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Abstract

In the past twenty years there has been much interest in the physical and biological sciences in

nonlinear dynamical systems that appear to have random, unpredictable behavior. One important

parameter of a dynamic system is the dominant Lyapunov exponent (LE). When the behavior of the

system is compared for two similar initial conditions, this exponent is related to the rate at which the

subsequent trajectories diverge. A bounded system with a positive LE is one operational definition of

chaotic behavior. Most methods for determining the LE have assumed thousands of observations

generated from carefully controlled physical experiments. Less attention has been given to estimating

the LE for biological and economic systems that are subjected to random perturbations and observed

over a limited amount of time. Using nonparametric regression techniques (Neural Networks and Thin

Plate Splines) it is possible to consistently estimate the LE. The properties of these methods have been

studied using simulated data and are applied to a biological time series: marten fur returns for the

Hudson Bay Company (1820-1900). Based on a nonparametric analysis there is little evidence for low-

dimensional chaos in these data. Although these methods appear to work well for systems perturbed by

small amounts of noise, finding chaos in a system with a significant stochastic component may be

difficult.
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1. Introduction

In the past twenty years much interest has been generated in the physic tl and biological

sciences by deterministic mathematical systems that appear to have random, unpredictable behavior.

These kind of phenomena, spanning a diverse range of fields, have been collected under the common

heading of chaos. Models for chaotic behavior are important because they suggest a parsimonious

representation for systems following seemingly complex behavior. Also, the chaotic nature of a system

puts limits on the predictability of the future behavior from past history. These limits are present even

in the absence of any random components. This article discusses the statistical analysis of dynamic

systems based on estimating the dominant Lyapunov exponent, A. When the behavior of the system is

compared for two similar initial conditions, A is related to the rate at which the subsequent trajectories

diverge. A bounded system with A> 0 is one operational definition of chaotic behavior. Data

analytical methods developed over the last decade in theoretical physics (Schuster 1988, Mayer-Kress

1986) have concentrated on very large data sets generated from carefully controlled physical

experiments. Less attention has been given to estimating Afor systems subjected to random

perturbations and observed over a limited amount of time. These constraints are relevant for many

biological and economic systems and thus we are interested in the feasibility of statistical methods

when the dynamical information is limited by sample size and masked by noise.

Traditionally chaos has referred only to purely deterministic systems and has been considered a

distinct alternative to stochastic modeling (Farmer and Sidorwich 1988). Ruelle (1989), however,

defines a system to be chaotic if it exhibits sensitive dependence on initial conditions for all initial

conditions. Such sensitivity distinguishes chaotic systems from non-chaotic ones. We have found this

general definition useful becd.t·f1e particularly in ecological or epidemiologic systems there is no a priori

evidence to suggest a strictly deterministic model. By focusing on the dominant Lyapunov exponent

we are able to fit dynamic models to time series and to estimate the degree to which f is chaotic,

without the presupposition that the system is deterministic.

Given a times series we propose to estimate the Lyapunov exponent using nonparametric

regression. We assume that the data {xt } are generated by a nonlinear autoregressive model

(l.la) xt=f(xt _l,xt _2'" ,xt_d) + et,

or more generally

(LIb)

Here Xt E IR, f is a smooth, unknown function and {et} are a sequence of independent random

variables with E(et) = 0 and Var(et)=<T2.

An autoregressive model for chaotic data may be motivated by Takens's Theorem from
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(2.1)

dynamical systems theory: a deterministic chaotic system U(t) = (u1 (t), u2(t), '" um(t)) on an

attractor with dimension D < 00 generically satisfies an equation of the form

x(t) = f(x(t-L), x(t-2L), x(t-dL))

for any d > 2D+1 and L > 0, where x is anyone of the variables u1' u2' "', um (see Eckmann and

Ruelle 1985 for a precise statement of the theorem). This result is important because it suggests that

time lags of a single variable can serve.as surrogates for the unobserved variables of the system. Data

analyses based on this result include the widely-used method of "attractor reconstruction in time-delay

co-ordinates" (Schuster 1988). Thus our basic model (1.1) is a generalization of attractor

reconstruction to allow for random perturbations. Under the broader definition of chaos cited above,

systems like (1.1) may be chaotic.

In Section 2 we review the properties of Lyapunov exponents and compare this measure of a

dynamic system to the dimension of the attracting set. Section 3 describes two nonparametric

regression estimates of f in (1.1) and these estimates are used to derive estimates of..\. Section 4

evaluates the performance of these methods for simulated data and Section 5 compares these methods

on a short biological time series: marten returns for Northern Canada from 1820-1900. The last

section discusses these results from the simulations and the data analysis.

2. Quantifying Dynamical Properties of a System.

In order to follow a system in time it is useful to think in terms of a map acting on a state

vector. Let Xt =(Xt' .. " xt _ d + Et =(et, 0, .. ·,0) and define the map function F: IRd -.lRd

such that

X - T'(V ) +Et - .;. ,-'-t - 1 t

is an equivalent model to (1.1a). This form makes it clearer how the system evolves over time and the

sequence of state vectors, {Xt } 1 :s; t :s; N, will be referred to as the system's trajectory. One basic
feature of a chaotic system is that for arbitrarily close state vectors the resulting trajectories will

diverge at an exponential rate. In order to illustrate this phenomenon it is first necessary to discuss the

set traced out by a trajectory.

2.1 Attracting Sets.

For a deterministic dynamic system given by (2.1) with Et == 0, let .A. denote a set with the
following properties:

1) If X E .A. then F(X) E .A.

2) If Xois sufficiently close to .A. then distance(Xt , .A.)-.O as t-+oo.

Because of the second property,.A. is called an attractor: trajectories starting near the attractor
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converge onto it and their subsequent motion is codined to the attractor. (However, it is difficult to

give a formal mathematical definition of attractor" that can apply in all cases, and less restrictive

definitions are often used; see Guckenheimer and Holmes 1983, Chapter 5). For deterministic chaotic

systems, the attractor will often be a complicated set with a fractional dimension. Due to this

correspondence, the identification of chaos in observational data may focus on dimension estimates

based on the set of observed state vectors. One problem with this approach is that dimension

estimates are sensitive to the amount of noise in the system; this difficulty will be illustrated by

considering a simple system without and with noise.

Figure 1 is an example of the attractor for a simple deterministic system that will be referred

to as the cosine map (a relative of the Henon map):

Xt'= cos(2.8 xt _ 1) + .3xt - 2

Note that in the vector formulation the state vectors are only two dimensional and thus it is easy to

depict the trajectories of this system. We see that the attractor is a bounded set with complicated

structure; using a series of 2500 values the correlation dimension was estimated to be approximately

1.2. Figure 2 is a similar plot of the attractor when a random component is added to the system as in

equation (1.1). In this case {et} are independent N(O, (.2)2) random variables. These two figures

indicate that the attractor changes dramatically when noise is added. The deterministic system yields

an unusual set with fractional dimension and Lebesgue measure zero. Due to the blurring by the

random component, in the mixed system the attractor is a two dimensional set. Consequently, using

dimension estimates to identify a chaotic element may be ambiguous. Correlation dimension estimates

for moderate distance scales may be fractional but will tend toward 2 as the distance scale decreases.

The reader is referred to Smith (1991) for a discussion of correlation dimension estimates and

modifications to adjust for noise.

2.2 Sensitive Dependence on Initial Conditions.

The attractor is a static object and the dimension of this set does not directly quantify the

dynamic behavior of the trajectories. An alternative to studying the attractor is to consider the

evolution of trajectories. Figure 3 and Figure 4 are panels of plots that follow 500 points with similar

initial conditions through 40 iterations of the cosine map. The second set (Figure 4) include a random

component, with the same realization, {et}, of random shocks being used for all the trajectories. In

either case, although the initial state vectors are distributed in a small circle, subsequent iterations of

the map rapidly distribute these points uniformly over the attracting set. By 20 iterations the

positions of these state vectors carry little information concerning their common origin and are

essentially independent. Note that the deterministic system tends to map these points into the

characteristic pattern of the attractor (c.f. Figure 1). The trajectories associated with the noisy system
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do not appear to converge to a fixed set because a new random shock is added with each iteration.

However, the pattern of these points is suggestive of the stable distribution depicted by the attracting

set for the noisy system in Figure 2.

Both cases exhibit a sensitivity to initial conditions, with trajectories initially diverging at an

exponential rate. Let 00 denote the cohort of initial state vectors in these examples and let 0t denote

the set of state vectors after t iterations of the system. The size of these sets can be quantified by the

mean pairwise distance (MPD) between points. Figure 5 is a plot of the log MPD of 0t as a function

of t for the deterministic system and 5.realizations (5 different sequences of random shocks) for the

cosine map. In the deterministic case there is an initial decrease in the size of 0t as trajectories are

absorbed onto the attractor, but on this set there is "sensitive dependence on initial conditions" and the

size of 0t then grows exponentially. The expansion stops abruptly as the size of 0t approaches the size

of the attractor and at this point the action of the map is to fold 0t back onto the attractor. The size

of 0t for the noisy system exhibits the same dependence on t: an exponential increase that plateaus

when the set expands to the same size as the attractor. Because these trajectories depend on a random

component., there is some variation between them in the growth of 0t. However, once trajectories settle

onto the attractor there is relatively little variation in the slope during the exponential growth phase.

2.3 Lyapunov Exponents for Stochastic Systems.

The example given above suggests that sensitive dependence on initial conditions is a common

feature of both deterministic and noisy chaotic systems. More specifically the slope (or average slope)

for the curves in Figure 5 may be a useful measure for the degree of chaos. The Lyapunov exponent is

f'3sentially the limiting slope as the initial state vectors are confined to an infinitesimally small

neighborhood.

Let X-&- and E IRd denote two initial state vectors such that X-&- - = U8 where U is a

fixed vector of unit length. After one iteration of (2.1) with the same random shock we have

IIXf - Xp II = II F(X-&-) - II

where DF is the d X d Jacobian matrix of partial derivatives for the map F. Now assume that D2F is

uniformly bounded for all X in the attractor, set J t =DF(Xt> and TM =JM • JM -1 ... • J 1" By

application of the chain rule for differentiation: (djd8) - X =TMU it is possible to show that

II - II = !!TMU 11 8 + 0(8)
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under the circumstawes that M --+00, 8--+0 such that KM8--+0 where K is an upper bound based on the

the first and second order derivatives of F. Under such limiting conditions, TM gives a linear

approximation to the action of iterating F, M steps. Indeed, the Lyapunov exponent is related to the

largest singular value of TM'

Let III (M) denote the largest eigenvalue of TM' The formal definition of the Lyapunov

exponent is

(2.2) def. 1 I ( )IA = 2M log vI M .

At this point it is far from clear whether such a limit exists, especially for a noisy system. This

definition can be made rigorous, however, and some necessary conditions on the system are given at

the end of this section. It should be noted, that if A exists and is independent of xt,
II Xt-t - II eAM8+ 0(8)

provided 8--+0 and M--+00 and 15KM--+O• Also, if we let cr = lim (T TM) 112M , then A corresponds
M--+oo

to the largest eigenvalue of cr. The inequality given above will actually be attained if xt - is not

orthogonal to the eigenvector of cr corresponding to A. Although Awill be a constant, for a system

with a random component the limiting. matrix cr will be random and will depend on the particular

sequence of errors {et}. Thus the eigenvectors of cr will vary from one realization of the system to

another even though the eigenvalues are constant (Eckmann and Ruelle 1985).

One can actually define a vector of Lyapunov exponents associated with the log eigenvalues of

cr. Positive exponents correspond to directions where the action of F causes trajectories to diverge
while negative exponents identify directions of contraction. Moreover the positive exponents may be

used to estimate the dimension of the attractor via the Kaplan-York conjecture (see Abarbanel, 1991).

We have chosen to concentrate on the dominant exponent because it is much easier to estimate and by

itself provides evidence for chaotic dynamics. There remains some controversy as to the feasibility of

estimating exponents other than A even in the case of deterministic systems.

2.4 Existence of A.

The existence of the limit in (2.2) is based on the system (1.1) generating a time series that is

ergodic. The conditions leading to a rigorous justification of (2.2) will now be developed.

0) Xt = F(Xt _ 1) + Et where {Et} are iid random vectors.
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1 a) There is an irlVariant set, .A, and a unique Borel probability measure, J.l, on (lRd, such that

lim
N-oo

1 N
-N E IB(Xt)t=1

for all B E and XoE .A, where IB(x) is the indicator function for the set B (IB(x) = 1 if x E B,

ootherwise).
1 b) Xois randomly sampled from the distribution J.l.

2) f max (log II DF(X) II, 0) dJ.l(X) < +00
.A

Under these conditions it follows that (2.2) will exist almost surely and be a constant. Condition 0

implies that the trajectory constitutes a Markov process. This structure is important because it allows

us to characterize the joint distribution of the times series by the stationary distribution of the process.

Condition 1 is the requirement that Xt be a stationary, ergodic process. In this manner a single

realization of the process is rich enough to reproduce integration with respect to the stationary

measure. Although the limiting properties at (2.2) depend directly on the matrix process

{Jt} = DF(Xt), this process will also be ergodic and stationary due to Condition 1. The independence
of A to the initial state vector can be tied to the requirements of ergodicity. It is possible to use the

work of Kifer (1986) to relax Condition 1b at the expense of more stringent conditions on F. Since

stationarity is often a basic requirement of a times series model we consider Condition 1b a reasonable

assumption.

Although the Lyapunov exponent is almost surely a constant, the convergence to this limit

may be slow. The practical implication is that the eigenvalues of TM)1/2M may be quite

variable for small M and are best considered as random quantities. Some examples of this variability

are given in Section 4 ( e.g. Figure 8). Also, because this mathematical structure rests heavily on

ergodic properties, the stationarity of {Xt } is crucial.

3. Estimates of the Map and the Lyapunov Exponent

The approaches for estimating A can be classified into two groups: Direct methods and

Jacobian methods. Direct methods seek to find similar pairs of state vectors within the observed series

and estimate how the subsequent trajectories diverge (Guckenheimer 1982, Wolf et al. 1985). Besides

requiring long data series, the procedure is sensitive to noise. For noisy systems, the trajectories being

compared will not have the same sequence of random shocks. Thus the divergence between them

might simply be due to the random component.

7



Jacobian methods generate estimato of ,X through the intermediate step of estimating the

individual Jacobian matrices. Let f t denotp' the estimate of J t and TM =fM' .. fl' The estimate of
the Lyapunov exponent is then (112M) log IVI (M) I, where VI (M) is the largest eigenvalue of

112M dL(TM TM) . (Note however that for L > 1 (LIb) is a system on IR having dL Lyapunov

exponents consisting of d groups of L identical exponents; thus we estimate A by averaging the d
largest exponents.) This depends intrinsically on the limiting relationship (2.2) for

consistency. Early work on this problem used a local linear regression procedure to estimate the

Jacobian matrices (Eckmann et al. 1986). We have improved on this approach by introducing more

sophisticated function estimation techniques (MCCaffrey 1991, MCCaffrey et al. 1991, Ellner et al. 1991)

and data based methods for smoothing parameter selection.

A basic theoretical question is the relationship between the consistency of the Jacobian

estimates and the estimated Lyapunov exponent. MCCaffrey et al. (1991) give a consistency proof and

conjecture on the rate of convergence. Abstracting the main conjecture of this work,

If sup I]t - Jtl = N) for some f3r O and f3 NM---'>O then (). -,X) = ()p(f3N) as N,M---'>oo.

Two important aspects are hig.hlighted by this conjecture. The convergence rate for is

directly related to the convergence rate on estimates of derivatives of the map. Also, the number of

data points may need to be larger than the number of terms in the matrix product.

When a random component is present in (1.1) and a nonparametric regression estimate is used

to estimate the Jacobian matrices, f3N "" N - 8 with 8 < l Moreover, 8 "" as d, the number of lags

in the model (1.1), increases. Thus, for a given sample size increasing the number of lags may have a

drastic effect on reducing the accuracy A similar phenomenon can be observed in dimension

estimates as the embedding dimension is increased. This problem, described as "the curse of

dimensionality", is not limited to the analysis of dynamic systems but is a general feature of

multivariate data. One way to avoid this problem is to formulate map estimates that represent the

full multivariate function using lower dimensional surfaces. Of course this strategy will only work

provided that the true map is well approximated by a set of lower dimensional functions.

Because of the typical convergence rate expected for f3 N, the condition Mf3N---'>O can only be

satisfied if M is asymptotically negligible relative to N. This suggests that in practice one might

estimate the partial derivatives of f based on the full data but only consider products of the matrices

over blocks of size M < N. The estimates for the individual blocks (there will be roughly N1M of

them) could then be averaged to yield an overall estimate. While theory suggests M < N our
experience with simulation experiments has suggested that M be taken as large as possible (i.e. M = N).

Moving away from the general discussion of estimates for ,X the remaining part of this section

will focus on two nonparametric regression estimates of f. It should be kept in mind that these
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function estimates are considered with tLe intent of differentiating the estimated map and constructing

estimates of the Jacobian matrices.

3.2 Thin Plate Splines

A fundamental definition of a spline is as the solution to a minimization problem. Although

one-dimensional splines are most widely known as piecewise polynomial curves, this characterization

does not extend easily to two or more Q.imensions. Consider data of the form

(3.1) Yt = f(X t ) + et
where Xt E IRd , {et} follow the assumptions of (1.1) and f has square integrable partial derivatives up

to degree m. (For estimating fin (1.1), note that Yt == Xt and Xt == (xt_L' xt-2L' "', xt-dL)') Let

i(h) = -N1 (Yt - h(Xt ))2 + d(h)
t = 1 m,

where p > 0 and

1m, d(h) = at + ... fad = m (a/'.'.ad)JRd [ axrl. aXdad

The mth order thin plate spline estimate of f is the function that minimizes i(h) over all h such that

d(h) < 00 (see Wahba 1990). d(h) is a general (rotation invariant) measure of roughness in

the function h and by varying the value of p one can control the resulting smoothness of the estimated

map.

Let fp denote the thin plate spline estimate of f to emphasize its dependence on this smoothing
parameter. Large values of p will constrain the estimate to be very smooth and gradual at the expense

of not fitting the observed data closely: This choice for p would be advantageous when the errors have

a large variance or f has simple structure. In the limit as p->oo, fp will converge to a polynomial of
degree m - 1 where the coefficients are determined by ordinary least squares regression. Small values of

p would typically arise from fitting data with little or no noise. As p->O the resulting estimate will

interpolate the observed data, but will remain a smooth function (relative to the criterion ) in,m
between data points. Some asymptotic properties of thin plate splines are given by Cox (1984).

Although spline functions are defined abstractly as the solution to a minimization problem,

they are readily computable up to a sample size of several hundred (Bates et al. 1987). The solution

will be a linear combination of the ( d+d- 1) monomials up to degree m - 1 and N radial basis

functions. Moreover, the coefficients in this linear combination are linear functions of Y = (Yl' ''''YN)T.
For this reason there exists an N x N matrix A(p) such (rp(X1), ....rp(XN))T = A(p)Y. Here A(p)

depends on p, m, d and {Xt} but not on Y. If A was a projection matrix then the trace of A(p), would

give the number of parameters in the representation of the function. For a smoothing spline, A2 ::; A,
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however, it is sl-ill reasonable to use trace A(p) as a measure of the effective number of parameters in

the estimate. This also suggests identifying N - trace A(p) with the degrees of freedom for the residual

vector and an estimate of (12 based on this correspondence is

(3.2)

Some asymptotic properties of 0-2 are given in Nychka (1990).

From the discussion above it should be clear that the accuracy of f p may depend greatly on
the choice of p. Although the smoothing parameter is often chosen subjectively, it is also useful to

have a data based procedure for determining p. Perhaps the most common procedure is generalized

cross-validation (GCV). Here p is taken to be the value that minimizes

One motivation for using GCV is that 'p will tend to minimize the expected average squared error
(EASE): EASE(p) = (liN) t g1 E(fp(Xt ) -f(Xt ))2. Although GCV tends to give good estimates

for p on the average, in a small fraction of cases GCV may drastically under smooth (p 0) noisy data

(Nychka 1991). In these cases f will yield poor estimates of the Lyapunov exponent. To avoid thisp
problem, a modification of GCV was considered that can give added weight to larger values of p.

This criterion is the same as usual cross-validation except for the addition of the constant C in the

denominator. Setting C =2 creates a pole at trace A(p) =N12 and thus constrains the effective
number of parameters to always be less than half the number of observations. Although this modified

form does not provide estimates that minimize EASE, we conjecture that p will be related to
minimizing a weighted sum of the bias and variance components. For C > 1 more weight will be given
to the average variance than to the average squared bias.

3.3 Nonparametric Regression with Neural Network Models

"Neural networks" are a class of nonlinear models inspired by the neural architecture of the

brain. The study of neural networks ( or equivalently neural nets) began with McCulloch and Pitts'

(1943) analysis of the logical computations that could be performed by appropriately configured

networks of simple input-output devices modeling individual neurons. The growth of interest in neural

nets stems from their recently discovered ability to perform some computational tasks that are more
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difficult to handle with standard algorithmic approaches, such as pattern recognition and classification

based on imperfect data (see e.g. Caudill and Butler 1987, Lapedes and Farber 1987, IEEE 1988,

IJCNN 1989). In addition, neural nets are capable of approximating arbitrary continuous maps on

finite dimensional spaces, which allows their use in nonlinear regression.

Here we consider only one type of network -- feedforward single hidden layer networks with a

single output (Rumelhart, Hinton and Williams, 1986) -- which has been the predominant model in

statistical research on neural nets. The network structure is illustrated in Figure 6. The input values Xl

and x2 are received by the two input units, which simply pass the input forward to the hidden units

ui' Each connection (indicated by an arrow) performs a linear transformation determined by the

connection strength lij' so the total input for hidden unit ui is L: f=l l ijXj' Each unit performs a
nonlinear transformation on its total input, producing output

d
°i =

The activation function 7P is the same for all units, but each unit may have its own bias liO

representing an external input or the neuron's intrinsic activity level. Typically 7P is a sigmoid function

with limiting values 0 and 1 as x-+ - 00 and +00 respectively; in our work we used

'lj;(x) = x(1+lx/21)/(2+lxl+x2/2). The hidden layer outputs 0i are passed along to the single output

unit, which performs an affine transformation on its total input. The network output 0 can therefore

be represented as
q

(3.3) 0 = (30 + L: (3.7/! (X'I' + 1'0)
i=1 1 1 1

for d inputs and q units in the hidden layer, where X is the vector of inputs and li=(lil,li2' .. 'Iid)'

Like projection pursuit regression (Friedman and Stuetzle, 1981), neural network models

estimate a multi-dimensional map by a sum of univariate functions of projections of the multi-

dimensional vectors. However unlike projection pursuit, the univariate functions are not adaptive like

kernels or splines, but rather are parametric functions selected a priori. Thus the neural net model

resembles multi-dimensional series expansions such as Fourier series expansions. In fact, Gallant and

White (1988) showed that for any unknown function on a bounded domain, an appropriately

configured network with a piecewise trigonometric activation function yields a multivariate Fourier

series approximation of the function. Hence networks with sufficiently many hidden units inherit the

ability of Fourier series to approximate square-integrable functions to any specified degree of accuracy.

The utility of neural net models as empirical tools is not ensured by these approximation

results. For regression applications, given a data set of inputs and their associated outputs it must be

possible to choose parameters B= ((3i'/ij) that give an accurate estimate of the unknown function.

Suppose we are given a sample of size N generated by Yt = f(X t ) + Ct' 1.s t .s N, where the tt are iid
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random errors. Let fN be estimated by least-squares based on the model at (3.3) and subject to the

constraints L:: fJ i I < L\ and L:: G:1 L::1=0 l'Yij I < L\q. If L\ and q are appropriately chosen
functions of N which prohibit network complexity from growing too rapidly, then in probability

and one can also estimate consistently functionals of f, including its partial derivatives if f is

sufficiently smooth (White 1989, Gallant and White 1989). McCaffrey (1991) and Barron (1991)

extend these results by giving rates of convergence.

In previous work on estimating Lyapunov exponents (McCaffrey et al. 1991, McCaffrey 1991),

neural nets emerged as the regression method of choice for large time series (2000 or more values) from

chaotic systems with low levels of noise. The main advantage of the neural nets was their robustness

against incorrect choice of the model's dimension d (i.e., the number of lags in equation (1.1) ). In

practice the number of lags is not known, so a common strategy is to increase d with a fixed time-

delay L until estimates of the quantity of interest stabilize (Mayer-Kress 1986). The other methods we

studied -- local thin-plate splines, radial basis functions, and projection pursuit regression -- became

unreliable when the model included lags which were not present in the equations generating the data.

One practical difficulty in regression with neural net models is selecting among the many

possible combinations of d, Land q. Based on Gallant and Tauchen's (1990) experience in fitting

seminonparametric GARCH nonlinear time series models, we propose model selection based on the

"Bayesian Information Criterion" (BIC) (Schwarz 1978, Potscher 1989). Assuming Gaussian errors in

our case the criterion is computed as

BIC = t{1+ln(27r)+ 2In(RMS)+Pln(n)/n}

where n is the number of data points, P is the number of parameters in the model, and RMS is the

root-mean-square one step ahead prediction error. For a fixed number of parameters, mh,:...:.:.ing BIC

is equivalent to least squares.

3.4 Fitting a neural network to data using least squares

Choosing the network parameters (fJi,'Yij) to optimize some performance criterion is a high-

dimensional nonlinear minimization problem. The parallelism of nets results in many different

parameter combinations achieving identical or nearly identical input-output maps, hence the objective

function has many local minima and the fitting procedure must get past these to a global minimum.

We experimented with a variety of optimization methods (including Levenberg-Marquardt as

implemented in MINPACK; the NeIder-Mead simplex method, Powell's method, and conjugate

gradient methods in Press et al. (1986); Brent's PRAXIS method from NETLIB; and genetic

algorithms). The most efficient and reliable results were obtained with two implementations of the

BFGS gradient method (Gill et el. 1981) with exact derivatives. BFGS is based on secant updates of an
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approximate Hessian or inverse Hessian, which is used to determine a search direction.

Our experience with neural nets matches some general conclusions of Gill et al. (1981) for

"large residual" nonlinear least squares problems: a general-purpose gradient method performed better

than one expoiting the structure of least squares, and exact calculation of the Hessian (rather than

approximate updating) was not advantageous. Our first implementation used standard BFGS updates

on an approximate inverse Hessian, algorithm of Berndt et al. (1974) for choosing the steplength

and identifying unacceptable search directions, and the termination criterion suggested by Gill et al.

(1981) for unconstrained minimization. Numerical differentiation of the gradient was used to initialize

the Hessian, and re-initialize it whenever a search direction proved unacceptable; more often than not

re-initialization failed because the true Hessian was not positive definite, and the approximate Hessian

was then re-initialized to the identity matrix. The second implementation used the NPSOL

constrained minimization package (Gill et al. 1986). NPSOL uses a modified BFGS update of an

approximate Hessian which preserves positive definiteness. The first approach (coded in GAUSS) was

the most efficient we found, but the second (coded in FORTRAN) was faster due to the difference in

computing platforms.

4. Simulation Studies of Thin Plate Splines and Neural Net Estimates of A.

4.1 Mackey-Glass System

The methods described in Section 4 were evaluated using simulated data from a simple

dynamic model that has some biologica.! justification. The map considered is

(4.1) f(x1' .. " xd) = aXl + bljJ(xd)

where ljJ(u)= u/(l+uk) and (a, b, k, d) are parameters of this system. For k= 10 this is a discretized

version of the Mackey-Glass delay differential equation, originally developed to model the production

and loss of white blood cells (Glass and Mackey 1988). It can also be interpreted as a model for

population dynamics. If 0 < a < 1 and b > 0 and if Xt denotes the number of adults, then a is the

survival rate of adults and d is the time delay between birth and maturation. The term bljJ(xd)

accounts for the recruitment of new adults due to births d years in the past, which is nonlinear due to

decreased fecundity at higher population levels. For such biological systems multiplicative errors are

more reasonable and so series were generated according to the model

where Wt is distributed log N(O, (1"2). In order to satisfy the additive model assumption in (1.1), the

methods for estimating A were applied to the log transformed series. (It should be noted that the

Lyapunov exponent is unaffected by this transformation of the state vectors.)
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The parameters values (a, b, k, d) = (.2, 2, 6, 2) were used in this study. The values of u were

taken to be (.01, .05,.1) and have corresponding Lyapunov exponents (.14, .14, .12). Figure 7 compares

realizations of this system based on deterministic evolution and with noise (u = .1). The addition of
noise to this system has the effect of occasionally introducing sharp positive and negative spikes in the

time series. The behavior of the deterministic system exhibits amplitudes that are more regular in size.

4.2 Thin Plate Spline Estimates

The first part of this study was designed to understand the statistical variability associated

with estimates of A derived from a thin plate spline estimate of the map. In this case the correct

number of lags (d=2, L=l) was assumed to be known. Three levels of u (.01, .05, .1) and 5 estimates

of :\ were considered. It is useful to list these estimates in order of their expected accuracy.

J known: :\ is calculated from (2.1) using the true Jacobian matrix.

f known: Jacobian matrices are computed from a thin plate spline fit to the

exact values of map. (Yk = f(Xk) in (3.1) )

Rho fixed: The map is estimated from the time series using a fixed value of

rho. This value was chosen to minimize the variance of the

resulting estimates of :\.

GCV2: Map estimated from the time series where p is chosen by modifed

cross validation with C=2

GCVl: Same as the GCV2 estimate except that p is chosen based on the usual cross-

validation function (C=l).

Note that only the last two estimates are completely data-based and do not require some knowledge

about f.

For each level of u, 200 series with length N=80 were simulated, and an estimate of A based on

the five alternatives listed above was computed for each series. Boxplots in Figure 8 summarize the

resulting distributions. Not surprisingly the variability of the estimates based on estimating f

increases with u. The choice of smoothing parameter also appears to have a significant effect on the

distribution of i Estimates that used an "optimal" choice of p have a variability comparable to that

if the map was known. Estimates based on cross-validation are substantially less accurate but the

skewness of the distribution depends on C. For ordinary cross-validation (C=l) the estimates tend to

produce more spurious high values. When C=2 the estimates tend to underestimate A. Figure 9

illustrates the dependence of to poor estimates of p. For the case u=.l, the Lyapunov exponent

estimates have been plotted verses the estimate of u based on the GCV spline estimate, C=2.

When the spline oversmooths the data ( p too large), it was found that a- For large values of a-
we see more variable estimates of A and also a substantial bias. Similar patterns were found for the
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other levels and estimators in this study.

4.3 Neural Network Estimates

Our simulations focussed on the stability of numerical least squares estimates of the network

parameters and the accuracy of the corresponding estimates of A. For each model specification ( # of

lags d, time-delay L and number of units q) we randomly generated 100 to 200 parameter values and

used the best of these (lowest sum of squares) as initial values for a minimization with a lax

termination criterion, repeating this process 150 times and saving each final set of parameter values.

The 10 best of these 150 were then used as initial values for minimization with a stringent termination

criterion. The estimate of A for a given combination of d, Land q corresponded to the map estimate

that minimized BIC over the 10 replicates.

The results of fitting a series from the Mackey-Glass system (N=125, 0"=.1) are summarized in
Figure 10. As with longer time series (McCaffrey et al 1991), plotting the resulting estimate of A
estimate vs. d produces a curve with a plateau very near the correct value, for L = 1 or 2. Since the

qualitative presence or absence of chaos hfnges simply on whether A is positive or negative, the slight
variation of the estimates is unimportant. The BIC criterion chose models with the correct time-delay

(L = 1), and for a given d and L models with the BIC-preferred number of hidden units generally gave

the most accurate estimate of A (Figure lOb). In addition, with the values of d, Land q chosen by
BIC, the variability among the estimates of A from the 10 best-fitting parameter sets was quite low,

indicating numerically stable estimates of the map f. Very similar results were obtained with other

systems, including the cosine map described above with N(0,0.22) additive dynamical noise, and the

Henon map with N(O, 0.052) additive measurement errOH,.

In the Mackey-Glass example the results for L=3 are much less accurate and stable than those

for L=l or 2. This is not surprising, given that the true map depends only on xt_1 and xt_2 ' so any

model with L=3 gives a much poorer approximation to the true dynamics. This is reflected in BIC

values (Figure lOb) which clearly favor models with L=l or 2. However we rarely see such clear gaps in

performance when fitting empirical data on population dynamics. One possible reason for the difference

is that real-world populations are running in continuous time, and so they rarely have such non-smooth

dynamics with sharp dependence on specific past values. Simulation results for a continuous-time

chaotic system (the Rossler equations) with random perturbations are consistent with this

interpretation (Figure 11). BIC favors shorter time-lags, but there is no clear gap between successive

values of L, and estimates of A based on a series of length 200 are sufficiently accurate and stable for
L=l to 5 to identify the system as chaotic. For comparison, using the standard Wolf et al. (1985)

method on the same system without noise Vastano and Kostelich (1985) report: "results are poor with
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only 1024 points, but the Wolf algorithm gives reasonable estimates with 4096 poilits".

However these positive findings are critically dependent on finding accurat' nonlinear least

squares parameter estimates, rather than local minima that are far from optimal. With any of the

minimization methods we examined, this required a large number of trials with different initial

parameter values for each model specification. Attempting to reduce the number of trials by using an

"upward search" strategy over model specifications (as in Gallant and Tauchen 1990) was ineffective.

With upward search, the BIC criterion often chose models with too few parameters and consequently

inaccurate estimates of A, and minimal-BIC estimates of Awere less robust against incorrect choice of
the time-delay L.

5. Analysis of Marten Fur Returns.

5.1 The Data

Based on records kept by the Hudson Bay Company, Jones (1914) tabulates by species the

total number of pelts brought to market each year. Figure 12a graphs these observations for marten

over the period of 1820 to 1900. As is typical with animal abundance series, the analysis will use the

log of the original counts. Also, the log abundance is standardized to have a sample variance of one

(Figure 12b). Note that in this case the log transformation has minimal effect on the marginal

distribution for these data.

5.2 Spline Estimates of A.

The analysis based on thin nlate splines consisted of estimating maps for all pairs of lags

between 2 and 15. The first lag was excluded from these subsets due to high lag one autocorrelation

(.6) in the observed series. Although the embedding dimension is varied over a large range, each map

estimate is just a two dimensional surf9-ce. This strategy is a compromise between estimating a high

dimensional function and just focusing on the first few lags of the series. For the roughness penalty,

m = 3. Thus foo will be a second degree polynomial and trace A(oo)= 6. The = 91 pairs

of lags each suggested estimates of A and u. In order to choose among these possibilities the BIC

criterion (see Section 3.4) was calculated for each fit. (In the formula for BIC trace A(jJ) was

substituted for the number of parameters, P.) Figures 13a and 13b are scatterplots of the estimated

Lyapunov exponents verses BIC for two different choices of C (C=1,2 respectively) in the cross-

validation criterion for estimating p. When C = 1 the estimates of p tended to be slightly smaller

except for a small fraction of lag pairs where the data was interpolated. The large positive Lyapunov

exponent estimates in Figure 13a) correspond to these interpolatory map estimates. These

interpolating splines were considered spurious, however, due to their rough appearance and thus these
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estimates of >. were discounted. For the estimates with C=2, the 5 lag pairs with the smallest BIC

are reported in Table 1. One surprising feature when C=2 is that p = 00 for tJ.. ese five pairs of lags.

Moreover, the estimates of p for the five cases reported in Table 1 did not change when C = 1 was used

in the GCV function. It should be noted that except for the interpolatory cases all the thin plate spline

estimates yielded negative values for i

5.3 Neural Network Estimates of ,\

Figure 14 summarizes the results from fitting neural network models to the log-transformed

marten data. All models with time-lags L = 2 to 6 were examined for d = 1 to 6 lags. The minimal-

BIC model has 3 hidden units, 6 lags with time-delay 2. It is strongly chaotic (,\ == 0.32). The next
cluster of models all have longer time-delays (L 2:: 4), and are less strongly chaotic (\ == 0.1 to 0.15).
Although these results differ from the spline estimates, these estimates are derived from high-

dimensional models for the map (d 2:: 4). Restricting attention to lower-dimensional models (d 3,

Table 2), the minimal-BIe neural net models are all nonchaotic and there is general agreement with

the spline estimates regarding the level of noise and the complexity of the map (i.e., the number of

parameters in the model).

6 Discussion and Conclusions

In this article we have presented a statistical framework for the analysis of chaotic systems.

One basic question is whether it is ever possible to identify chaotic dynamics in short, noisy systems.

Simulation results based on thin plate estimates suggest that under some circumstances it is

possible. However, the accUl.:....J of the estimate degrades as the variance of the random component

increases and is sensitive to the choice of smoothing parameter.

This work also suggests that map estimates based on neural networks are feasible for noisy

systems with a small number of observations, but the advantages of this model can be retained only if

care is taken to find accurate least squares parameter values. Consequently the neural net model has a

heavy computational cost compared with linear estimators such as splines (2 to 3 orders of magnitude

for sample sizes of roughly 100). The cost is bearable for analyzing a few short data sets, but it is an

obstacle to extensive simulation studies or to inference based on bootstrapping.

The basic strategy in formulating map estimates is to avoid estimating the full d-dimensional

multivariate function and thus avoid the "curse of dimensionality". In the analysis of the marten

series we have taken two approaches. One is to estimate the best two-dimensional surface from

searching over a wide range of possible pairs of lags. Since a thin plate spline has good

approximation properties it is assumed that a flexible surface based on two lags may serve as a
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surrogate for a higher dimensional map with a larger e'Ubedding dimension d. The neural net estimate

represents the map via univariate functions taking linear combinations of the lagged values as

arguments. This strategy will be successful if the true map has a simple structure with respect to

several projections of the lagged values onto I-dimensional subspaces.

For the marten fur returns we do not find any evidence for "low dimensional" chaos (d :::; 3).

Both the spline and neural net estimates consistently yield weakly negative estimates of A for low-

dimensional models, except in several spurious cases where the spline interpolated the data. Because

these two function estimates are very different in their form, our confidence in the analysis of the

marten data is based on the rough agreement between the estimates of Afor splines and neural nets. It

is also encouraging that both methods identified models which base predictions on values roughly 10 to

15 years in the past. In higher dimensions the neural net estimates favor chaotic models, but this

should be interpreted with caution given that all our simulation studies involved low-dimensional

systems.

Most work on the effects of noise on chaotic data analysis has aimed at estimating properties

of the system with the noise deleted. This is appropriate if the noise is primarily measurement error,

which should be "filtered" out to get a better picture of the true system (e.g., R. Smith 1991). In

contrast, we do not require the assumption of perfectly deterministic dynamics, and the Lyapunov

exponent as defined here is a joint property of the intrinsic nonlinear map and the extrinsic random

shocks to the system. In the absence of random shocks there would be a different attractor, hence a

different distribution of Jacobians entering into the definition of A. The cosine map provides a good

example: with additive N(0,0.22) noise A == 0.35, but the noise-free system has A == 0.5 . The
be''''!',,!, these is not an error due to noise, but a genuine effect of noise on the system's qualitative

dynamics. The noisy system spends relatively more time in regions of state space where the short-term

sensitivity to initial conditions is smaller, so the long-term sensitivity measured by the Lyapunov

exponent is smaller. Both A's are legitimate objects of study, but we emphasize the former because it

reflects the system as it is-- e.g., marten in the wild and subject to fluctuations of climate, food supply,

predator abundance, etc.

Beyond reliable estimates of the Lyapunov exponent it is important to be able to quantify the

variability of the estimate. For example it would be useful to be able to construct a confidence interval

for A. Because the distribution of is a complicated, nonlinear function of the map estimate it is

difficult to derive an asymptotic expression for the standard error. One alternative is to use

bootstrapping. Bootstrapping will only be useful if the map estimate is accurate enough to yield

distributional information about the variance and bias of i In situations where the noise is large it is

not clear that the map estimates are this accurate. Part of the problem is in smoothing parameter
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selection. If the map estimate over-smooths the and gives a large estimate of (J' then bootstrap

simulations from this estimated model may be m:"leading. In situations where data is limited it would

be helpful to have an independent estimate of the size of the random component. This suggest a role

for short-term experiments on the system to estimate a.
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Figure Legends

Figure 1. Attractor for the deterministic cosine map system. Plotted are the state vectors, ( xt_1' Xt),

for 1000 iterations for the cosine map defined in Section 2.1. The starting point for this sequence was

obtained by first iterating the map from an arbitrary starting value several thousand times. The

dominant Lyapunov exponent is approximately 0.5 and the correlation dimension is approximately 1.2.

Figure 2. Attractor for the cosine map with noise. Plotted are the 1000 state vectors for the cosine

map with additive N(0,(.2)2) perturbations (see (1.1)). In this case the dominant Lyapunov exponent

has been estimated to be approximately .35.

Figure 3. Action of the deterministic cosine map on the cohort of state vectors, nt . This panel traces
the action of the cosine map on 500 state vectors initially clustered at (0,0). The cohort of state

vectors are plotted at t=(0,5,10,15,20,40).

Figure 4. Action of the cosine map with noise on a cohort of state vectors. The initial conditions for

the state vectors are the same as that in Figure 3. The subsequent states are generated according to

(1.1) where et, the random component is a N(0,(.2)2) random variable. The same value of et is used

across the cohort and these state vectors are plotted at t=(5,10,15,20,45,50).

Figure 5. Exponential divergence of trajectories from similar initial conditions. For the deterministic

and noisy cosine systems depicted in Figures 3 and 4, the divergence of the individual trajectories is

followed over time. Plotted are the log average distance among state vectors in the cohort for the first

twenty time points. The solid line is the result for the deterministic map and the dashed lines indicate

the behavior for five realizations of the random system. These latter trajectories differ in the sequence

of errors {et}. Note that for a particular sequence of random errors, the same value of et is used to

generate all points in the cohort for the next time period.

Figure 6. Network architecture for a single-hidden-Iayer feedforward network with a single output, and

three units in the hidden layer. Inputs Xl and x2 are received by the two input units and passed on to

each of the hidden units u1,u2,u3' The output unit performs an affine transformation on the summed

hidden layer outputs to produce the network's output. This network computes the function

F(X) = ,80+ I: l=l,8j1f(Ij 1Xl + 'j2X2 + IjO) where 'ljJ is the activation function of the hidden units and
the parameters ,8j' Iji' are described in Section 3.3.

23



Figure 7. Realizations from the Mackey Glass system (4.1) with and without noise. The two

realizations consist of times series of 400 points where a) is the time series for the deterministic system

and b) the same for a noisy system (0" = .1).

Figure 8. Distribution of Lyapunov exponent estimates based on thin plate splines. Time series of

N=80 values were simulated from a Mackey-Glass system at three levels of noise variance ( 0"=.01, .05,

.10). For each level of 0", 200 realizations were generated and .A was estimated using the five different

methods described in Section 4.2. The boxplots summarize the resulting distribution of the estimates.

It should be noted that "J known" refers to an estimator based on the true partial derivatives of the

map. Only the last two estimators (GCV 2 and GCV 1) are actually based entirely on the observed

data and are constructed without knowledge of the true map.

Figure 9. Dependence of on Cr. For the level 0"=.1 in Figure 8, the 200 estimates of the dominant

Lyapunov exponent). based on modified GCV with C=2 are plotted against an estimate of 0".

Figure 10. Neural net estimates of ). for a single realization of the discrete Mackey-Glass system with

a = 0.1. a) The first series of plots indicate the stability of the estimates for different starting values

and across different parametrizations. For each combination of L ( 1,2,3) and d (1,2,3,4,5,6) the

estimate with the smallest BIC is identified among the range of hidden units, q, (1,2,3,4,5,6). Let

q(L,d) denote the number of hidden units associated with this estimate. Besides the estimate with

lowest BIC for a given choice of Land d there are also 9 other replicate estimates for the model (L,d,q)

based on different starting values. Accordingly, boxplots are plotted for these 10 estimates as a

function of d and 1. The scatter in these estimates illustrate the numerical stability of recovering a

similar estimate when only the starting values are varied. b) Estimates of .A are plotted verses the

corresponding value of BIC over all combinations of (L,d,q). The plotted numeral indicates the value

of L for each case and circled points are those where q= q(L,d).

Figure 11. Neural net estimates of ). for a realization of the Rossler system, a standard example of

chaos in simple differential equations (e.g., Schuster 1988), with random perturbations. The Rossler

equations are the three-variable system: dx/dt = - z - y, dy/dt = x+ay, dz/dt = b+z(x - c).
Parameter values a=0.15, b = 0.2, c = 10.0, were used, which in the absence of noise give a chaotic

system with). == 0.09 (Mayer-Kress 1986). The equations were integrated numerically using fourth
order Runge-Kutta, but at times t = 0.25, 0.5, 0.75, "', the integration was halted and the values of

x(t), y(t), and z(t) multiplied by independent lognormal (0,0.052) random perturbations. The

estimates of ). shown here are based on the univariate time series of length 200 from x(t) sampled at
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t = 25.5, 30.0, 30.5, .... The layout of this figure is the same as Figure 10. Note, however that only

the estimates for L =(1,3,5) are reported in part a).

Figure 12. Hudson Bay Company marten fur records. Figure 12a) Annual marten fur records from

Jones (1914). The standardized series in Figure 12b) is obtained by taking the log of the raw data and

dividing by the marginal standard deviation.

Figure 13. Lyapunov exponent estimates for the standardized marten series based on thin plate splines.

All subsets of two lags in the range (2-15) are considered and for each map estimate the exponent is

plotted against the value of BIC. The numerals indicate the maximum lag in each subset. a) p

estimated by GCV with C=l and b) p estimated by GCV with C=2.

Figure 14. LyapunoY exponent estimates for the standardized marten series based on neural nets. These

plots are similar to those in Figure 10. Note that the time delays plotted in part a) are L= (2,4,6).
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Table 1. Thin plate spline estimates (GCV C = 2) with the five smallest BIC values for the
transformed Marten Fur Series (log transformed and standardized to unit variance).

Lags BIC fj trace A(p) A

10, 15 .69 6.0 -.025

10, 14 1.210 .70 6.0 -.006

9, 15 1.261 .74 6.0 -.020

2, 14 1.261 .74 6.0 -.029

11, 15 1.274 .75 6.0 -.016

Table 2. Neural net estimates for 3 or fewer lags with the five smallest BIC values for the transformed

Marten Fur Series. P is the number of parameters in the model, P = 1+q(d+2), where q is the number
of hidden units and d is the number of lags. fj is the root-mean-square prediction error of the model.

Lags BIC a P A

5,10,15 1.29 .70 6 -0.02

5, 10, 15 1.33 .60 11 -0.03

3,6,9 1.34 .73 6 -0.07

2,4 1.34 .65 9 -0.36

5, 10 1.35. .77 5 -0.48
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J:"igure 8: Mackey Glass System Lyapunov Exponent Estimates
(a) Estimated exponents 200 replicates sigma= .01
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Figure 9: Dependence of Estimates on Residual Variance sigma=.1

ex>
ci -
I

o
I I I I

0.05 0.10 0.50 1.00 5.00

Estimate of Sigma Based on RSS



Figure 10a) Neural Net Estimates for Mackey Glass System as
a Function of Embedding Dimension
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Figure 10b) Relationship of Neural Net Estimates with BIC
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Figure 11 a) Neural Net Estimates for the Rossler System as
a Function of Embedding Dimension
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Figure 12a): Hudson Bay Company Marten Fur Records
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Figure 12b): Standardized Time Series
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Figure 13a): Lyapunov Exponent estimates GCV C=1
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Figure 14a) Neural Net Estimates for Marten Fur Returns
as a Function of Embedding Dimension
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