
No. 1974

VARYING DEGREE POLYNOMIAL REGRESSION
*I. RATES OF CONVERGENCE

(Abbreviated Title: VARYING DEGREE POLYNOMIAL REGRESSION)

by

Russell D. Wolfinger
SAS Institute Inc.

and

A. Ronald Gallant
North Carolina State University

**November 1989

The library of the Department of
North Carolina State Univers!ty

*AMS 1980 subject classifications. Primary 62JOS; secondary 62E20, 62GOS,
62F12.

Key words and phrases. Regression, nonparametric regression, polynomial
regression, rates of convergence, Sobolev norm, metric entropy, M-estimator.

**This research was supported by National Science Foundation Grant
SES-880801S, North Carolina Agricultural Experiment Station Projects NCO-SS93,
NCO-3879, and the NCSU PAMS Foundation.



SUMMARY

for

VARYING DEGREE POLYNOMIAL REGRESSION

I. RATES OF CONVERGENCE

by

Russell D. Wolfinger and A. Ronald Gallant

For a regression model Yt = gO(xt ) + et , the unknown function gO is

estimated consistently using varying degree polynomial regression. Consistency

is with respect to a class of norms similar to weighted Sobolev norms, and the

method of proof involves metric entropy calculations that enable the

development of rates of convergence in these norms. The estimator is viewed as

the solution to some-member of a wide class of optimization problems, including

those associated with least squares, maximum likelihood, and M-estimators; an

M-estimator is used to illustrate the main results. Asymptotic normality is

shown in a subsequent paper.
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1. Introduction. Suppose we observe univariate data generated

according to

where gO is an unknown regression function possessing mderivatives, the xt's

are observed iid realizations from the beta(a,b) distribution (a and bare

known), and the et's are unobserved realizations from some distribution P(e)
and are independent of the xt's. Our objective is to consistently estimate gO

in a norm including derivatives up to order 1 < m. Our approach is follow

Example 1 of Cox (1988) and fit the parametric model

1 t n

where is a multiple of the jth Jacobi polynomial, oj is the jth
parameter, and Pn is some increasing function of n satisfying Pn n. Cox
calls this procedure varying degree polynomial regression; it is also known as

semi-nonparametric regression (Gallant, 1985; Wolfinger, 1989) and

truncated series regression (Andrews, 1988). It is a member of the class of

sieves (Grenander, 1980).

In the above context, varying degree polynomial regression is a competitor

with nonparametric procedures such as kernel and spline estimators. Though in

many cases these procedures may be preferable, polynomial regression does have

advantages. First, as Cox mentions, Pn will often be much smaller than n, so

the polynomial estimates can be viewed as being "simpler" than kernels or
(

splines. Polynomial regression estimates also allow one to take advantage of

knowledge about the design distribution (the beta distribution in our case).
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If nothing else, this often results in a lack of boundary conditions which are

often prevalent in the nonparametric procedures. Another advantage of varying

degree polynomial regression over kernels and splines is that it appears to be

more amenable to the incorporation of relevent scientific theory, as is the

case with the series estimate. For example, from econometrics, it seems quite

difficult to impose the conditional moment restrictions generated by the I-CAPM

model (see Gallant and Tauchen, 1989) using kernel estimators. As for spline

estimators, they do appear to be theoretically more suited to such an

imposition, but their natural form is not in terms of deviations from the

leading special case of the relevant theory. (For the above example, the

leading special case is a VAR law of motion and a constant relative risk

utility function.) Also, splines can be difficult to compute under complex

constraints. The above comments are not meant to minimize the importance of

kernels and splines, but simply to illustrate that they may not be as useful in

certain instances as would a parametric technique possessing nonparametric

properties.

Abusing notation slightly, let be the Pn-vector with jth element

Cox estimates by least squares, and we extend his results by considering

estimators that can be viewed as the solution to an optimization problem of the

form

minimize:
8 e 9n

where 9n is some subset of is the Pn-vector with jth element and

s{-,-,-) is a suitable objective function. We call such an estimator a least

mean distance estimator, with possible examples being least squares, maximum

likelihood, and M-estimators. The theory for least mean distance estimators
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with Pn bounded can be found in Chapter 3 of Gallant (1987); we thus extend

these results to the case where Pn is increasing with n. Our goal is to find

constraints on Pn that yield consistency for this entire class, and as such one

would not expect to achieve any near optimal rates for anyone member of the

class. Nonetheless, we do make a comparison with the rates given in Yohai and

Maronna (1979) and Portnoy (1984) for M-estimators. We also compare our rates

with those that Cox obtains for least squares estimators.

We now describe the general framework and preliminary assumptions. We

assume the true regression function, gO, is m-times differentiable with Dmg(x)

absolutely continuous, where Dm is the mth differentiation operator. We also

assume that it has the expansion

o 0
g (x) = L 8.

j=1 J J

where is the generalized Fourier coefficients corresponding to the jth

basis function defined by

= c (j)J ab J-l

where a,p > -1, j = 0,1,2, ... , denote the Jacobi polynomials
defined in Abramowitz and Stegun (1964) and Szego (1975). The normalizing

constants cab are

=
(2j + a + b -3) f(j+ a + b - 2) f(j) f(a) f(b)

f(j + a-I) f(j + b - 1) f(a + b)

and can be shown to satisfy
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where the symbol = means that the r.h.s. can be bounded above and below by

constant multiples of the l.h.s. Define a norm on gO by

o 2IIg 11 2m = .L
J=1

which we assume is finite. Note that this is precisely the II-11 2m norm defined

by Cox; it is one member of his scale of norms that vary with powers of j in

the above expression. Under the differentiability assumption above, he shows

for all nonnegative even integers p 2m

where is the beta(a,b) density. This norm is thus close to being a

weighted Sobolev norm, and we prove our consistency results in 11-1121 . Cox

shows that the 11-1I2h+E norm is stronger than the supremum norm, where

h = max(a,b,l/2)

and E is any positive real number. For this and other reasons, we assume that

1 h + 1/2, and thus our results imply consistency in sup norm. We also use

the usual Euclidean norm 11-110, which we write as II-II.

REMARK 1.1. The above identification of II-lip results from our choice of
the beta(a,b) design distribution and the associated Jacobi polynomials

multiplied by the normalizing constants. This a simplification of Cox's use of

an "asymptotic" design distribution, but it appears that our results can be

extended to this scenario. The extension to other design distributions such as

the Gaussian (requiring Hermite polynomials) and the gamma (requiring Laguerre

polynomials) also seems possible; but, as Cox mentions, a general theory is
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desirable.

Define

which we assume exists and is unique, and where

p
9n = {8 ERn

oand B = "g "2l + 1. B is thus unknown, but in practice this will be irrelevant
A A

because the choice of Pn will guarantee that 8n satisfies "8n"2l < B a.s. for
n sufficiently large. As our estimate of gO(x), define

where is the Pn-vector with jth element

Next, define the matrix t as being the n x Pn matrix with rows

= Note that t't is the usual X'X regression matrix and that it is

nonsingular wpl. We assume that a finite constant A exists such that

for all n, where Amax (·) denotes the maximum eigenvalue.

Finally, we assume that the objective function s is real valued and has the

form s[Y(e,x),x,g(x)], where Y(e,x) = gO(x) + e and 9 is some function of x.

To be reasonable, s should be some measure of distance between go(x) and g(x),

and to avoid measurability problems we assume that it is continuous in all
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three of its arguments.

We now illustrate our main results with an example.

EXAMPLE (M-estimator). Use the objective function

o= p[g (x) + e -

where

p(u) = log cosh(u/2).

Define also

t(u) = (d/du) p(u) = 1/2 tanh(u/2).

REMARK 1.2. In future work we plan to use an iteratively rescaled

M-estimator. This will entail the development of theory permitting the

estimate of a nuisance parameter in the objective As this tends to

clutter analysis, we omit it. For more detail concerning this robust estimator

with bounded influence, see Huber (1964) and Gallant (1987).

Assume that the errors possess finite r th moments, where r > 2 + 1/2, and

that &p(e) =&t(e) = O. This would be satisfied if the error density is

symmetric about zero.

Our results impose a trade off between the constraint on Pn and the rate of

convergence in the 11-11 22 norm; we analyze the two extremes; The first is to

force Pn to increase as fast as possible and let the rate in the 11-11 22 norm

become very slow. If we set

2 - (1+1)(1+22)/r
a = - 0

h + 22(1+22)
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for a sufficiently small 1 > 0 and 0 >0, and let Pn z na , then

A 0
"gn - g "21 = 0(1) a.s.

and provided m (i/a + Zh + 1)/2

conditionally on {xt }. The latter rate of convergence is the same as that

obtained by Yohai and Maronna (1979) and Portnoy (1984), but we must increase

Pn much slower than the approximate Pn = o(/n) they require. Indeed, the

largest possible a is Z/13 (corresponding to 1 = I, h = lIZ, and r large).
This is the price that we pay to obtain convergence in the strong "-"Z1 norm.

The second extreme achieves the best rate of convergence in the "-"21 norm.

Unfortunately this entails slowing Pn to the extent that we lose the above

0p(Pn) result. Nonetheless, assuming m is finite, we set

1 - (1+1)(I+Z1)/r
a = - 0

h + 2m(I+Z1)

for a sufficiently small 1 > 0 and 6 > 0, and let Pn z na . The resulting rate

of convergence is

for a sufficiently small f > O. For comparison, Cox (1988) obtains

p z n1/ (Zm+I)
n

and
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when the rates on his variance and bias terms are balanced.

As a specific example, let m= 3, 1 = 2, h = 1/2, and r = 8. Then our

results yield a = 11/244 < 1/22, while Cox requires p =n1/ 7 with a 0(n-1/ 7)n
rate of convergence. So in this case his rates are roughly 3 times better than

ours, but keep in mind that his is a rate of mean square convergence, while

ours is almost sure convergence. Also, his results are only for least squares

estimators, while ours are for more general optimizers. Both Cox's and our

rate constraints on Pn need only be enforced up to a constant multiplier, so in

practice they may not differ considerably.

The remainder of the paper is organized as follows. In Section 2 we list

our primary assumptions, and in Section 3 we state our main results. These are

then applied to the example in Section 4, proving the claims made above. The

proofs of the main theorems are given in Section 5. The Appendix gives the

proof of one of the lemmas stated in Section 3.
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2. The assumptions. Our main assumptions are grouped into two categories:

the objective function (Assumptions 51-56), and rate constraints (Assumptions

PI-PS).

ASSUMPTION 51. A real number r > 2 + 1/2 and a constant R exist such that

r8 sup s R < for all n.
8E9n

ASSUMPTION 52. A sequence of positive Borel-measurable functions {mn(·,·)}

exists such that

for all e, x, and for all 81,82 E 9n. A real number q r and a sequence of

constants {Mn} exist such that

8 < for all n.

For the next assumption, we define some new notation. First, let

o Pn 0
g (x) = L 8.
n j=1 J J

obe the truncated counterpart of g. Next, we write s(8) as an abbreviation for

Also, define

argmin 8 s(8)
8E9n

which we assume exists and is unique.

ASSUMPTION 53. A real-valued function L(2,Pn) exists such that



2.2

1\ 1\

where by 8 s(8n) we mean 8 s(8) evaluated at 8 = 8n, i.e., the expectation
1\

operator is not applied to 8n.

ASSUMPTION S4.

all e and x.

o(a/ag)s[g (x) + e,x,g] exists and is nondecreasing in 9 for

ASSUMPTION S5. For every n, define the following function:

Then constants v and cL exist such that

2sup [8pXn(e,x)]
xeT

002cL sup [g (x) - gn(x)]
xeT

where I = (0,1) by 8p we mean expectation with respect to P(e) only.

ASSUMPTION S6. Define the following function:

w(e,x,8,z) = (a2/ag2)s[go(x) + e,x,gll
9 = <p(x)'8 - z

which we assume exists. Then positive numbers a,b,c, and q (different from

any used previously) exist such that if we define the set

A = {e E 8, x E I, 8 E 9n, z E R : lei < a, Izi < b}

then

inf w(e,x,8,z) c
A
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and the constant a satisfies P(a) - P(-a) = q, where we are using P(o) to

denote the distribution function of the errors.

REMARK 2.1 Assumptions SI and S2 are similar to Conditions (W) and (L) of

Severini and Wong (1987). Assumption S3 provides a straightforward way of

showing consistency in the "0"22 norm. Note that consistency can be shown in

any norm satisfying a similar assumption, provided the metric entropy

calculation (given below) and the resulting rate constraints are appropriately

changed. Assumptions S4-S6 borrow from Yohai and Maronna (1979).

ASSUMPTION Pl. A real number a exists such that 0 < a < 1 and the

truncation point Pn satisfies Pn =na and Pn S n for every n.

For the next assumption, we need the following definition. For an

arbitrary metric space 3 with metric d, and for a positive real number f, we

define the metric entropy (or f-entropy) H(f,3,d) as the natural logarithm of

the minimum number of balls of d-radius f needed to cover 3, i.e.

H(f,3,d) = log mo

where mo is the smallest m such that there exist (€I-""'€m) in M satisfying

In this case the (€I""'€m ) would be the centers of the covering balls.
o

ASSUMPTION P2. A real number P exists satisfying 0 < P < 1/2 and a

sequence of positive constants (fn) exists such that fn = n-
P and
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is bounded as n for some £ > 0, where Mn is from Assumption SI.

ASSUMPTION P3. Using L{1,Pn) from Assumption S3, Pn' En' and msatisfy the

following two constraints for some 1 > 0:

(i) 1im L{1,Pn) En n{I+1)/r exists and is bounded.

(ii) 1im En n{I+1)/r =

ASSUMPTION P4. The real number a from Assumption PI satisfies

a I/{2m - 2h - 1),

and m is large enough so that this lower bound on the growth rate of Pn does
not conflict with any upper bound given in other assumptions.

ASSUMPTION P5. Define

P 2B{p) = L sup
j=I xeT

Then

1im Pn B{Pn)/n = O.

REMARK 2.2. Assumptions PI-P3 represent the rate constraints we use to

show consistency in the 11-11 21 norm. The metric entropy used in Assumption P2

is computed in Lemma 3.2 below. Assumption P3 implies that L{1,Pn) and mmust

satsify L{1,Pn) = Assumption P4 provides a lower bound on the growth

rate of Pn; it is needed in showing the 0p{Pn) result. Concerning Assumption
P5, a result from Cox shows that B{p) = O{p2h) as p So the assumption is

implied by = o.
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3. Statement of the main results.

LEMMA 3.1.
osup sup sup Ig (x) - <

8eSn xeX

PROOF. Use the fact from Cox (1988) that

sup == O(jh-I/2)
xeX J

and the fact that for all n the coefficients of any 8 in Sn must satisfy

( . - 2)8. = 0 JJ

for all j. Then note that

which will converge to zero as n as long as 2 h + 1/2. gO(x) must also

be bounded because m> 2. I

LEMMA 3.2. Assume 2 2, and let f be a positive real number. Then a

positive constant cHexists such that

for all n.

PROOF. See the appendix. I

THEOREM 3.3. Under Assumptions 51-52 and P1-P2,

sup 18ns(8) - 8 s(8)1 = O(fnn(I+1)/r) a.s.
8eSn
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where 8n denotes integration by the empirical measure of and

recall we are using s(O) as an abbreviation for

COROLLARY. Under the hypotheses of Theorem 3.3,

a.s.

A A

where by 8 s(On) we mean 8 s(O) evaluated at °= On' i.e., the expectation
A

operator is not applied to On.

A *PROOF. Using the fact that On and On are the optimizers of 8ns(0) and

8 s(O) respectively,

A * A A A *
18 s(On) - 8 s(On)1 = [8 s(On) - 8ns(On)] + [8ns(On) - 8 s(On)]

o(fnn(l+l)/r) + - 8 a.s.
= O(fnn(1+

1)/r) a.s. I

THEOREM 3.4. Under Assumptions 51-53 and P1-P3,

a.s.

LEMMA 3.5.

1 o() o()1 O(ph
n
-m+l/2).sup g x - gn x =

xeT .

PROOF. Argue as in Lemma 3.1, using the fact that

Define

where (t't)1/2 is the Cholesky factor of t't.
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LEMMA 3.6. Under Assumptions 55 and P4,

for any k > 0, where Xnt = Xn(et,xt ) from Assumption 55.

PROOF. Define Mnt = 8pXnt and tnt = Xnt - Mnt · Then

By independence and the first part of Assumption S5, the first term on the

right hand side is bounded above by v IIhtll2 which equals vPn by
definition of {ht }. Define Mto be the n-vector {Mnt} and H to be the n x Pn

matrix with rows ht, and let Amax(A) denote the maximum eigenvalue of a real
symmetric matrix A. Then the second term on the right hand side equals

2 M'HH'M S 2 M'M Amax(H'H)

- 0) 0 ]2S 2 n cL sup [g (x - gn(x)
xeI

by the second part of Assumption S5 and the fact that H'H is the identity

matrix. By Lemma 4 the final term is which by Assumption P4 is

0(1). Applying Markov's inequality yields the desired result. I

THEOREM 3.7. Under Assumptions 51-56 and P1-P5,
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4. Application to the example. We first verify Assumptions Sl-S6 for the

M-estimator.

Assumption Sl follows from the fact that p(u) 1/2Iul, and then

applying Lemma 3.1 and the moment assumption on the errors.

For Assumption S2, use Taylor's theorem and the Cauchy-Schwartz inequality:

where we are writing for and is on the line segment joining 81 and

82. We can thus set

since It(-)I 1. 2By a result from Cox, I; = Pn' and so

where B(-) is defined in Assumption P5. We can thus set

M = p1/q [B(p )]1/2-1/qn n n

and q can be arbitrarily large.

For Assumption S3, again use Taylor's theorem:

o A
= I; p[g (x) + e -

o A
= I; p(e) + I; t(e) [g (x) -

2 0 A a+ I; sech [g (x) + Ae - [g (x)

for some A in [0,1]. The first two terms in the final sum are zero by

assumption, and the final term is bounded below by
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for some positive constant c depending only on the error distribution. This is

true because the argument of sech2(e) is bounded above by lei + C, where C is

the supremum bound of gO(x) - given in Lemma 3.1. We thus have

Using the same Taylor series expansion and the fact that sech2(e) is bounded

above by 1, we also have

Combining these results we obtain

where we have used the crude inequality S UOU 2. We can thus choose
2£L(£,Pn) = Pn .

Assumption S4 follows from the fact that t(e) is nondecreasing.
For Assumption S5,
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Now

for all n and x because Itanh{-)I is bounded above by 1. Using the assumption

that 8p'{e) = 0, we have by Taylor's theorem

2because sech (e) is bounded above by 1.

Assumption S6 follows from an argument similar to the one used in verifying

Assumption S3. Here

w{e,x,S,z) = (a2/ag2)s[go{x) + e,x,g]1
g = (p'S - z

2 0= 1/4 sech {[g (x) + e - (p'S + z]/2).

Using the above mentioned argument, the quantitiy in the brackets can

be bounded above by lei + Izl + C, where C is some constant independent

of x. So as long as we have positive constants a and q satisfying

P{a) - P{-a) = q

and b is an arbitrary positive number, then we can choose

2c = 1/4 sech {[C + a + b]/2}

which is positive.
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REMARK 4.1. Assumptions 51-56 are easier to verify for the least squares

objective function. The same results thus hold for least squares estimators,

provided of course the rate constraints given below are satisfied.

We now verify Assumptions PI-PS for our first choice of a. Assumption PI

is satisfied trivially. For Assumption P2, applying Lemma 3.2 and plugging in

our choice of Mn necessitates

{pl/q [B(p )]1/2-1/q I e }1/2 - nen
2 + (l+e)log(n)n n n

be bounded as n for some e > O. In terms of a and P, this is implied by

1 - 2P > a[1 + 2h(q/2 - 1)]/q2 + PI2

or

2 > ha - a(2h - 1)/q + (1+22)p.

For the first extreme, we want the rate of convergence in Assumption P3 (i) to

just be bounded. , For our L(2,Pn)' and in terms of a and P, this is achieved by

setting

P = 22a + (1+1)/r

which immediately guarantees Assumption P3 (ii). Plugging this into the final

inequality above yields

2 - (1+1)(1+22)/r
a <

h - (2h - 1)/q + 22(1+22)

and our choice of a satisfies this constraint; the fact that q can be made

arbitrarily large ensures that it is tight. Note that Assumption P4 was used
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as a hypothesis, and Assumption P5 follows from our choice of a and Remark 2.2.

The second extreme follows from making Assumption P3 (ii) the binding

constraint, i.e. letting P be as large as possible. This entails setting

P = 2ma + (1+1)/r - f

for a small f > O. The selection of a follows exactly as above.

Unfortunately, Assumption P4 cannot be satisfied in this case.
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5. Proof of main theorems. In this section are given the proofs of the

theorems stated in Section 3. To summarize, we use the techniques of Pollard

(1984) and Severini and Wong (1987) to prove Theorem 3.3, which can be viewed

as a uniform strong law of large numbers with a rate. This theorem essentially

changes Lemma 1 of Severini and Wong from convergence in probability to almost

sure convergence. Theorem 3.4 simply makes use of Theorem 3.3 via Assumption

S3 to obtain convergence in the "·"2£ norm. Theorem 3.7 borrows heavily from

Yohai and Maronna (1979).

PROOF OF THEOREM 3.3. Define

gn = {f I f(e,x;8) = 8 E an}

and note that

Let = where ut takes on the values ±1 with equal

probability, independently of From Pollard (1984, p. 31)

p(sup 18nf - 8fl > 8En) 4 p(sup > 2En)
.

provided Var(8nf)/(4e n)2 1/2 for each f E gn' Note that by Assumption SI

for f E gn' so en must satisfy
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In terms of this is implied by 1 + 2(1+1)/r - > 0, and this follows from

Assumption P2. Now define the following three sequences of sets:

C =n

where N1(En,9n) is the smallest m such that there exist (B 1, ... ,Bm) in Sn

satisfying

sup min 8 If(e,x;B) - f(e,x;Bj)1 < 2E.
BESn

N1 is the covering number used in Chapter II of Pollard (1984). Now,

Our strategy is to show that the right hand side of this expression is

summable, and then apply the Borel-Cantelli lemma. For the first term, we

condition on with respect to which both Bn and Cn are measurable.

Using the indicator function 1(0) and the Hoeffding inequality from Pollard

(1984, p. 31 )

P(A BCCc I { })n n n et,xt = 8 [l(An) I {et,xt }]

2 N1(En,Jn) maxj

where the maximum runs over all N1(En,Jn) functions {gj} in the approximating
class. This maximum can be replaced by the supremum of 8nf2 over f E I n, and

by definition of Bn and Cn the right hand side is bounded above by

2 exp[H(2En/Mn,Sn'UoU) - This bound no longer depends upon the
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conditioning random variables, and thus it bounds the unconditional probability

as well. It is summable by Assumption P2. For the second term, using Markov's

inequality (r/2th power) and Assumption Sl,

z P(8n sup8eSn
S R/n1+1

which is summable. Finally, as in the proof of Lemma 1 of Severini and Wong

( 1987)

z sup min 8nls(8) - s(8.)I/n(l+1)/r
8eSn j J

So by Markov's inequality (qth power) and Assumption S2

P(Cn) S P( 8nmn(e,x)/n(l+
1)/r > Mn)

S 1/nq(l+1)/r

which is summable because q r. The final result follows from the fact that

for any E > 0, En can be replaced by EEn in the above argument. I

PROOF OF THEOREM 3.4. Apply the triangle inequality:

The second term on the r.h.s represents a pure approximation error and is

by the statement given after Theorem 2.2 of Cox. Considering the

first term on the r.h.s, first note that
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o 0 2 -2m8 [gn(x) - g (x)] = O(Pn )

by the same statement from Cox. So Assumption S3 and the Corollary to Theorem

1 allow us to say that

provided

which is Assumption P3(ii). Assumption P3(i) ensures that we have consistency

in the 11-11 21 norm. I

REMARK 5.1. Our proof strategy seems quite different from the functional

analytic approach of Cox. We are unsure of the extent to which his results

depend upon the projection nature of least squares estimators, and whether or

not they can be generalized to our setting. Our approach also differs from

compactness arguments a la Jennrich (1969). They appear to yield consistency

only in a norm one order less than the one defining the estimation subspace

(see Elbadawi, Gallant, and Souza, 1983).

PROOF OF THEOREM 3.7. First, note that
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We make the following definitions:

X(e,x,p,z) = (a/ag)s[go(x) + e,x,gJI
9 = h(x)'P - z

where h(x) =

and

Then we have

P(sup p-I/2 u(e,p!/2L) 0).ueu=! n n

To see why this holds, note that

= 0

by the first order conditions of the optimization problem, which hold a.s. for

n sufficiently large by Theorem 3.4. So the event
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by Assumption 54, because regardless of whether - is positive or

negative, the effect of decreasing - to (in the second

argument of U[.,.]) is to increase U. The inequality follows by taking the

supremum over HEH-I.

Note that

so by Taylor's theorem

n
p-I/2 U(E,pl/2L) _ p-I/2 LX (ht'E)
n n n t=1 nt

where A is between 0 and I. Looking at the two terms on the r.h.s.

separately, put

Then

2P(An Lcq/2) = I/L 0(1)

by Lemma 3.6. Therefore, by choosing L large enough, we can make

P(An Lcq/2) &/2

for any &> o.
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Now define

Note that for UEU-l

where 'Yn = maxlstsnUhtll2. Note 'Yn S Amax(t/t/nfl B(Pn)/n, so this final bound
can be made less than b for n sufficiently large by Assumption P5. This allows

us to invoke Assumption S6, and conclude that for n sufficiently large

222P(Bn < cq/2) S (4r /c q ) 'YnPn

by Lemma 2 of Yohai and Maronna (1979). The right hand side of this expression

converges to zero again by Assumption P5. So for nand L sufficiently large

P(Pn-1/ 2 - gOn)U L) S P(sup p-l/2 U(E,pl/2L) 0)
UEU-l n n

S Lcq/2) + P(Bn < cq/2)

for any 0 > o. I
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APPENDIX

PROOF OF LEMMA 3.2. We use an argument of Smolyak (1960) which was

originally given by Kolmogorov and Tihomirov (1959). Recall that

Let Mbe the maximum number of non-intersecting balls of "-"-radius e/2 with
centers in 9n and let 8 be a point in 9n.- Notice that the e/2-neighborhood of

8 in "-" must intersect one of the Mballs, and hence 8 is within "-"-distance
e of one of the centers of these balls. Therefore

We now find an upper bound for M. Note that all of the Mballs lie within the

Pn-dimensional ellipsoid with vertices ± (B/jl + e/2), j = 1, ... ,Pn. If we

call this ellipsoid 9n,e' then MS Vlv, where V is the volume of 9n,e and v is
the volume of a Pn-dimensional ball of "-"-radius e/2. By integration, the

volume of a p-dimensional ellipsoid with vertices ± aj , j = 1, ... ,p, is

7l'p/2 P
---- - n \aJ"I.
r(p/2 + 1) j=1

Therefore
7l'p/2

M S h(B/jl + e/2) x
r(p/2 + 1) j=1

r(p/2 + 1)

7l'p/2

= h (2B/ejl + 1)
j=1

where p = Pn. Taking the (natural) logarithm and using an integral

approximation we have
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log M = t 10g(2B/fj 2 + 1)
j=1

J
p 2o 10g(2B/fY + 1) dy

where q = (l/p) (2B/f)I/2 and we have used the transformation x =
(l/y)(2B/f)1/2. Now for 1 2, the integral can be bounded above by

where cH is some positive constant and we have used formula 4.295.2, p. 560

from Gradshteyn and Ryzhik (1980). I

REMARK A.l. For the case 1 = 1, the bound from Lemma 2 still holds as long

as q defined above is bounded away from zero. For this case, we would thus

need to assume that

lim (2BMn/fn)l/l/ Pn =
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