity

in discussing the tail behavior of P and w and to suggest constructions of the
requisite dominating function b(e,x) . Other thaﬁ this, these results apply to any
p(u) which is a twice continuously differentigble even function provided that P(e)
is symmetric and that Jr- p(e+8) dP(e) has a unigue minimum at §=0 .

4 verification tha% ;n of the example satisfies Assumption b'wvas promised.
Assume that £, w, and P are such that Assumptions 1 through 6'are satisfied for
the preliminé.ry estimator én which maximizes (l/n)f;lsl(yt,xt,e) and take P
symmetric so that ('én,y;) converges almost surely to (y*,y*) and .J-ﬁ-[(énvg) - (Y*y*>]
is bounded in probability. Define

a(xy‘(’e) = f(x’*{) - f(K,e)

w0, (1,7,8) = %E";l“!gfet/rﬂ" 8(x,,v,8)/71 -8 .
o(7,v,9) = [[¥3Ce/z + 8(x,v,8)/r] - 8 dP(e) du(x)

(e)

. < . . o . * . -, % * %
are strictly decreasing functions of rt and there is 2 ¢ witho@(+s ,y ,vy ) =0 .

2

()
s

and recall that v solves cpn('\',y;,én) = 0 for ,3'=' f*’ §2) . Both ® ard @

a



' By Theorem 1l and the almost sure convergence of (8 ’Yn) s &lven ¢>0 there is an
N such that n > N implies @, (*+e, y R e ) < :pn(f - ¢, yn, e ) for almost every

realization. Thus »r -¢e < Tn < o+ ¢ whence T n Comverges almost surely to S

Applications of Taylor's thecrem and Theorem 1 yield
a - - =1 -
JE(r -1") = (/) g (F2,8,) 17 Vg (7 y358,)

= LRANS (Y ") + o (D1 VR, (7 G 8)

Ja cpn('\' 358,)
= T Y%/ + [ (3/28) g (3,81 VE(E, -
= /2T /) + [(3/08) 3(7y"y™) + 0 (1] VE (B, -vD) -
@ v tbe central linis 1/ AB) il“!a(et/f*)is bounded in probability and Jo (%n -v3)

=,/n (@n -y*) + 0 (y*- \(;) which is bounded in probability.



4l

The results on inference‘ in Section 4 may be used in conjunction with

the results of this section by substituting

Sn(X)a Jn()\.): 9n('/\), J, 9

as defined in this section for the definitions of Section 3. For the

notation in connection with Theorem 7, substitute , )

NOTATION

S = (l/n)f;L['e{(a/ak)SEY(e,xt,Y;) LAY

x {(3/3N)sL¥(e,x, v2) 12,5000 1} dR(e)

e
1]

-(l/n)zi,lj”e(az/axax')ch(e,xt,v;) %2001 dp(e)

(7)o (o)t

%
0

=0 TEvER T /2

Q
|




7. EXAMPLES

Robust Nonlinear Regression

Recent literature:

Balet-Lawrence (1975), Grossman (1976), Ruskin (1978)
Model:
y-t = f(x.tbeg) + et

ey symmetrically distributed

Objective function:

Sn(X) = (l/n)i}:l' p[y.b = f(xt’e)]

8 =A

p(u) an even function with p(0) < p(u)
Asymptotic distribution parameters:

3 = ev?(e)(F'F)

g =¢e¥'(e)(F'F)

F'F =] (3/20)£(x,8")(3/3n") £(x,6%) du(x)
X

¥(u) = (a/au) p(u)

¥(u) = (a/au) ¥(u)



Iteratively Rescaled Robust Nonlinear Regression

Model:
= £(x,,6.) +
Vg = HEpe8p) T e
ey symmetrically distributed
Objective function:

s, (M) = (1/n)g_; - olly, - £(x,0)1/7,)

A=9

p(u) an even function wi%h p(0) < p(u)

JA(7_ - =) is bounded in probability
Asymptotic distribution parameters:

3 = (1/7")7 e¥P(e/*)(x'F)

g = (1/7) ey’ (e/*)(x'F)

F'F = fx<a/ae>f<x,63<a/ae'> £(x,6) au(x)

¥(u) = (d/au) p(u)
¥(u) = (a/au) ¥(u)

L6




Single Equation Nonlinear Least Squares

Recent literature:

Jennrich (1969), Malinvaud (1970), Gallant (1973, 1975a, 1975b)

Model:
- 0
yt = f(x’c’gn) + e.t

ee,) = 0, e(ed) = &

Objective function:
s, = (/) - [y, - £(x,,0)77/(27)

A=9

va(r - o°) is bounded in probability

Asynmptotic distribution parameters:

s=g-= c'2jx(a/ae) £(x,6%)(3/20") £(x,6) du(x)
v=g?
Comment :

3=
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Multivariate Nonlinear Least Squares

Recent literature:

Malinvaud (1970b), Gallant (1975c), Holly (1978)
Model:

vy = £lxga0) * e

E(et) =0, .8(ete,é) =7
Objective function:

s (A) = (L/m)El (-1, - £(x,,8) )%y, - £(x,,0)]

A= 9

' Jﬁ(}n - 3) is bounded in probability

Asymptotic distribution parameters:

d=g= FislE = IxE(B/ae’) f(x,e*)]’z:'lt(a/ae’)f(x,e*)] du(x)




Single Equation Maximum Likelihood

Model:
vy = £lrgs8]) * ey
e(e,) = 0, e(ed) =(*)°
Ob jective function: |
s,(\) = (/) (Dan & + [y, - £(x,,6") /P
A= (8",02)

Asymptotic distribution parameters:

(o) %rF 1) %e(d)e

d=
1(6*) e (3)2 %(c*)'8Var(eh)
(¢ ) s 0

T\ o G

F'F = jx(a/ae)f(x,éﬁ(a/ae’) £(x,8) au(x)

£ = Jx(a/ae) £(x,8) du(x)

Comment:

For any hypothesis of the form h(g) = O, HVH’ = HJH’ . Under normality,

=g,
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Multivariate Maximum Likelihood

Recent literature:
Malinvaud (1970b), Barnett (1976), Holly (1978)
Model:
o}
) =0 =g
8(et =0, &’:(ete,G =5
Objective function:
s, (M) = (1/n)g_; (- {4n aet £+ [y, - f(xt,e)]’z_lf..vt - £(x,,0) 1}
A= (g’50")!

o = (cll, Oyps ++vs Opps Ogyps vvs CMM) » upper triangle of ¢

vee(y) = Ag, A an Me x MM+ 1)/2 matrix of zeroes and ones

‘Asymptotic distribution parameters:

F's -é—f’z-:"&[e vec'(ee’))(z ® Z)-lA
d = '
1,1 -lv ' -1
sym A (2 ® B) Var[vec(ee’)J(z ® ) A
F'slr 0
g =
0 (2 ® 2)71a

rg IIE(a/ae’)f(x,e*)]'(z*)'JI(a/ae’>f(x,e*)] a(x)
£ = (5)" J (3/2") £(x,0") ap(x)
(zew) = (e

Comment:

For any hypotheéis of the form h(g) = 0, HVH' = Hy-lH' . Under normality, .
3=9.
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