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Bayesian Inference
• Bayesian inference is based on the posterior, which is the

likelihood times the prior divided by a normalization factor:

p(θ |x) = ℓ(θ |x)π(θ)/
´

ℓ(θ |x)π(θ) dθ

– E.g., to get a confidence interval, integrate an indicator function with
respect to the posterior. E.g., P [θi ∈ (a, b)] =

´

I(a < θi < b)p(θ |x)dθ

• The normalization factor is hard to compute.

• MCMC allows one to sample the posterior without knowing

the normalization factor.

– E.g., to get a confidence interval, average an indicator function over
the MCMC draws.

• A GMM criterion function times a Jacobian term can be used

as a likelihood. ℓ(θ |x) = J(x, θ) exp

[√
n

2 m̄′(x, θ)W−1(x, θ)m̄(x, θ)

]

– Gallant, A. Ronald (2020), “Complementary Bayesian Method of Mo-
ments Strategies,” Journal of Applied Econometrics 35, 422–439.



MCMC

• Posterior: p(θ |x) =
ℓ(θ |x)π(θ)

´

ℓ(θ |x)π(θ) dθ

• Proposal transition density: T (θold, θnew)

• Proposal: Draw θprop from T (θold, θ)

• Put θnew to θprop with probability

α = min

[

1,
π(θprop)ℓ(θprop)T (θprop, θold)

π(θold)ℓ(θold)T (θold, θprop)

]

• Put θnew to θold with probability 1 − α.

• If θold is distributed as p(θ |x), then so is θnew.



Why Does This Work?

Let x be the old and y the new and let f(·) be the product of

the prior and the likelihood of the previous slide. The proposal

density is T (x, y) and the transition density determined by the

chain is

A(x, y) = T (x, y)min

{

1,
f(y)T (y, x)

f(x)T (x, y)

}

for y 6= x and

A(x, x) = 1 −
ˆ

I(x, y)A(x, y) dy,

where

I(x, y) =

{

1 y 6= x
0 y = x



Detailed Balance

For x 6= y

f(x)A(x, y) = min {f(x)T (x, y), f(y)T (y, x)}

which implies that f(x)A(x, y) is symmetric, i.e. that

f(y)A(y, x) = f(x)A(x, y).

Symmetry holds trivially for x = y.

This symmetry condition is called the detailed balance condition

and implies, among other things, that the chain defined by A(x, y)

is reversible.



Conditional Expectation

Let

I(x, y) =

{

1 y 6= x
0 y = x

Then

E
[

g(Y )|x
]

=

ˆ

g(y)I(x, y)A(x, y) dy + g(x)A(x, x)



Unconditional Expectation

ˆ

E[g(Y )|x]f(x) dx

=

ˆˆ

g(y)I(x, y)A(x, y)f(x)dxdy+

ˆ

g(x)A(x, x)f(x)dx

=

ˆˆ

g(y)I(x, y)A(y, x)f(y)dxdy+

ˆ

g(x)A(x, x)f(x)dx

=

ˆ

g(y)f(y)

ˆ

I(x, y)A(y, x)dxdy+

ˆ

g(x)A(x, x)f(x)dx

=

ˆ

g(y)f(y)[1 − A(y, y)] dy +

ˆ

g(x)A(x, x)f(x) dx

=

ˆ

g(y)f(y) dy



Stationary Density of the Chain

The fact that the equation

ˆ

E[g(Y )|x]f(x) dx =

ˆ

g(y)f(y) dy

holds for all integrable g(y) implies that f(y) is the stationary

density of the MCMC chain with transition density A(x, y).



Bayes Subject to Moment Conditions

The parameters (ρ, θ) ∈ Rda of the likelihood

f(y |x, ρ) =
n
∏

t=1

f(yt |xt−1, ρ) (1)

are to be estimated subject to the moment conditions

0 = q(ρ, θ) =
1

n

n
∑

t=1

ˆ

m(y, xt−1, ρ, θ)f(y |xt−1, ρ) dy m ∈ R
m (2)

the support conditions

h(ρ, θ) > 0, h ∈ R
l (3)

and the prior

π(ρ, θ). (4)



Nonparametric Bayes

• Bayesian estimation can be regarded as nonparametric when

f(yt |xt−1, ρ)

is a sieve.

• A sieve is a density with a variable number K of parameters

ρ = (ρ1, ρ2, . . . , ρK)

that is dense for some norm, e.g. Sobolev norm, as K → ∞.

– We use the SNP time series sieve in the application (Gal-

lant and Tauchen, 1989, ECTA).

– Which paper considers the same problem as here from a

frequentist perspective.



A Much Better Bayesian GMM

With respect to Bayesian GMM al. la. Chernozhukov and Hong

(2003, JoE)

• Same asymptotic efficiency (were one a frequentist)

• No continuously updated weighting matrix

• No auxiliary distributional assumption.

• No missing Jacobian term



Overidentification

• The support of the posterior is the manifold

M =
{

x ∈ R
da : qi(x) = 0, i = 1,.., m, hj(x) > 0, j = 1,.., l

}

(5)

• The problem is interesting when θ is overidentified, i.e., when

the dimension m of q is larger than the dimension of θ because

then M is singular with respect to Lebesgue measure on Rda.

– Whence standard MCMC (Markov Chain Monte Carlo)

methods cannot be used to estimate (ρ, θ).

– Otherwise the problem is boring.



Clash of Notation

To adhere to the notational conventions of both the econometric

and numerical analysis literature:

• Italic represents data: xt, yt, x, y

– xt, yt are what is observed at time t, have a fixed number

of rows, but the columns of xt, the information set, can

increase with t if f(yt|xt, ρ) is recursive.

– x contains all the observed xt and y the same for yt

• Sans serif represents parameters: x, y, Xk, Yk

– x and y represent values of (ρ, θ)

– Xk, Yt represent either (ρ, θ) considered as a random vari-

able or their ex post values as draws in an MCMC chain.
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Computing the Integral – 1

• Start with a univariate Gauss-Hermite rule

ˆ

g(u)e−
1
2u2

du
.
=

I
∑

i=1

w̃i g(ũi). (6)

– Critical: make sure that the 5% and 95% quantiles of the

elements yi,t of the data are within the min and max of

the of the ui.

– Either increase I or rescale the data if not.



Computing the Integral – 2

• Multivariate Gauss-Hermite rule

ˆ

. . .

ˆ

g(y1, . . . , yJ) dy1, . . . , dyJ
.
=

K
∑

k=1

wk

ek
g(yk), (7)

• For λk a permutation of {1,2, . . . , I}
– yk = (ũλ1,k

, . . . , ũλJ,k
)

– wk =
∏J

j=1 w̃λj,k

– ek =
∏J

j=1 exp
(

−1
2(ũλj,k

)2
)

• This form because analytic derivatives of m(yk, xt−1, ρ, θ) are

required and would be a nightmare to obtain if yk and wk

depended on (ρ, θ), which would be the case for a standard

rule.
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Figure 1. Zappa et al’s Innovation The embedded manifold M given by (5) is
illustrated by the curved line. The upper panel shows a move at the Projection Step
of the Surface Sampling Algorithm. It consists of a move v tangent to M followed
by a perpendicular move w onto M . The lower panel shows the Reverse Projection
Step. If the proposed move is accepted and the reverse projection succeeds, then
the draw satisfies the detailed balance condition on M . The nonlinear equation
solver used to compute w and w′ must be same in both instances.



Surface Sampling Algorithm: Begin

• Begin: Xk = x = (ρ, σ)

– Xk must be in M

– Use λ-prior method, described later, to find Xk

• Notation for subsequent steps

– Qx is the transpose of the Jacobian of q(x)

– Apply SVD algorithm to A = [Qx|0] → [T⊥
x |Tx]

– p(v) the proposal density for v shown in Figure 1

– x ∈ Rda, q(x) ∈ Rm, d = da − m, T⊥
x is da × m, Tx is da × d.



Surface Sampling Algorithm: Proposal

• Proposal:

1. Calculate Qx, the transpose of the Jacobian of q(x)

2. Compute T⊥
x and Tx using the SVD as described above.

3. Draw z from Nd(0, s2I); v = Txz is the draw from p(v).



Surface Sampling Algorithm: Projection

• Projection:

1. Solve q(x + v + Qxa) = 0 for a using Newton’s method.

2. If Newton’s method fails, put Xk+1 = x. Done.

3. Else y = x + v + Qxa. Continue.



Surface Sampling Algorithm: Inequality Check

• Inequality check:

1. If hi(y) < 0 for some i, put Xk+1 = x. Done.

2. Else y satisfies (3). Continue.



Surface Sampling Algorithm: Metropolis Step

• Metropolis-Hastings acceptance/rejection step:

1. Calculate Qy

2. Compute T⊥
y and Ty using the SVD as described above.

3. Find v′ ∈ Ty and w′ ∈ T⊥
y so that x = y + v′ + w′.∗

4. Pa = min

(

1,
f(y | y)π(y)p(v′)
f(y | x)π(x)p(v)

)

5. Generate U ∼ Uniform(0,1).

6. If U > Pa, put Xk+1 = x. Done.

7. Else Continue.

∗I.e., put z = [T⊥
y
|Ty]⊤(x − y), then w′ = T⊥

y
z and v′ = Tyz.



Surface Sampling Algorithm:
Reverse Projection Step

• Reverse Projection:

1. Solve q(y + v′ + Qya) = 0 for a using Newton’s method.

2. If Newton’s method fails, put Xk+1 = x. Done.

3. Else accept move, Xk+1 = y. Done.



λ-prior Method

• Used to get starting values for the Surface Sampling Algo-

rithm.

• The λ-prior method is simple: Draw from the posterior

p(ρ, θ | y, x) ∝ f(y |x, ρ)π(ρ, θ)πλ(ρ, θ) (8)

by MCMC subject to the support conditions (3), where

πλ(ρ, θ) = exp



−λ
n

2

m
∑

i=1

q2i (ρ, θ)



 . (9)

– Large λ forces the (ρ, θ) draws to be near M .

– Will fail for λ too large because M is singular.



Standard Deviations

• On a submanifold M ⊂ Rda of dimension d < da, distance is computed
along geodesics.

– One computes distance δM(s, p) by traversing a geodesic from a start-
ing point s to an end point p and accumulating some norm defined
on M .

– Average squared distance is computed by integrating [δM(s, p)]2 as a
function of the end point p with respect to the probability distribution
over the manifold.

• The mean x̄ is defined as that starting point that minimizes average
squared distance.

• Variance is computed similarly by accumulating distance elementwise over
a geodesic to obtain a vector DM (̄x, p) and then integrating DM (̄x, p)D⊤(̄x, p)
as a function of p with respect to the probability distribution.

• If one has a sample from the distribution, e.g., MCMC draws, one aver-
ages distances over the sample to estimate the mean and variance instead
of integrating with respect to a distribution on the manifold.



Geodesics from a Point Cloud

• All we have are the Surface Sampling MCMC draws.

– Which lie on the d-dimensional submanifold M ⊂ Rda,

– d < da

• The question becomes how to compute a geodesic on a man-

ifold when one only has a point cloud.



Geodesics – 1

• Distance along a geodesic satisfies the intrinsic Eikonal dis-

tance equation

‖▽MδM(s, p)‖ = 1 p ∈ M (10)

δM(s, s) = 0

where ▽MδM(s, p) denotes intrinsic differentiation, δM(s, p)

denotes intrinsic distance as described above, s is the starting

point, and p is the end point.



Geodesics – 2

• If one puts an ǫ-offset on the submanifold M to obtain a da-

dimensional subset Mǫ of Rda, then one can solve, instead,

the extrinsic Eikonal distance equation

‖▽δ(s, p)‖ = 1 p ∈ Mǫ (11)

δ(s, s) = 0

where δ is Euclidean distance and differentiation is the usual

one.

• One can construct such an Mǫ as the union of ǫ-balls centered

at the draws of an MCMC chain on the manifold M provided

ǫ is large enough that Mǫ is a connected set.



Geodesics – 3

• Standard algorithms for the solution of (10) produce as a

by-product the geodesic that connects the starting point s

to the end point p.



Fast Marching Algorithm

• The Fast Marching Algorithm (Sethian, 1996, Proc.Natl.Acad.)

is frequently used to solve (10)

– Memoli and Sapiro (2001, Comp.Phsics.) provide the up-

wind equation and the neighbor checking modification to

adapt the Fast Marching Algorithm to a point cloud.

• Unfortunately, the Fast Marching Algorithm requires that Mǫ

be placed on a Euclidean grid which limits the Fast Marching

Algorithm to problems where da < 5



Dijkstra’s Algorithm

• If Mǫ is a connected set, then the MCMC draws may be

viewed as nodes pj of a graph Gǫ connected by edges ej,j′

with length δ(pj, pj′).

• From a start s, Dijkstra’s algorithm finds the shortest path

that traverses edges to every node pj. (Dijkstra, 1959, Nu-

merische Mathematik)

• Distances will be larger than those of the Fast Marching

Algorithm because the Fast Marching Algorithm is not con-

strained to follow edges.

• Used by Google Maps.



Tuning Dijkstra’s Algorithm – 1

• The ǫ that determines the graph Gǫ is a tuning parameter.

• Too small and one is essentially forcing Dijkstra’s algorithm

to traverse the entire Surface Sampling MCMC chain to find

a path.

• Too large and nodes that should not be connected by edges

are.

• Way too large is the same as computing sample variance

matrix directly from the MCMC draws.



Tuning Dijkstra’s Algorithm – 2

• Upper bound: increase ǫ until standard errors are larger than

returned by the λ-prior method but reasonable relative to the

λ-prior method.

• Lower bound: Computing sample variance matrix directly

from the MCMC draws D = {xi}N
i=1.



Normalization Constant

• The normalizing constant, aka marginal likelihood or marginal

data density, is

Z =

ˆ

M
f(y | x)π(x) dσ(x), (12)

where σ(x) is d-dimensional Hausdorff measure on Rda.

• If a mapping from Rd to M can be found, then comput-

ing (12) can be accomplished by Riemann integration after

multiplication by a Jacobian term

• The strategy is to reduce the domain of integration until a

mapping can be found.

• The remaining part of the integral can be computed from

Surface Sampling draws.



Reduction via Concentric Balls

• x0 the estimated posterior mode

• D⌉
0 = {xi}n0

i=1 be n0 draws with duplicates that occur in

succession deleted

• Compute the Euclidean norms N0 = {‖x − x0‖ : x ∈ De
0}.

• r0 = maxN0, r1 the 90th percentile, r2 the 80th, and so on

until r9 the 10th.

• Bi a closed ball in Rda with center x0 and radius ri.

• B0 ⊃ B1 ⊃ . . . ⊃ B9.



Domain Reduction

• Let

Zi =

ˆ

M∩Bi

f(y | x)π(x) dσ(x).

• For k yet to be determined, note that

Z = Zk

k−1
∏

i=0

Zi

Zi+1
= Zk

k−1
∏

i=0

Ri.

• Now
Zi+1
Zi

= 1
Zi

´

M∩Bi
IBi+1

(x)f(y | x)π(x) dσ(x).

• Append ‖x−x0‖ <= ri to the support conditions (3), generate

ni draws, let Ni,i+1 be those draws that are in Bi+1.

• A estimate of
Zi+1
Zi

is
Ni,i+1

ni
, whence R̂i = ni

Ni,i+1
.



Find k

• Start at k = 5

• Compute Qx and Tx as described earlier

• For i = 1, . . . , nk, draw ui from the uniform distribution on a

ball of dimension d and radius rk

• Put vi = Tx0ui and project to yi ∈ M as described earlier

• If projection fails for some i, abort, increase the guessed value

for k by one, and repeat.



Compute Zk

• Jacobian is Ji = det(T⊤
x0

Tyi).

• Compute Zk by Monte Carlo integration as follows:

• S = 1
nk

∑nk

i=1 IBk
(yi) (Ji)

−1 exp [log f(y | yi) + logπ(yi) − log f(y | x0) − logπ(x0)] .

• logZk = (d/2) logπ − logΓ(d/2 + 1) + d log(rk) + log(S) + log f(y | x0) +

logπ(x0)

• logZ = logZk +
∑k−1

i=0 log R̂i.



Example: CRRA Moment Function

• Parameter: θ = (β, γ) = (discount factor, risk aversion)

• Data: xt =

(

x1t
x2t

)

=

(

lsrt
lcgt

)

=

(

log stock returns
log endowment growth

)

• Moments: m(xt, θ) =







1
lsrt−1
lcgt−1





 [1 − exp(logβ − γlcgt + lsrt)]

• Adjustment: adj(x, θ) = 4(1 − e)2

∣

∣

∣

∣

∣

∣

∣

1−tanh
(

1
4z1

)

1−
[

tanh
(

1
4z1

)]2

∣

∣

∣

∣

∣

∣

∣



Moment Weighting

Setup: Classical GMM with selective weighting.

I.e., Diagonal matrix with ones and zeros along the diagonal

Moments β γ

e & e x lsr 0.9994 3.96

e & e x lcg 0.9811 0.44

e x lsr & e x lcg 0.9999 3.88

e & e x lsr & e x lcg 0.9993 3.94

Conclusion: One can produce any desired answer with GMM by

choosing the weighting matrix appropriately.



Example: SNP Sieve

f(xt |xt−1, xt−2, xt−3, ..., ρ) (recursive)

• xt =

(

x1t
x2t

)

=

(

lsrt
lcgt

)

=

(

log stock returns
log endowment growth

)

• Garch(1,1)

– Diagonal ARCH term

– Scalar GARCH term

• Hermite error density

– Polynomial of degree four in u times a normal density

n(u |0,Σ)



Example: Support and Prior

• Support: 0 < β < 0.99999 0 < γ < 100

• Prior: n(β |0.9975,0.0012) × n(γ |4.00,2.002)

0.9975 quarterly discount is 0.99 annual.



Table 1. Estimates
W=I 2SL2 Cont. Up. λ-Prior NP Bayes

parm est sdev est sdev est sdev est sdev est lo sdev hi sdev

a01 0.2149 0.0713 0.2254 0.0769 0.24839
a02 0.0608 0.0597 0.0732 0.0578 0.19428
a03 -0.0862 0.0294 -0.0774 0.0319 0.09312
a04 0.0805 0.0274 0.0816 0.0295 0.10939
a05 -0.0121 0.0501 -0.0539 0.0408 0.08623
a06 -0.0742 0.0542 -0.0367 0.0393 0.10223
a07 -0.0738 0.0317 -0.0521 0.0258 0.07523
a08 0.0953 0.0340 0.0918 0.0351 0.09023
b0,1 0.0584 0.0454 0.0946 0.0471 0.12701
b0,2 -0.3341 0.1153 -0.3166 0.1269 0.40114
B1,1 0.0572 0.0592 0.0153 0.0141 0.05128
B2,1 0.2490 0.0558 0.2294 0.0478 0.16735
B1,2 -0.0887 0.0443 0.0034 0.0117 0.02781
B2,2 0.1690 0.0359 0.1369 0.0396 0.10595
R0,1,1 0.3059 0.0338 0.2952 0.0359 0.08214
R0,1,2 -0.0207 0.0156 -0.0293 0.0150 0.04815
R0,2,2 0.4657 0.0400 0.4685 0.0373 0.09390
P1,1 0.5492 0.0509 0.5500 0.0553 0.16231
P2,2 -0.0551 0.0701 -0.0677 0.0682 0.20625
Q1,1 0.8344 0.0290 0.8220 0.0320 0.09005
β 0.9975 0.0010 0.9974 0.0010 0.9974 0.0010 0.9980 0.0010 0.9980 0.0010 0.00323
γ 3.9844 1.8386 3.1116 0.7195 3.0416 0.7226 4.5299 1.2248 3.0500 0.7174 1.73501


