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ABSTRACT

Recently, multiple input, single output, single hidden layer, feedforward

neural networks have been shown to be capable of approximating a nonlinear map

and its partial derivatives. Specifically, neural nets have been shown to be

dense in various Sobolev spaces (Hornik, Stinchcombe and White, 1989).

Building upon this result, we show that a net can be trained so that the map

and its derivatives are learned. Specifically, we use a result of Gallant

(1987b) to show that least squares and similar estimates are strongly

consistent in Sobolev norm provided the number of hidden units and the size of

the training set increase together. We illustrate these results by an

to the inverse problem of chaotic dynamics: recovery of a nonlinear

map from a time series of iterates. These results extend automatically to nets

that embed the single hidden layer, feedforward network as a special case.
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1. INTRODUCTION

Recently, Gallant and White (1988) have demonstrated that multiple input,

single output, single hidden layer, feedforward networks (e.g., Rumelhart,

Hinton, and Williams, 1986) with a particular choice of a monotone squashing

function at the hidden layer and no squashing at the output layer can

approximate any square integrable function to any desired accuracy by

increasing the number of hidden units. Hornik, Stinchcombe and White (1989)

relaxed the conditions on the squashing function and expanded the class of

functions that can be approximated. These results have the subsidiary

implication that any network that embeds these networks as a special case,

e.g., additional hidden layers, will inherit their approximating abilities so

the results are far more general than they might at first appear. White

(1989b) has shown that the approximation potential suggested by these results

has practical value in that the appropriate values of the connection strengths

and the appropriate number of hidden units can be learned. This result is

obtained by verifying that the network together with the learning and expansion

rules can be regarded as a weakly consistent estimator in the statistical sense

for an element of a function space. The function space is chosen so as to

contain the mappings that are to be learned.

In some applications, notably robotics (Jordan, 1989), demand analysis

(Elbadawi, Gallant, and Souza, 1983), and chaotic dynamics (Schuster, 1988),

approximation of the mapping will not suffice. Close approximation to both the

mapping and the derivatives of the mapping are required in these applications.

Hornik, Stinchcombe, and White (1989) have demonstrated that multiple input,

single output, single hidden layer feed forward networks can not only
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approximate the mapping but also its derivatives provided the squashing

function is confined to a certain (quite general) class and the inputs are

drawn from a suitably restricted domain. In this paper we extend White's

(1989b) analysis and provide rules such that these networks can learn both the

mapping and its derivatives. This result is obtained by verifying that the

network together with the learning and expansion rules can be regarded as a

strongly consistent estimator for a particular class of function spaces called

Sobolev spaces.
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2. PRELIMINARIES

We consider a single hidden layer, feedforward network having network

output function

where x represents an r x 1 vector of network inputs (a prime ' denotes

transposition), Pj represents hidden to output layer weights, lj represents
input to hidden layer weights, j = 1, 2, ... , K, K is the number of hidden

units,

and G is a given hidden unit activation function. If a bias term is to be

incorporated in the specification, read G[(I,x')lj] for G(X'lj) above and

throughout; with this change, the leading element of lj is interpreted as bias

term. The set r c Rr is presumed to contain all admissible inputs. We shall
rtake r to be the closure of a bounded, open subset of R. While assuming a

bound on r may be restrictive in some applications, a key result upon which we

rely is not known for unbounded domains. The other restrictions can be relaxed

at some inconvenience in verifying the identification condition in Section 4.

See Hornik, Stinchcombe, and White (1989) for a detailed discussion of

admissible domains and Gallant and Nychka (1987) for an illustration of the

difficulties involved in moving to unbounded domains.

We assume that the network is trained using data {Yt,xt } generated

according to
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t = 1, 2, ... , n,

where xt denotes the observed input and et denotes random noise, that the

number Kn of hidden units employed depends on the size n of the training set,
A

that training the network is equivalent to finding a network gK (xiS) that
n

minimizes some function sn(g) over all networks gK (xiS) with Kn hidden units,
* n *and that some functional a(g ) is the feature of the mapping 9 that is

supposed to be closely approximated by the network. A common choice of sn(g)

is the least squares criterion

Often, the choice of objective function is not stated explicitly but rather is

implicit in the choice of training procedures. See White (1989a) for the

relationship of least squares to the popular backpropagation training rule.
*A feature of the mapping 9 that might be of interest is an integral such as

a(g) = Ix g(x) dx. Another feature that might be of interest is a partial

derivative at some point XO such as a(g) = OAg{XO).

This is a notation we use heavily. The vector A = (AI' A2, ... , Ar ) has

nonnegative integers as elements and

r °where IAI = Li=IIAil gives the order of the partial derivative. 0 9 denotes
the function itself; that is, OOg{x) =g(x).

The purpose of this paper is to obtain general conditions under which a

network can be said to learn a{g) with certainty. More precisely, we seek to
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A *determine conditions such that the network gK (xiS) learns the mapping g in
n A

the sense that application of the functional u to the network gK (xiS) gives a
A * n

an approximation u[gK (xiS)] to u(g ) that can be made as accurate as desired
n

by increasing the size of the training set. This is equivalent to the

statistical notion of strong consistency, described as follows.

Following standard conventions, we assume that the errors et can be

regarded as being determined by functions Et(w), t = 1, 2, ... defined over a

probability space where w is a typical element of 0 and A is the

collection of subsets A of 0 over which the probability measure P(A) is

defined, see Tucker (1967) for instance. To each w in 0 there corresponds a

realization of the errors where et = Et(w). Each realization {et }
that can obtain in practice corresponds to some wand these exhaust the

totality of possibilities. Realizations {et } with specific characteristics can

be described by describing the set A of w to which they correspond. The

probability that {et } with these characteristics occurs is computed as P(A).

Given a specific training procedure and rule Kn for determining the number

of hidden units, we are interested in the set A of w that generate realizations

A *iim u(gK ) = u(g ).
n

We shall obtain conditions such that P(A) = 1. This is a strong result because
*it essentially says that the feature of interest u(g ) is learned with

certainty. One writes

A *iim u(gK ) = u(g )
n

almost surely
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"to denote this notion of a limit and says that a(gK ) is strongly consistent
* nfor a(g). This notion of convergence is equivalent to the notion of

convergence almost everywhere in measure theory; a probability space is a

finite measure space with P(O) = I.

Our strategy is to relate the single hidden layer, feedforward network

gK(xI9) described above to the following result of Gallant (1987b).

"THEOREM O. Suppose that gK is obtained by minimizing a sample objective
n

function sn(g) over bK where bK is a subset of some function space b on which
n

is defined a norm IIgll. Let a(g) denote the feature of g that is of interest

and suppose that a(g) is continuous over b with respect to IIgll. Consider the

following conditions:

(a) Compactness: The closure of b with respect to IIgll is compact in the

relative topology generated by IIgll.
a)

(b) Denseness: uK=lbK is a dense subset of the closure of b with respect

to IIgll and bKC bK+1.
*(c) Uniform convergence: There is a point 9 in b, regarded as the true

- *value of g, and there is a function s(g,g ) that is continuous in 9 with

respect to IIgll such that

- *lim sup Isn(g) - s(g,g )1 = a
n-+40 gEb

almost surely.

(d) Identification: Any point gO in b with

- 0 * - * *s(g ,g ) s s(g ,g )

must have
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o *(1(g ) '"' s(g ).

If conditions (a)-(d) hold, then

A *lim (1(gK ) '"' (1(g )
n

almost surely

provided that '"' almost surely .•

*With respect to the identification condition, one does not know 9 in

advance so one would logically be obligated to verify that the condition holds
*were 9 an arbitrary point in b. However, usually one does not strive for this

* * *level of generality and only verifies the condition for all 9 in some b. b
* *is called the parameter "space. It is a subset of band 9 in b usually

possesses some property over and above that possessed by an arbitrary 9 in b.
*For instance, 9 may be assumed not to be on the boundary of b or might be

assumed to have more derivatives than membership in b would imply. b is called

the estimation space and IIgll the consistency norm (Gallant, 1987).
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3. THE SENSE OF THE APPROXIMATION, COMPACTNESS, AND DENSENESS

As seen from Theorem 0 the quality of our results is determined by the

consistency norm. The stronger is this norm, the larger the class of

functionals a that are continuous with respect to it, and the more the network
*can be said to have learned about the mapping g. We establish consistency

with respect to the Sobolev norm.

The Sobolev norm is defined as

IIgllm,p,1 =

Ilgllm,co,1 =

[ L I 10Ag(x)I P dx J1/P
1

Amax sup 10 g(x)1
XEI

p = co .

We shall apply Theorem 0 with II-11m as the consistency norm where m is the
,CO,.A.

largest derivative to which an approximation is desired in a given application.

For instance, if the Jacobian (alax')g*(x) is to be approximated then m= 1.

This is a very strong norm. For instance, consistency with respect to the
*norm II-11m implies that a(g ) is learned if

,CO,.A.

a(g) = II f(X)DA9(X) dx IAI m, f bounded on 1,

A IAIa(g) = 0 g(x) m,

a(g) A IAI= sup 10 g(x)1 m,
xEI

a(g) = inf A IAI10 g(x)1 m,
xEI

or continuous functions of these quantities.
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We assume that it is possible to specify an a priori bound B on the

magnitude of IIg*lIm+[r/p]+I,p,r for some p with 1 P < co where [rip] denotes
*the integer part of rip. Recall that m is the largest derivative of 9 that it

is necessary to learn in a given application and that r is the dimension of the

domain r; that is, r eRr. Then we take as the estimation space

JJ = {g: IIg*lIm+[r/p]+I,p,r B}.

By the Rellich-Kondrachov Theorem (Adams, 1975, Theorem 6.2, Part II), the

closure of JJ with respect to the norm 1I·lIm r is compact in the relative, co,
topology generated by 1I·lIm r' Condition (a) of Theorem 0 is now satisfied., co,

Hornik, Stinchcombe, and White (1989) set forth mild conditions on the

activation function G such that the class of single hidden layer, feedforward

networks is dense for the Sobolev space 'Wm r = {g: IIgllm r < co}. For,co, ,co,
instance, if G is an m-times continuously differentiable function whose m-th

derivative is integrable over (-co,co) then G is an acceptable choice. The

familiar logistic and hyperbolic tangent squashers satisfy this condition. In

consequence of the Hornik, Stinchcombe, and White result, we can put

(r+l)K
JJK = (g: g(x) = gK(xI8), 8 f R } n JJ.

and Condition (b) of Theorem 0 is satisfied.

We should remark that the intersection with JJ in the definition of JJK above

has implications regarding the minimization of sn(g) over 9 f JJK. In

principle, the bound IIgK(·18)lIm+[r/p]+I,p,r B, which is a parametric
restriction on 8, must be enforced in the minimization of sn(g) over 9 f JJK,

equivalently, in the minimization of sn[gK(.18)] over 8 f R(r+l)K. In
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practice, restricting (r+l)K to reasonable values relative to n has the effect
A

of smoothing gK enough that the bound is not binding on the optimum or on any

intermediate values of gK involved in its computation.

This the verification of Conditions (a) and (b) of Theorem o.
Conditions (c) and (d) are verified in the next section. Before concluding, we

record another consequence of the Rellich-Kondrachov Theorem that is useful in

general and used in the next section: Sobolev norms are interleaved in the

sense that there is a constant c that does not depend on g such that

IIgllm,tXl,X S cllgllm+[r/p]+l,p,X S cllgllm+[r/p]+l,tXl,X
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4. UNIFORM CONVERGENCE AND IDENTIFICATION

For specificity, we will restrict attention to the case when

as a discussion of identification wanders into vague generalities without the

focus of a particular example. This is the most common choice of a sample

objective function in applications and our discussion will serve as a template

for the determination of the identification status of alternative choices. As

remarked previously, minimization of sn(g) over bK is equivalent to

minimization of the parametric function

While this fact is certainly convenient as regards computations, it plays no

role in the theory.

Consider the case when: (i) the observational errors {et } and network

inputs {xt } are independent, (ii) the observational errors {et } are

independently and identically distributed with common distribution function

P(e) having mean f8edP(e) = a and variance f8e2dP(e) < and (iii) the

empirical distribution of converges to a probability distribution

That is,

= (number of xt x, coordinate by coordinate, 1 t n)

and = at every point where is continuous. This is a mild

restriction on the sequence {xt }. An ergodic chaotic process satisfies this
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restriction as do realizations from ergodic random processes, deterministic

replication schemes, and fill-in rules such as 0, 1, 1/2, 1/4, 3/4, ....

Under these assumptions we have the following Uniform Strong Law: If (i)

f(e,x,g) is continuous on 8XTxb where 8 and r are subsets of a Euclidean space
and b is a compact metric space, and (ii) f(e,x,g) is dominated by an

integrable function f(e,x) then

. 1 n f f11m sup I n L f(et,xt,g) - rf(e,x,g) 1= °
gEb t=1

almost surely (Gallant, 1987a, p. 159).

- *Applying this result to sn(g) above to get the function s(g,g ) required

in Condition (c) of Theorem 0, we have

fgfr [e + g*(x) - g(x)]2

= fge
2dP(e) + 2fgedp(e)fr[g*(X) -

+ fr[g*(X) -

=u2 + fr[g*(X) -

The requisite dominating function is
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since e2 is integrable and 2SUPgEhlg(x) I + 1 S + 1

S 2cUgUm+p/ r+l ,p,I + 1 S 2cB + 1.

Condition (c) of Theorem 0 is now satisfied with

- * 2 f * 2s(g,g ) = u + r[g (x) - g(x)]

More general Uniform Strong Laws are readily available. For example,

Gallant and White (1987) obtain a Uniform Strong Law when {(et,xt )} is a

heterogeneous, mixing process. The basic requirements of these strong laws are

the same as the illustration above. Some sort of stability condition on the

process {(et,xt )} and a domination condition are required.

As regards Condition (d) of Theorem O. Let us first consider the case when
- 0 * - * *> 0 for open subsets of I. The implication of s(g ,g ) s s(g ,g ) is

fI[g*(X) - = O. Since both g* and gO are continuous on I, as they

are both elements of h c Wm > 0 for every c I the implication

I
* 0 2 * 0of I[g (x) - 9 (x)] = 0 is that 9 (x) =9 (x) for all x in I. Thus,

- * - * * 0 *s(g ,g ) s s(g ,g ) implies Ug - 9 Urn = 0 with the consequence that
A

u(gK ) is strongly consistent for every u that is continuous with respect to

the norm II-11m =Jg(x)dx for instance.I

Now suppose, for example, that the training sample does not cover the

entire input space in the sense that > 0 for c i, where i is the closure
of some open subset of I, and = 0 for c The same argument as

above shows that the functionals estimated consistently are those that are

continuous with respect to U-Um q. The network can no longer estimate the

functional a(g) =frg(X)dX consistently but it can estimate a(g) • ft9(X)dX
consistently. That is, the network doesn't learn where it isn't trained.
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5. SUMMARY AND MAIN RESULT

We summarize by collecting together in one place an internally consistent

set of conditions that imply strong consistency. As indicated in the foregoing

discussion, these conditions can be modified considerably as required by an

application. However, any modification of a condition will usually have side

effects that require modification of another.

SETUP. We consider a single hidden layer, feedforward network having

network output function

where x represents an r x 1 vector of network inputs.Pj represents hidden to

output layer weights, 1j represents input to hidden layer weights, K is the

number of hidden units,

and G is the hidden unit activation function.

We assume that the network is trained using data {Yt,xt } generated

according to

t = 1, 2, ... , n.

Xt denotes the observed input and et denotes random noise. The number Kn of

hidden units employed depends on the size n of the training set. The network
A

is trained by finding gK (xiS) that minimizes
n

1 n 2
sn(g) = n L [Yt - g(xt )]t=1
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A

subject to the restriction that gK (xiS) is a member of the estimation space b.
n

REGULARITY CONDITIONS:

Input space. The input space X is the closure of a bounded, open subset
rof IR .

Parameter space. For some integer m, 0 m< some integer p, 1 p <
*and some bound B, 0 < B < g is a point in the Sobolev space Wm+[r/p]+l,p,X

*and IIg IIm+[r/p]+l,p,X < B.
Activation function. The activation function G is in Wm and

du See 3 of Hornik. Stinchcombe and White (1989).

Estimation space. gKn(XIS) is restricted to b = {g: IIgllm+[r/p]+l,p,X B}
in the optimization of sn(g).

Training set. The empirical distribution of converges to a

distribution and > 0 for every open subset of X.
Error process. The errors {et } are independently and identically

distributed with common distribution function P(e) having IgedP(e) = 0 and

o Ige
2dP(e) (Ige

2dP(e) = 0 implies et = 0 for all t.)
Independence. The distribution P(e) of the errors does not depend on

that is, P(A) can be evaluated without knowledge of

etc.

As shown in Sections 3 and 4, the Regularity Conditions are sufficient to

verify the conditions of Theorem 0 which implies the following result:



THEOREM 1. Under the Regularity Conditions,

* Alim U9 - gK (·Ie) Um X = 0 almost surely
n ' ,

provided Kn = almost surely. In particular,

A *lim u[gK (xle)] = u(g ) almost surely
n

provided u is continuous with respect to I

Note that the condition "provided lim K = almost surely" permitsn
random rules such as cross validation (Stone, 1984).

5.3
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6. INVERSE DETERMINATION OF THE NONLINEAR MAP OF A CHAOTIC PROCESS.

An exciting new application of neural networks is to the inverse problem

of chaotic dynamics: "given a sequence of iterates construct a nonlinear map

that gives rise to them" (Casdagli, 1989). There are a number of approximation

methods available to estimate the map from a finite stretch of data. Neural

nets were found to be competitive with the best of the approximation methods

that Casdagli studied and were found by Lapedes and Farber (1987) to perform

significantly better than several methods in common use. We shall illustrate

the theory of the preceding sections by extending the analysis of these

authors with an examination of the accuracy to which neural nets can recover

the derivatives of a nonlinear map. We shall use the methods suggested by

Casdagli, where for the reader's convenience, we have translated Casdagli's

notation to ours.

Casdagli's setup is as follows. g: r r c is a smooth map with strange

attractor t and ergodic natural invariant measure (Schuster, 1988). A time

series xt for -L S t < has been generated by iterating this map according to

= g[g(xt -L-2), .... , g(xt -2)]

where x_L' ... , Xo is a sequence of points from t that obey the iterative
sequence above. Of this series, the stretch of xt for -L xt N is available

for analysis and the stretch of xt for N< t 2N is used as a hold-out sample
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to assess the quality of estimates. In principle, one can solve the inverse
. *problem by constructing a unique, smooth map g that agrees with g on t from

the infinite sequence In practice, one should like to find a good

approximant to g* that can be constructed from the finite sequence
n

where n S N.

A
The approximant gK can be put to a variety of uses: detection of chaos,

n
prediction of xt+j given xt ' determination of the invariant measure
determination of the attractor t, prediction of bifurcations, and determination
of the largest Lyapunov exponent via Jacobian based methods such as discussed

in Shimada and Nagashima (1970) and Eckmann et. aI. (1986). In the last

mentioned application, accurate estimation of first derivatives is of critical

importance.

Our investigation studies the ability of the single hidden layer network

with logistic squasher

G(u) • exp(u)/[l - exp(u)]

to approximate the derivatives of a discretized variant of the Mackey-Glass

(Schuster, 1988, p. 120) equation

[
(0.2)xt_S ]

g(xt -S' xt -1) = xt -1 + (10.5) 10 - (0.1)xt _1 .1 + (xt -S)
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This map is of special interest in economic applications because it alone,

of many that we tried, can generate a time series that is qualitatively like

financial market data (Gallant, Hsieh, and Tauchen, 1989) especially in its

ability to generate stretches of extremely volatile data of apparently random

duration. Notice that the approximant is handicapped as the dimension of the

approximant is higher than is necessary as it has five arguments when a lesser

number would have sufficed. We view this as realistically mimicking actual

applications as one is likely to overestimate the minimal dimension as a

precaution against the worse error of getting it too small. Casdagli's methods
*for determining dimension suggest that there is a representation of g in at

most three dimensions (xt -3' xt -2' xt -1).

Casdagli suggests that the flexibility of an approximant be increased until
A

improvement in the predictor error PredErr(gK) becomes negligible. The

predictor error can be estimated from the holdout sample using

where

1 2N _ 2
Var = N (xt - x)

1 2N
x =- r xt ·N t=N+l

Similarly, the Sobolev norm over t (not over X) of the approximation error can
be estimated from the hold-out sample using



* A [I 2N A AA
Il g - 9 II = - 10 g(x ,x ) - 0 9 (xKm,p'f N t-5 t-I K t-5' ... ,

6.4

We took N as 10,000 in these formulas because we wanted very accurate estimates
A * A * A

of PredErr(gK)' IIg - gKllm,p'f' and IIg - gKllm,co,f. In ordinary ications,
one would use a much smaller hold-out sample to estimate PredErr(gK);
* A * A

IIg - gKllm,p'f and IIg - gKllm,co'f would not ordinarily be estimated since
*they cannot be determined without knowledge of either 9 or 9 and if either g

*or g were known the inverse problem has no content. Also, note that

For our data, described below, jVar = 0.80749892 so PredErr is about a 20%
* Aover-estimate of IIg - gKllo,2,f.

A A
The values of the weights Pj and 1ij that minimize

1 n 2
sn(gK) = - L [xt - gK(xt -S' ... , xt _I)]n t=1

were determined using the Gauss-Newton nonlinear least squares algorithm
A

(Gallant, 1989, Ch. I). We found it helpful to zig-zag by first holding Pj
A A

fixed and iterating on the 1ij' then holding the 1ij fixed and iterating on
A

the Pj , and so on a few times before going to the full Gauss-Newton iterates.

Our rule relating K to n was of the form Ka log(n) because asymptotic theory

in a related context (Gallant, 1989) suggests that this is likely to be the

relationship that will give stable estimates. The numerical results are in

Table 1.
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We experimented with other values for n relative to K and found that

results were not very sensitive to the choice of n relative to K except in the

case n=500 with K=11. The case K=11 has 77 weights to be determined from 500

observations giving a saturation ratio of 6.5 observations per weight, which

is rather an extreme case. The results of the sensitivity analysis are in

Table 2.

A
In graphical presentations of g(x_5,0) and g(x_5,x_4, .. ,x_1) and their

partial derivatives, the effect of x_5 totally dominates. Thus, plots of
A A

g(x_5,0), (a/ax_5)g(x_5,0), g(x_5,0,O,O,O) and (a/ax_5)g(x_5,O,O,O,O)

against x_ 5 give one an accurate visual impression of the adequacy of an

approximation. This fact can be confirmed by comparing the error estimates in

a row of Table 1 with the scale of the vertical axes of the figures that

corresponds to that row. The figures and tables suggest that following

Casdagli's (1989) suggestion of increasing the flexibility of an approximation
A

until PredErr(gK) shows no improvement does lead to estimates of the nonlinear

map and its derivatives that appear adequate for the applications mentioned

above.

The computations reported in the figures and tables would seem to confirm

the findings of Casdagli (1989) and Lapedes and Farber (1987) as to the

appropriateness of neural net approximations in addressing the inverse problem

of chaotic dynamics. They also suggest that our theoretical results will be of

practical relevance in the determination of the derivatives of a map in

training samples of reasonable magnitudes.
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Tabl e 1. Predictor Error and Error in Sobolev Norm of an Estimate of
the Nonlinear Map of a Chaotic Process by a Neural Net.

A * A * A SaturationK n PredErr(9K) 119 - 9K 11 l,co,( 119 - 9KI1 1,2,( Ratio

3 500 0.3482777075 3.6001114788 1.32-52165780 17 .9
5 1000 0.0191675679 0.5522597668 0.1604392912 28.6
7 2000 0.0177867857 0.4145203548 0.1141557050 40.8
9 4000 0.0134447868 0.2586038122 0.0719887443 63.5
11 8000 0.0012308988 0.1263063691 0.0196351730 103.9

Table 2. Sensitivity of Neural Net Estimates.

A * A * A SaturationK n PredErr(9K) 119 - 9Klll,co,( 119 - 9Klll,2,( Ratio

7 500 0.0184102390 0.3745884157 0.1325439320 10.2
7 2000 0.0177867857 0.4145203548 0.1141557050 40.8
11 500 0.0076063363 0.7141377059 0.1115357981 6.5
11 4000 0.0015057013 0.0858882780 0.0210710677 51.9
11 8000 0.0012308988 0.1263063691 0.0196351730 103.9
15 8000 0.0020546210 0.1125778860 0.0336124596 76.2
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