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ditions
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Bayesian Inference

e Bayesian inference is based on the posterior, which is the
likelihood times the prior divided by a normalization factor:

p(0| ) = £(0] 2)m(0)/ [ £(0] =) (8) do

— E.qg., to get a confidence interval, integrate an indicator function with
respect to the posterior. E.g., P[0; € (a,b)] = [I(a < 6; < b)p(6|x)db

e [ he normalization factor is hard to compute.

e MCMC allows one to sample the posterior without knowing
the normalization factor.

— E.g., to get a confidence interval, average an indicator function over
the MCMC draws.

e A GMM criterion function times a Jacobian term can be used
as a likelihood. £(6|z) = J(z,0) exp[@m/(x,e)w—l(az, e)m(a;,e)]

— Gallant, A. Ronald (2020), “Complementary Bayesian Method of Mo-
ments Strategies,” Journal of Applied Econometrics 35, 422—439.



MCMC

00| )7 ()

e Posterior: p(0|z) = Te@]2)x(8) do

e Proposal transition density: T(6,;4, Onew)
e Proposal: Draw 6Oprop from T'(60,4,6)

o = min |1 W(eprop)g(eprop)T(epropa Qold)

, 7T(Hold)g(90l61l)T<‘90l(17 HPTOP)

e Put Onew to 0,4 with probability 1 — a.

e If 0,4 is distributed as p(0|z), then so is Opew.



Why Does This Work?

Let x be the old and y the new and let f(-) be the product of
the prior and the likelihood of the previous slide. The proposal
density is T'(x,y) and the transition density determined by the
chain is

F (@) T(z, y)
for y #= x and
A@w>=1—/i@wxuaym%

where

H%w={é a



Detailed Balance

For x =y
f(@)A(z,y) = min{f ()T (z,y), f(y)T(y,z)}

which implies that f(x)A(xz,y) is symmetric, i.e. that

FWA(y,z) = f(z)A(z, y).

Symmetry holds trivially for z = y.

This symmetry condition is called the detailed balance condition
and implies, among other things, that the chain defined by A(x, vy)
IS reversible.



Conditional Expectation

Let

u%m={é e

Then

elolz] = [9w) 1 A@ v dy+ 9@ A, 2)



Unconditional Expectation

/ Elg(V)2f (z) dz

= [ 9@ 1. AG@ ) @)dady+ [9(@) A, )1 (2)dz
= [ 91 A2 (W dvdy+ [9(2) A, 2)f(2)de
= [9w) 1) [1Ge. AW, 2)dwdy+ [9(@) A, )1 (2)dz
= [sWIWL - AW I dy+ [9@) A, 2)f (@) do
=/g(y)f(y) dy



Stationary Density of the Chain

The fact that the equation
el @) do = [t ) dy

holds for all integrable g(y) implies that f(y) is the stationary
density of the MCMC chain with transition density A(z,vy).



Bayes Subject to Moment Conditions

The parameters (p,0) € R% of the likelihood

Fwlanp) = 1] felzr 1, p) (1)
t=1

are to be estimated subject to the moment conditions

1 mn
0=a(p.0) =Y. [ mly,ar-1.0.0)f(er-1.p)dy m € R™ (2)
the support conditions

h(p,0) >0, heR (3)
and the prior

w(p,0). (4)



Nonparametric Bayes

e Bayesian estimation can be regarded as nonparametric when

fQyt|ze—1,p)
IS a sieve.

e A sieve is a density with a variable number K of parameters

p=(p1,02;--,PK)
that is dense for some norm, e.g. Sobolev norm, as K — oo.

— We use the SNP time series sieve in the application (Gal-
lant and Tauchen, 1989, ECTA).

— Which paper considers the same problem as here from a
frequentist perspective.



A Much Better Bayesian GMM

With respect to Bayesian GMM al. la. Chernozhukov and Hong
(2003, JoE)

e Same asymptotic efficiency (were one a frequentist)
e NO continuously updated weighting matrix
e NO auxiliary distributional assumption.

e NO missing Jacobian term



Overidentification

e [ he support of the posterior is the manifold
M={xeR : g,() =0,i=1,,mh;6)>0,j=1,.1} (5)

e T he problem is interesting when 6 is overidentified, i.e., when
the dimension m of ¢ is larger than the dimension of 6 because
then M is singular with respect to Lebesgue measure on Rda

— Whence standard MCMC (Markov Chain Monte Carlo)
methods cannot be used to estimate (p,0).

— Otherwise the problem is boring.



Clash of Notation

To adhere to the notational conventions of both the econometric
and numerical analysis literature:

e [talic represents data: x¢, y¢, =, y

— x¢, y+ are what is observed at time ¢, have a fixed number
of rows, but the columns of x4, the information set, can
increase with t if f(ytxe, p) is recursive.

— x contains all the observed z; and y the same for

e Sans serif represents parameters: x, y, Xz, Yi
— x and y represent values of (p,0)

— Xy, Yt represent either (p,0) considered as a random vari-
able or their ex post values as draws in an MCMC chain.
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Computing the Integral — 1

e Start with a univariate Gauss-Hermite rule

1 2 !
/ g(W)e 3 du = 3 @ g(a;). (6)

1=1

— Critical: make sure that the 5% and 95% quantiles of the
elements y; ; of the data are within the min and max of

the of the wu;.

— Either increase I or rescale the data if not.



Computing the Integral — 2

e Multivariate Gauss-Hermite rule
K

/ /g(yh--.,yj)dyb---,dyji > Eoly), (7

k=1 €k
e For )\, a permutation of {1,2,...,1}
— Yp = (Uny g U ,)
| A W, 1

— € = H]"]:1 eXp (—%(ﬂAj,kV)

e This form because analytic derivatives of m(yg, zs_1,p,0) are
required and would be a nightmare to obtain if y. and wyg

depended on (p,#), which would be the case for a standard
rule.
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Figure 1. Zappa et al’s Innovation The embedded manifold M given by (5) is
illustrated by the curved line. The upper panel shows a move at the Projection Step
of the Surface Sampling Algorithm. It consists of a move v tangent to M followed
by a perpendicular move w onto M. The lower panel shows the Reverse Projection
Step. If the proposed move is accepted and the reverse projection succeeds, then
the draw satisfies the detailed balance condition on M. The nonlinear equation
solver used to compute w and w’ must be same in both instances.



Surface Sampling Algorithm: Begin

e Begin: X, =x= (p,0)
— X must be in M

— Use A-prior method, described later, to find X

e Notation for subsequent steps
— (Qx is the transpose of the Jacobian of g(x)
— Apply SVD algorithm to A = [Qx|0] — [T|74]
— p(v) the proposal density for v shown in Figure 1

—x€RY%, g(x) e R™, d=dg—m, T is da x m, Tx is dg X d.



Surface Sampling Algorithm: Proposal

e Proposal:
1. Calculate Qx, the transpose of the Jacobian of ¢(x)
2. Compute TXL and Ty using the SVD as described above.

3. Draw z from Ny(0,s2I); v = Txz is the draw from p(v).



Surface Sampling Algorithm: Projection

e Projection:
1. Solve g(x 4+ v + Qxa) = 0 for a using Newton’'s method.
2. If Newton's method fails, put X;4 1 =x. Done.

3. Else y=x+4 v+ Qxa. Continue.



Surface Sampling Algorithm: Inequality Check

e Inequality check:
1. If h;(y) < O for some i, put Xz41 = x. Done.

2. Else y satisfies (3). Continue.



Surface Sampling Algorithm: Metropolis Step

e Metropolis-Hastings acceptance/rejection step:

1.

No ok W N

Calculate Qy
Compute TyL and Ty using the SVD as described above.
Find o' € Ty and w’ € T+ so that x =y 4+ v 4+ w'.*

o fyly)m(y)p()
P, = min <1> f(y x)W(X)p(U)>

Generate U ~ Uniform(0,1).
If U > P,, put Xk—|—1 — x. Done.

Else Continue.

*I.e., put z = [TyL|Ty]T(x—y), then w' = TyLz and v =Tyz.



Surface Sampling Algorithm:
Reverse Projection Step
e Reverse Projection:
1. Solve ¢(y + v' + Qya) = 0 for a using Newton’'s method.
2. If Newton's method fails, put X431 = x. Done.

3. Else accept move, X4 =y. Done.



\-prior Method

e Used to get starting values for the Surface Sampling Algo-
rithm.

e [ he A-prior method is simple: Draw from the posterior

p(p, 0|y, z) < f(y|z,p)m(p,0)m\(p,0) (8)
by MCMC subject to the support conditions (3), where

m(p,0) = exp {—/\Z > q%‘(p,e)] . (9)
1=1

— Large X\ forces the (p,0) draws to be near M.

— Will fail for A too large because M is singular.



Standard Deviations

e On a submanifold M C R% of dimension d < d,, distance is computed
along geodesics.

— One computes distance §,,(s,p) by traversing a geodesic from a start-
ing point s to an end point p and accumulating some norm defined
on M.

— Average squared distance is computed by integrating [§:;(s,p)]? as a
function of the end point p with respect to the probability distribution
over the manifold.

e The mean X is defined as that starting point that minimizes average
squared distance.

e Variance is computed similarly by accumulating distance elementwise over
a geodesic to obtain a vector Dy (%, p) and then integrating Dy, (X,p)D ' (X, p)
as a function of p with respect to the probability distribution.

e If one has a sample from the distribution, e.g., MCMC draws, one aver-
ages distances over the sample to estimate the mean and variance instead
of integrating with respect to a distribution on the manifold.



Geodesics from a Point Cloud

e All we have are the Surface Sampling MCMC draws.
— Which lie on the d-dimensional submanifold M C Rda,
- d < da

e [ he question becomes how to compute a geodesic on a man-
ifold when one only has a point cloud.



Geodesics — 1

e Distance along a geodesic satisfies the intrinsic Eikonal dis-
tance equation

[Vrom(s,p)l| =1 peM (10)
dpr(s,8) =0

where V007 (s,p) denotes intrinsic differentiation, dp,(s,p)
denotes intrinsic distance as described above, s is the starting
point, and p is the end point.



Geodesics — 2

e If one puts an e-offset on the submanifold M to obtain a dg-
dimensional subset M. of ]Rda, then one can solve, instead,
the extrinsic Eikonal distance equation

[Vo(s,p)|| =1 pe Me (11)
5(s,5) =0

where ¢ is Euclidean distance and differentiation is the usual
one.

e One can construct such an M, as the union of e-balls centered
at the draws of an MCMC chain on the manifold M provided
e IS large enough that M. is a connected set.



Geodesics — 3

e Standard algorithms for the solution of (10) produce as a
by-product the geodesic that connects the starting point s
to the end point p.



Fast Marching Algorithm

e The Fast Marching Algorithm (Sethian, 1996, Proc.Natl.Acad.)
is frequently used to solve (10)

— Memoli and Sapiro (2001, Comp.Phsics.) provide the up-
wind equation and the neighbor checking modification to
adapt the Fast Marching Algorithm to a point cloud.

e Unfortunately, the Fast Marching Algorithm requires that M.
be placed on a Euclidean grid which limits the Fast Marching
Algorithm to problems where dg < 5



Dijkstra’s Algorithm

o If M. is a connected set, then the MCMC draws may be
viewed as nodes pj of a graph Ge connected by edges e
with length 6(p;,p;r).

3,7’

e From a start s, Dijkstra’s algorithm finds the shortest path
that traverses edges to every node pj- (Dijkstra, 1959, Nu-
merische Mathematik)

e Distances will be larger than those of the Fast Marching
Algorithm because the Fast Marching Algorithm is not con-
strained to follow edges.

e Used by Google Maps.



Tuning Dijkstra’'s Algorithm — 1
e [ he ¢ that determines the graph G¢ is a tuning parameter.

e Too small and one is essentially forcing Dijkstra’s algorithm
to traverse the entire Surface Sampling MCMC chain to find
a path.

e [00 large and nodes that should not be connected by edges
are.

e Way too large is the same as computing sample variance
matrix directly from the MCMC draws.



Tuning Dijkstra’'s Algorithm — 2

e Upper bound: increase ¢ until standard errors are larger than
returned by the A-prior method but reasonable relative to the

A-prior method.

e Lower bound: Computing sample variance matrix directly
from the MCMC draws D = {x;}i¥ ;.



Normalization Constant

e [ he normalizing constant, aka marginal likelihood or marginal
data density, is

7 = / £y 1) 7(x) dor (), (12)
M

where o(x) is d-dimensional Hausdorff measure on Rda,

e If 3 mapping from R to M can be found, then comput-
ing (12) can be accomplished by Riemann integration after
multiplication by a Jacobian term

e [ he strategy is to reduce the domain of integration until a
mapping can be found.

e T he remaining part of the integral can be computed from
Surface Sampling draws.



Reduction via Concentric Balls
e xg the estimated posterior mode

o DWO = {xz-}fﬁl be ng draws with duplicates that occur in
succession deleted

e Compute the Euclidean norms Ny = {|[x — xg|| : x € D§}.

e o = maxNp, r1 the 90th percentile, r» the 80th, and so on
until rg the 10th.

e B, a closed ball in R% with center xg and radius r;.

e Bo D B1D...D Bog.



Domain Reduction

o Let

Z; = FQy |0 w(x) do(x).
MNB;

e For k yet to be determined, note that

k=1 . k—1
2
Z:ZkHZ_ =Z, || R:.

o Now " = % [y, T,y (OF (w ) () dor ().

e Append ||x—xgl|| <= r; to the support conditions (3), generate
n; draws, let N; ;11 be those draws that are in B; 1.

: Z:ivq . N, _ .

e A estimate of Zitl js —utl \whence R, = 2.
T — N,

Z; n; 1,1+1



Find k

e Start at k=5

e Compute Qx and Ty as described earlier

e Fori=1,...,ng, draw u; from the uniform distribution on a
ball of dimension d and radius ry

e Put v; = Tx,u; and project to y; € M as described earlier

e If projection fails for some ¢z, abort, increase the guessed value
for k by one, and repeat.



Compute Z;
e Jacobian is J; = det(T,) Ty,).
e Compute Z; by Monte Carlo integration as follows:
o 5= Ip(y:) (Ji) texpllog f(y|y:) +1ogm(y:) —log f(y|x0) —log 7 (x0)] .

® |0gZ; = (d/2)logm —logl(d/2+ 1) 4 dlog(ry) 4+ 10g(S) + log f(y |xo0) +
log 7 (xo0)

e l0gZ =log Z;, + ¢} log R;.



Example: CRRA Moment Function

e Parameter: 0 = (3,~v) = (discount factor, risk aversion)

o Data: o, = [ %1t | = [ IS | = log stock returns
T2t [ele]’ log endowment growth

1
e Moments: m(x¢,0) = ( ISry_q ) [1 — exp(log B — vlcgy + Isry)]
ICgt 1

1—tanh (%Zl>

)]

e Adjustment: adj(z,0) = 4(1 —¢e)?

1—[tanh(

N



Moment Weighting

Setup: Classical GMM with selective weighting.
I.e., Diagonal matrix with ones and zeros along the diagonal

Moments 15} Y
e & exlsr 0.9994 3.96
e & exlcg 0.9811 0.44

exlsr & exlcg 0.9999 3.88
e & exlsr & exlcg 0.9993 3.94

Conclusion: One can produce any desired answer with GMM by
choosing the weighting matrix appropriately.



Example: SNP Sieve
f(xe|xp—1, T4—2,24_3,...,p0)  (recursive)
.= (:clt ) _ ( Isry ) _ ( log stock returns >
Ty |CO; log endowment growth
e Garch(1,1)

— Diagonal ARCH term
— Scalar GARCH term

e Hermite error density

— Polynomial of degree four in uw times a normal density
n(ul|0,X)



Example: Support and Prior

e Support: 0 < (3<0.99999 0<~v<100

e Prior: n(£]0.9975,0.0012) x n(y|4.00,2.002)
0.9975 quarterly discount is 0.99 annual.



Table 1. Estimates

W=I 2SL2

Cont. Up. A-Prior

NP Bayes

parm est sdev est sdev

est sdev est sdev

est lo sdev hi sdev

aoi
ao2
ao3
ao4
aos
aoe
aor

0.2149 0.0713
0.0608 0.0597
-0.0862 0.0294
0.0805 0.0274
-0.0121 0.0501
-0.0742 0.0542
-0.0738 0.0317
0.0953 0.0340
0.0584 0.0454
-0.3341 0.1153
0.0572 0.0592
0.2490 0.0558
-0.0887 0.0443
0.1690 0.0359
0.3059 0.0338
-0.0207 0.0156
0.4657 0.0400
0.5492 0.0509
-0.0551 0.0701
0.8344 0.0290

B 0.9975 0.0010 0.9974 0.0010 0.9974 0.0010 0.9980 0.0010
¥ 3.9844 1.8386 3.1116 0.7195 3.0416 0.7226 4.5299 1.2248

0.2254 0.0769 0.24839
0.0732 0.0578 0.19428
-0.0774 0.0319 0.09312
0.0816 0.0295 0.10939
-0.0539 0.0408 0.08623
-0.0367 0.0393 0.10223
-0.0521 0.0258 0.07523
0.0918 0.0351 0.09023
0.0946 0.0471 0.12701
-0.3166 0.1269 0.40114
0.0153 0.0141 0.05128
0.2294 0.0478 0.16735
0.0034 0.0117 0.02781
0.1369 0.0396 0.10595
0.2952 0.0359 0.08214
-0.0293 0.0150 0.04815
0.4685 0.0373 0.09390
0.5500 0.0553 0.16231
-0.0677 0.0682 0.20625
0.8220 0.0320 0.09005
0.9980 0.0010 0.00323
3.0500 0.7174 1.73501




