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Abstract

We consider the quasi maximum likelihood estimator obtained by replacing each transition

density in the correct likelihood for a non-Markovian, stationary process by a transition

density with a fixed number of lags. This estimator is of interest because it is asymptotically

equivalent to the efficient method of moments estimator as typically implemented in dynamic

macro and finance applications. We show that the standard regularity conditions of quasi

maximum likelihood imply that a score vector defined over the infinite past exists. We verify

that the existence of a score on the infinite past implies that the asymptotic variance of

the finite lag quasi maximum likelihood estimator tends to the asymptotic variance of the

maximum likelihood estimator as the number of lags tends to infinity.

Key words: Maximum likelihood, non-Markovian, quasi maximum likelihood, finite lag ap-

proximation, efficient method of moments.
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1 Introduction

We consider a stationary process

{

yt ∈ R
M : t = 0,±1,±2, ...

}

defined on a probability space (Ω,F , P ) whose finite dimensional density functions are in

the family

Pρ = {p(ys, . . . , yt, ρ) : s ≤ t = 0,±1,±2, . . . ; ρ ∈ R ⊂ R
pρ}

for some ρo ∈ R. We assume that the process {yt} is not Markovian, in the sense that for

some Borel set A ∈ R
M ,

P
[

E
(

IA(yt)|F t−1
−∞
)

= E
(

IA(yt)|F t−1
t−L

)]

< 1

for all finite L, where F t
s denotes the smallest sub-σ-algebra of F such that the random

variables {ys, . . . , yt} are measurable.

Such processes can arise in a variety of ways, e.g., a linear system with moving average

errors, but we are primarily interested in parameterized processes that are well suited to

estimation by efficient method of moments (EMM) implemented by means of a seminon-

parametric (SNP) score generator. A leading example is a process obtained by discretely

sampling a subset of the state variables of a continuous time process that evolves according

to a system of nonlinear stochastic differential equations (Gallant and Long, 1997). Other

examples are in Gallant and Tauchen (1996).

Although other simulation estimators are applicable in these situations (Ingram and Lee,

1991; Smith, 1993; Gourieroux, Monfort, and Renault, 1993; Duffie and Singleton, 1993), the

distinguishing characteristic of the EMM/SNP estimator is that, as shown by Gallant and

Long (1997), it is asymptotically equivalent to the quasi maximum likelihood estimator ρ̂n

that is obtained by replacing each transition density in the correct likelihood by a transition

density on L lags. Specifically, the objective function

Qn(ρ) = p(y0, . . . yL−1, ρ)
n
∏

t=L

p(yt|yt−L, . . . , yt−1, ρ)

replaces the standard likelihood

Ln(ρ) = p(y0, ρ)
n
∏

t=1

p(yt|y0, . . . , yt−1, ρ),
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and the estimator is

ρ̂n =
ρ∈R

argmaxQn(ρ).

Note that p(yt|yt−L, . . . , yt−1, ρ) is the correct density for yt given yt−L, . . . , yt−1; the er-

ror in the approximation of Ln by Qn is due to truncation, not to misspecified func-

tional form. A salient effect of this truncation is that for finite L, the truncated scores

(∂/∂ρ) log p(yt|yt−L, . . . , yt−1, ρ) do not necessarily form a martingale difference sequence.

Because the EMM estimator implemented by means of SNP is asymptotically equivalent

to ρ̂n, a high level assumption that the quasi maximum likelihood estimator is asymptotically

equivalent to the maximum likelihood estimator as L tends to infinity implies that EMM

is as efficient as maximum likelihood in the limit. Gallant and Long (1997) obtained their

efficiency result by imposing this assumption.

While a high level assumption that the quasi maximum likelihood estimator is asymptot-

ically equivalent to the maximum likelihood estimator is plausible, one would prefer a result

that was deduced from more standard and more primitive assumptions. That is our goal

here. We show that the Gallant-Long assumption is implied by standard assumptions for

maximum likelihood estimation of the parameters of a non-Markovian, stationary system.

Our proof strategy is to construct the score vector for the case when data extend to

the infinite past. The construction of the score on the infinite past and its properties are

of some interest in their own right. Further, from these properties, one can deduce that

these three estimators are asymptotically equivalent: quasi maximum likelihood with an

objective function formed from n transition densities that condition on the infinite past,

quasi maximum likelihood with an objective function formed from n transition densities

that condition on L lags (in the limit as L tends to infinity), and maximum likelihood with

an objective function formed from n transition densities that condition back to the first

observation. This equivalence implies our main result.

The 1997 version of this paper contained errors that Hal and I were not able to fix.1

Being now retired, with an abundance of boring leisure, returning to this paper seemed to

be a suitable time sink. Regrettably, I was able to fix the errors in finite time.

The plan of the paper is a follows. In Section 2, we specialize the standard assumptions of

1The mathematics in Gallant-Long are correct to my knowledge.
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nonlinear dynamic modeling to the case of maximum likelihood estimation for non-Markovian

data. In Section 3, we construct a notion of a score on the infinite past. In Section 4, we

deduce some properties of this score and use them to obtain our main result. In Section 5

we verify our results by a simulation and comment on how one might go about choosing L

for a process that truly depends on the infinite past. Although our results are motivated by

the EMM/SNP application, they are more general in that they apply to any non-Markovian,

stationary process that satisfies standard regularity conditions.

2 Maximum Likelihood Estimation

We begin by formalizing the conventions of Section 1.

DEFINITION 1 Let {yt}∞t=−∞ with yt : Ω → R
M be a stationary process defined on a

complete probability space (Ω,F , P ). For contiguous subsequences (ys, . . . , yt) from {yt},
s ≤ t = 0,±1,±2, . . . , define

F t
s = σ(ys, . . . , yt),

where σ(ys, . . . , yt) denotes the smallest, complete sub-σ-algebra of F such that the random

variables (ys, . . . , yt) are measurable.

DEFINITION 2 Norms are distinguished as follows:

‖X‖r =

(

k
∑

i=1

E|Xi|r
)1/r

‖X‖ = |X| =
(

k
∑

i=1

|Xi|2
)1/2

REMARK 1 A consequence of Hölder’s inequality, E|XY | ≤ (E|X|p′)1/p′(E|X|q′)1/q′ for

1/p′ + 1/q′ = 1 and scalar X and Y , is that if 1 ≤ p ≤ q, then convergence in Lq implies

convergence in Lp. In particular ‖Xn −X‖2 → 0 impales ‖Xn −X‖1 → 0. This because if

Y = 1, p′ = q/p, q′ = q/(q − p), then E|X|p = E [|X|q/p′ · 1] ≤ (E|X|q)1/p′ = (E|X|q)p/q. ✷

DEFINITION 3 For each ρ in a parameter space R ⊂ R
pρ and for each L = 1, 2, . . . , let

pL(x, y, ρ) : R
ML ×R

M ×R → R
+ be a continuous probability density function with respect
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to Lebesgue measure on R
ML × R

M . For x ∈ R
ML and y ∈ R

M , define

pL(x, ρ) =

∫

RM

pL(x, y, ρ) dy

pL(y|x, ρ) =
pL(x, y, ρ)

pL(x, ρ)
I[pL(x,ρ)>0].

Further, pL(x, y, ρ) satisfies the consistency condition

pL(x, y, ρ) =

∫

RM

pL+1[(u, x), y, ρ] du.

Throughout,

xt−1 = (yt−L, . . . , yt−1). (1)

We shall drop the subscript L when all arguments are given explicitly; e.g., p(yt|y0, . . . , yt−1, ρ)

or p(ys, . . . , yt, ρ). With these conventions,

Pρ = {p(ys, . . . , yt, ρ) : s ≤ t = 0,±1,±2, . . . ; ρ ∈ R}

= {pL(xt−1, ρ) : t = 0,±1,±2, . . . ; L = 1, 2, . . . ; ρ ∈ R} .

DEFINITION 4 The quasi maximum likelihood estimator (qmle) is

ρ̂n =
ρ∈R

argmaxQn(ρ),

where

Qn(ρ) = pL(xL−1, ρ)
n
∏

t=L

pL(yt|xt−1, ρ).

The maximum likelihood estimator (mle) is

ρ̃n =
ρ∈R

argmaxLn(ρ),

where

Ln(ρ) = p(y0, ρ)
n
∏

t=1

p(yt|y0, . . . , yt−1, ρ).

The following quantities are needed later to define the asymptotic variances of the max-

imum likelihood and quasi maximum likelihood estimators.
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DEFINITION 5 Let ρo denote the true value of the parameter ρ. Define

St,L =
∂

∂ρ
log pL(yt|xt−1, ρ

o)

St,t = St,L

∣

∣

∣

L=t
=

∂

∂ρ
log p(yt|y0, . . . , yt−1, ρ

o)

Vo
L,τ = E

(

St,L S
′
t−τ,L

)

(2)

Vo
L = Vo

L,0 +
∞
∑

τ=1

Vo
L,τ +

( ∞
∑

τ=1

Vo
L,τ

)′

(3)

Vo = lim
n→∞

1

n

n
∑

t=1

E
(

St,t S
′
t,t

)

(4)

Regularity conditions for estimation of the parameters of a dynamic model by quasi max-

imum likelihood and by maximum likelihood are stated in Gallant (1987), Gallant and White

(1988), Davidson (1994), and Pötscher and Prucha (1996) and do not differ substantively

among authors. For both qmle and mle, the following mixing condition is standard in this

literature:

ASSUMPTION 1 The process {yt}∞t=−∞ is strong mixing of size −4r/(r − 4) for some

r > 4 with respect to the filtration {F t
−∞}∞t=−∞.

This assumption is interpreted as follows. The measure of dependence between two σ-

algebras used in strong mixing is

α(F ,G) = sup
F∈F ,G∈G

|P (F ∩G)− P (F )P (G)|.

The mixing coefficient of {yt}∞t=−∞ is

ατ = sup
−∞<t<∞

α(F∞
t+τ ,F t

−∞).

The process {yt}∞t=−∞ is said to be strong mixing of size −q with respect to the filtration

{F t
−∞}∞t=−∞ if there is a δ > 0 such that ατ = O(τ−q−δ).

The regularity conditions for qmle may be summarized as follows:

ASSUMPTION 2 The finite dimensional densities of {yt}∞t=−∞ are in the family Pρ for

some ρo in R. For each L, the parameter space R contains the closure R̄o
L of an open ball

Ro
L containing ρo, and the Kullback-Leibler discrepancy

q̄L(ρ) =

∫ ∫

log pL(y|x, ρ) pL(x, y, ρo) dydx
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has an isolated minimum over R̄o
L at ρo. The matrix Vo

L given by (3) is nonsingular. Let

gt(yt−L, . . . , yt, ρ) represent either the function log pL(y|x, ρ), its first partial derivatives with
respect to the elements of ρ, the cross products of its first partial derivatives, or its second

partial derivatives. The family {gt}∞t=0 is Near Epoch Dependent on {yt} of size −2(r −
2)/(r − 4) for each ρ ∈ R̄o, where r is that of Assumption 1, is generalized Lipschitz, and

is dominated by a sequence of random variables {dt}∞t=0 with bounded r-th moment in the

sense that supρ∈R̄o |gt(yt−L, . . . , yt, ρ)| ≤ dt and ‖dt‖r ≤ ∆ < ∞ for all t.

For definitions of Near Epoch Dependent and generalized Lipschitz (aka A-smooth) con-

ditions, see2 Gallant (1987, pp. 496, 515) Gallant and White (1988, pp. 21, 27), Davidson

(1994, pp. 261, 339), or Pötscher and Prucha (1996, pp. 38, 50).

The expression for the asymptotic variance of the maximum likelihood estimator sim-

plifies through elimination of quantities involving second derivatives when integration and

differentiation interchange, and it is customary to impose this interchange condition when

deriving the asymptotics of the maximum likelihood estimator. For the same reason, it is

also convenient for the quasi maximum likelihood estimator.

ASSUMPTION 3

∫

∂

∂ρ
pL(x, ρ) dx

∣

∣

∣

ρ=ρo
=

∂

∂ρ

∫

pL(x, ρ) dx
∣

∣

∣

ρ=ρo
∫

∂2

∂ρ∂ρ′
pL(x, ρ) dx

∣

∣

∣

ρ=ρo
=

∂

∂ρ

∫

∂

∂ρ′
pL(x, ρ) dx

∣

∣

∣

ρ=ρo

Similarly for p(y0, . . . , yt, ρ).

The asymptotic distribution of the qmle is

√
n(ρ̂n − ρo)

L→ N
[

0, (Vo
L,0)

−1(Vo
L)(Vo

L,0)
−1
]

under Assumptions 1, 2, and 3.

The regularity conditions for mle may be may be summarized as follows:

2A preprint of the relevant chapter of Gallant (1987) is
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/8431/ISMS 1985 1667.pdf.
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ASSUMPTION 4 The finite dimensional densities of {yt}∞t=−∞ are in the family Pρ for

some ρo in R. The parameter space R contains the closure R̄o of an open ball Ro centered

at ρo and

l̄(ρ) = lim
n→∞

1

n

n
∑

t=1

E log p(yt|y0, . . . , yt−1, ρ),

has an isolated minimum over R̄o at ρo. The matrix Vo given by (4) is finite and nonsingu-

lar. Let gt(y0, . . . , yt, ρ) represent either the function log p(yt|y0, . . . , yt−1, ρ), its first partial

derivatives with respect to the elements of ρ, the cross products of its first partial derivatives,

or its second partial derivatives. The family {gt}∞t=0 is Near Epoch Dependent on {yt} of size

−2(r− 2)/(r− 4) for each ρ ∈ R̄o, where r is that of Assumption 1, is generalized Lipschitz,

and is dominated by a sequence of random variables {dt}∞t=0 with bounded r-th moment in

the sense that supρ∈R̄o |gt(y0, . . . , yt, ρ)| ≤ dt and ‖dt‖r ≤ ∆ < ∞ for all t.

Under Assumptions 1, 3, and 4,

√
n(ρ̃n − ρo)

L→ N
[

0, (Vo)−1
]

.

3 A Score Vector on the Infinite Past

In this section we construct a score vector on the infinite past for the family Pρo .

LEMMA 1 Assumption 3 implies

E
[

∂

∂ρ
log p(yσ, . . . , yτ , ρ

o)
∣

∣

∣
F t
s

]

=
∂

∂ρ
log p(ys, . . . , yt, ρ

o) (5)

for every σ ≤ s ≤ t ≤ τ .

Assumptions 3 and 4 imply

∥

∥

∥

∥

E
[

∂

∂ρ
log p(yσ, . . . , yt, ρ

o)
∣

∣

∣
F τ
s

]

− ∂

∂ρ
log p(ys, . . . , yt, ρ

o)

∥

∥

∥

∥

2

= at−s (6)

for every σ ≤ s ≤ t ≤ τ, where3 at−s = O
(

|t− s|−2(r−2)/(r−4)−δ
)

for some δ > 0.

3The rate of convergence of at−s follows naturally from Assumptions 1, 2, and 4 but that all is relevant
in this section is that at−s = o(1), i.e., at−s → 0 as t− s → ∞.
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Proof Let u = (yσ, . . . , ys−1), v = (ys, . . . , yt), and w = (yt+1, . . . , yτ ).

E
[

∂

∂ρ
log p(yσ, . . . , yτ , ρ

o)
∣

∣

∣
F t
s

]

=

∫ ∫

∂

∂ρ
log p(u, v, w, ρ)

p(u, v, w, ρo)

p(v, ρo)
dudw

∣

∣

∣

ρ=ρo

=

∫ ∫

∂

∂ρ
p(u, v, w, ρ)

p(u, v, w, ρo)

p(u, v, w, ρo)p(v, ρo)
dudw

∣

∣

∣

ρ=ρo

=
∂

∂ρ

∫ ∫

p(u, v, w, ρ)

p(v, ρo)
dudw

∣

∣

∣

ρ=ρo

=
(∂/∂ρ)p(v, ρ)

p(v, ρo)

∣

∣

∣

ρ=ρo

=
∂

∂ρ
log p(v, ρo).

In the definition of Near Epoch Dependence (Gallant, 1987, pp. 496–7), replace t in that

definition by ℓ here, put ℓ midway between s and t and m such that [ℓ−m, ℓ +m] = [s, t],

put kℓ = τ − σ, Wℓ(. . . , yσ, . . . , yτ , . . .) = (yσ, . . . , yτ ) ⊂ R
kℓ , and, for any λ, put g(Wℓ) =

E
[

λ′ ∂
∂ρ

log p(yσ, . . . , yt, ρ
o)
∣

∣

∣
F τ
s

]

. Then, because F t
s ⊂ F τ

s implies

E
{

E
[

λ′ ∂

∂ρ
log p(yσ, . . . , yt, ρ

o)
∣

∣

∣
F τ
s

]

∣

∣

∣
F t
s

}

= E
[

λ′ ∂

∂ρ
log p(yσ, . . . , yt, ρ

o)
∣

∣

∣
F t
s

]

,

Near Epoch Dependence implies that
∥

∥

∥

∥

E
[

λ′ ∂

∂ρ
log p(yσ, . . . , yt, ρ

o)
∣

∣

∣
F τ
s

]

− E
[

λ′ ∂

∂ρ
log p(yσ, . . . , yt, ρ

o)
∣

∣

∣
F t
s

]∥

∥

∥

∥

2

= at−s.

Apply Equation 5 to E
[

λ′ ∂
∂ρ

log p(yσ, . . . , yt, ρ
o)
∣

∣

∣
F t
s

]

to get Equation 6. ✷

An implication of Equation 5 of Lemma 1 is that the process

Mt =
∂

∂ρ
log p(y0, ..., yt, ρ

o) t = 1, 2, ...

is a square integrable martingale with respect to the filtration F t
0 , which is a well known fact

(Hall and Heyde, 1980, p. 157). A less well known implication, if known elsewhere at all, is

that if time is reversed by considering lags to be the index set, then process that results

ML =
∂

∂ρ
log p(yt−L, ..., yt, ρ

o) L = 1, 2, ...

is a square integrable martingale with respect to the filtration FL = F t
t−L.

We next establish the existence of a score on the infinite past:
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THEOREM 1 Let Assumptions 2, 3, and 4 hold. Then there exists

St,∞ ∈ L2(Ω,F , P )

such that

lim
L→∞

‖St,L − St,∞‖ = 0.

Proof Let λ 6= 0 be given4 and let J ≥ I ≥ L. By Equation 5 of Lemma 1,

E [(λ′St,I) (λ
′St,J − λ′St,I)]

= E
{

(λ′St,I)

[

λ′ ∂

∂ρ
log pJ(xt−1, yt, ρ

o)− λ′ ∂

∂ρ
log pI(xt−1, yt, ρ

o)

]}

− E
{

(λ′St,I)

[

λ′ ∂

∂ρ
log pJ(xt−1, ρ

o)− λ′ ∂

∂ρ
log pI(xt−1, ρ

o)

]}

= E
{

(λ′St,I)

[

E
(

λ′ ∂

∂ρ
log pJ(xt−1, yt, ρ

o)
∣

∣

∣
F t
t−I

)

− E
(

λ′ ∂

∂ρ
log pI(xt−1, yt, ρ

o)
∣

∣

∣
F t
t−I

)]}

−E
{

(λ′St,I)

[

E
(

λ′ ∂

∂ρ
log pJ(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)

− E
(

λ′ ∂

∂ρ
log pI(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)]}

= −E
{

(λ′St,I)

[

E
(

λ′ ∂

∂ρ
log pJ(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)

− E
(

λ′ ∂

∂ρ
log pI(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)]}

By the above and Equation 6 of Lemma 1,

‖ E [(λ′St,I) (λ
′St,J − λ′St,I)] ‖ (7)

≤ E
{

‖λ′St,I‖
∥

∥

∥

∥

E
(

λ′ ∂

∂ρ
log pJ(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)

− E
(

λ′ ∂

∂ρ
log pI(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)∥

∥

∥

∥

}

≤ E
{

‖λ′St,I‖
∥

∥

∥

∥

E
(

λ′ ∂

∂ρ
log pJ(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)

− λ′ ∂

∂ρ
log pI(xt−1, ρ

o)
∣

∣

∣

∥

∥

∥

∥

}

+ E
{

‖λ′St,I‖
∥

∥

∥

∥

E
(

λ′ ∂

∂ρ
log pI(xt−1, ρ

o)
∣

∣

∣
F t
t−I

)

− λ′ ∂

∂ρ
log pI(xt−1, ρ

o)

∥

∥

∥

∥

}

= aI + aI

where aI = o(1).

Note that

0 ≤ ‖λ′St,I − λ′St,J‖22 = E(λ′St,J)
2 − E(λ′St,I)

2 − 2E [(λ′St,I) (λ
′St,J − λ′St,I)] (8)

4Uniformity in λ will not be required because this is an application of the Cramer-Wold device.
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By Assumption 2 the sequence {E(λ′St,L)
2}∞L=1 is bounded whence the positive, bounded

sequence {E(λ′St,L)
2}∞L=1 has at least one limit point. If more than one, let a < b de-

note two of them and choose subsequences Ii < Ji such that limi→∞ E(λ′St,Ii)
2 = b, and

limi→∞ E(λ′St,Ji)
2 = a. From Equations 7 and 8 we would then have

b = lim
i→∞

E(λ′St,Ii)
2
+ 0

= lim
i→∞

E(λ′St,Ii)
2
+ lim

i→∞
2E [(λ′St,Ii) (λ

′St,Ji − λ′St,Ii)] (Equation 7)

≤ lim
i→∞

E(λ′St,Ii)
2
+ lim

i→∞
E(λ′St,Ji)

2 − lim
i→∞

E(λ′St,Ii)
2

(Equation 8)

= lim
i→∞

E(λ′St,Ji)
2

= a

which is a contradiction. Therefore limL→∞ E(λ′St,L)
2 exists and given ǫ > 0 we may choose

L large enough that I, J > L implies

0 ≤ ‖λ′St,I − λ′St,J‖22 = E(λ′St,J)
2 − E(λ′St,I)

2 − 2E [(λ′St,I) (λ
′St,J − λ′St,I)] < ǫ. (9)

Equation 9 implies {λ′St,L}∞L=1 is Cauchy. Therefore {λ′St,L}∞L=1 has an L2(Ω,F , P ) limit. ✷

REMARK 2 Let (R∞,A, Pρ) denote the probability space induced on R
∞ = X

∞
t=−∞R by

the finite dimensional densities Pρ via the Daniel-Kolmogorov construction (Tucker, 1967,

p. 30). Inspection of the proof of Theorem 1 reveals that St,∞ can be viewed as a random

variable defined on the probability space (R∞,A, Pρo) with infinite dimensional argument

(yt, yt−1, . . .). Because (R∞,A, Pρo) is the range space of the random variables {yt(ω)}∞t=−∞

defined on the probability space (Ω,F , P ), St,∞ is a composite function that is ultimately

defined on (Ω,F , P ). ✷

4 Asymptotic Efficiency

In this section we deduce some properties of the score and then prove our main result.

REMARK 3 Below we use some miscellaneous facts. From Remark 1, if XL → X and

YL → Y in L2(Ω,F , P ), then XLYL → XY in L1(Ω,F , P ). Because
∫

|XLYL−XY | dP → 0

implies
∫

(XLYL −XY ) dP → 0 and XLYL and XY in L1(Ω,F , P ) implies
∫

XLYL dP and

10



∫

XY dP exist, we have XL → X and YL → Y in L2(Ω,F , P ) implies EXLYL → EXY . By

putting YL = Y, we have XL → X in L2 implies EXLY → EXY . By putting YL = Y = 1,

we have XL → X in L2 implies EXL → EX. ✷

LEMMA 2 Let Assumptions 2, 3, and 4 hold. If s < t, then

E(St,∞) = 0

E(Ss,∞S ′
t,∞) = 0

E(Ss,∞S ′
s,∞) = E(St,∞S ′

t,∞).

Proof A standard result from the theory of maximum likelihood estimation is

E(St,L|F t−1
t−L ) =

∫

∂

∂ρ
log pL(y|xt−1, ρ) pL(y|xt−1, ρ

o) dy
∣

∣

∣

ρ=ρo
= 0, (10)

whence E(St,L) = 0 for every L. Because St,L → St,∞ in L2, we have that

0 = lim
L→∞

E(St,L) = E(St,∞).

For s < t and large J,

E(Ss,LS
′
t,J |F t−1

t−J ) = Ss,LE(S ′
t,J |F t−1

t−J ) = 0,

whence E(Ss,LS
′
t,J) = 0. Because St,J → St,∞ in L2, we have that

0 = lim
J→∞

E(Ss,LS
′
t,J) = E(Ss,LS

′
t,∞).

Because E(Ss,LS
′
t,∞) = 0 for all L and St,L → St,∞ in L2, we have that

0 = lim
L→∞

E(Ss,LS
′
t,∞) = E(Ss,∞S ′

t,∞).

Lastly, Ss,L → Ss,∞ and St,L → St,∞ in L2 together with E(Ss,LS
′
s,L) = E(St,LS

′
t,L) because

of stationarity, we have

E(Ss,∞S ′
s,∞) = lim

L→∞
E(Ss,LS

′
s,L) = lim

L→∞
E(St,LS

′
t,L) = E(St,∞S ′

t,∞).

✷

Lemma 2 implies

Var

(

1√
n

n
∑

t=1

St,∞

)

=
1

n

n
∑

t=1

E
(

St,∞S ′
t,∞
)

= E
(

S0,∞S ′
0,∞
)

,

which permits the following definition.

11



DEFINITION 6

Vo
∞ = E

(

S0,∞S ′
0,∞
)

= Var

(

1√
n

n
∑

t=1

St,∞

)

. (11)

LEMMA 3 If Assumptions 1, 2, 3, and 4 hold, then

lim
L→∞

∞
∑

τ=1

E(St,LS
′
t−τ,L) = 0

Proof A standard mixing inequality is

∥

∥E(λ′St,L|F t−τ
−∞ )

∥

∥ ≤ 2(21/2 + 1) ‖λ′St,L‖4
[

α(F t−τ
−∞ ,F ∞

t−L)
]1/2−1/4

;

see, e.g., Gallant (1987, p. 507) or Davidson (1994, p. 211). Assumption 1 implies

sup
−∞<t<∞

α(F t−τ
−∞ ,F ∞

t−L) = O
[

(τ − L)−4r/(r−4)
]

.

Assumption 4 bounds ‖λ′St,L‖4 uniformly in t. Applying Cauchy-Schwarz and the above,

there is a δ > 0 such that

∣

∣ E
[

(λ′St−τ,L) E(λ′St,L|F t−τ
−∞ )

]∣

∣ ≤ ‖λ′St−τ,L‖2
∥

∥E(λ′St,L|F t−τ
−∞ )

∥

∥

2
≤ O

[

(τ − L)−1−δ
]

.

Therefore, because St−τ,L is measurable F t−τ
−∞ ,

∞
∑

τ=1

λ′E(St−τ,LS
′
t,L)λ =

2L
∑

τ=1

λ′E(St−τ,LS
′
t,L)λ+O

(

L−δ
)

.

Let u = (yt−τ−L, . . . , yt−τ−1) and v = (yt−L, . . . , yt);

E(St,LS
′
t−τ,L) = E [E(St,LS

′
t−τ,L|Fu∪v)] = E [St,LE(S ′

t−τ,L|Fu∪v)].

In the definition of Near Epoch Dependence (Gallant, 1987, pp. 496–7), choose ℓ and m

such that [ℓ − m, ℓ + m] = [t − τ − L, t − τ − 1], put kℓ = (t − τ − 1) − (t − τ − L),

Wℓ(. . . , yt−τ−L, . . . , yt, . . .) = (yt−τ−L, . . . , yt−τ−1) ∈ R
kℓ and, for any λ, put gℓ(Wℓ) =

E(λ′S ′
t−τ,L|Fu∪v). Because Fu ⊂ Fu∪v,

E
[

E(λ′S ′
t−τ,L|Fu∪v)

∣

∣

∣
Fu

]

= E(λ′S ′
t−τ,L|Fu).

Near Epoch Dependence implies

‖E(λ′St−τ,L|Fu∪v)− E(λ′St−τ,L|Fu)‖2 = ‖E(λ′St−τ,L|Fu∪v)− 0‖2 = ‖aL‖2 = O
(

L−2(r−2)/(r−4)−δ
)
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for some δ > 0. Then, because of the domination condition in Assumption 4

lim
L→∞

∞
∑

τ=1

E(λ′St,LS
′
t−τ,Lλ) = lim

L→∞

2L
∑

τ=1

E(λ′St,LaL) + lim
L→∞

O
(

L−δ
)

= lim
L→∞

2L∆ aL = 0.

✷

THEOREM 2 Assumptions 1, 2, 3, and 4 imply that

Vo = lim
L→∞

Vo
L,0 = lim

L→∞
Vo
L = Vo

∞,

where, from Equations 4, 2, 3, and 11,

Vo = limn→∞
1
n

∑n
t=1 E

(

St,tS
′
t,t

)

, variance of the mle score

Vo
L,τ = E

(

St,L S
′
t−τ,L

)

, autocovariance function of the qmle score

Vo
L = Vo

L,0 +
∑∞

τ=1 Vo
L,τ +

(
∑∞

τ=1 Vo
L,τ

)′
, variance of the qmle score

Vo
∞ = E

(

S0,∞S ′
0,∞
)

= Var
(

1√
n

∑n
t=1 St,∞

)

, variance of the infinite past score.

Proof Lemma 3 implies limL→∞
∑∞

τ=1 Vo
L,τ = 0. Further, St,L → St,∞ in L2 implies

lim
L→∞

Vo
L,0 = lim

L→∞
E
(

St,L S
′
t,L

)

= E
(

St,∞ S ′
t,∞
)

= Vo
∞.

Therefore, limL→∞ Vo
L = Vo

∞. By stationarity,

lim
t→∞

E
(

St,tS
′
t,t

)

= lim
t→∞

E
(

S0,tS
′
0,t

)

= lim
L→∞

Vo
L = Vo

∞

whence

Vo = lim
n→∞

1

n

n
∑

t=1

E
(

St,tS
′
t,t

)

= Vo
∞.

✷

REMARK 4 Recall that the asymptotic distribution of the qmle is

√
n(ρ̂n − ρo)

L→ N
[

0, (Vo
L,0)

−1(Vo
L)(Vo

L,0)
−1
]

and that the asymptotic distribution of the mle is

√
n(ρ̃n − ρo)

L→ N
[

0, (Vo)−1
]

.

✷
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Table 1. Infinite Lag Autoregression

Estimate Standard Deviation

Lag µ σ φ µ σ φ

1 0.00018 1.00760 0.68999 0.03298 0.01622 0.12768

5 0.00013 1.00051 0.77845 0.02688 0.01586 0.06767

10 0.00015 0.99926 0.79608 0.02410 0.01582 0.06509

20 0.00015 0.99911 0.79257 0.02262 0.01587 0.06436

t-1 0.00014 0.99913 0.79118 0.02221 0.01578 0.06136

For R = 5000 repetitions, samples of length n = 2000 were generated according
to the distribution shown in Equation 12 using L = 2000 to approximate an
infinite number of lags. The quasi maximum likelihood estimate (L fixed) of
ρ = (µ, σ, φ) and the maximum likelihood estimate (L = t − 1) were computed
for each repetition. Shown in the table are the means and standard deviations
computed from these estimates for L as shown.

5 Simulation

Data were simulated according to the distribution with density

f [yt|yt−L, ..., yt−1, (µ, σ
2, φ)] =

1√
2πσ2

e−
1

2σ2 (yt−µ− 1

2
(1−φ)

∑L
j=1

φjyt−j)
2

(12)

with L = 2000 to approximate L = ∞ and estimated by quasi maximum likelihood, L fixed,

and maximum likelihood, L = t − 1, for sample size n = 2000 and repetitions R = 5000.

Results are shown in Table 1. As one expects, estimates stabilize and standard errors decline

as L increases.

The traditional methods of lag determination are the likelihood ratio test (Gallant, 1987,

p. 591), the Akaike information criterion, AIC, (Akaike, 1969), the Hannan-Quinn criterion,

HQ, (Hannan, 1987), and the Bayes information criterion, BIC, (Schwartz, 1978). The

correct L according to AIC, HQ, or BIC is the L at which the criterion stops decreasing.

Of these criteria, AIC will tend to select a larger L than HQ and HQ a larger L than BIC

(Pötscher, 1989).

All of the above methods presume that the number of fitted parameters increases as L

increases. However, one would prefer to impose stationarity on fitted likelihoods by imposing

14



Table 2. Finite Lag Autoregression

Estimate Standard Deviation

Lag µ σ φ µ σ φ

1 0.00014 1.00488 0.72106 0.02726 0.01601 0.11996

5 0.00011 0.99911 0.78706 0.02234 0.01578 0.08121

10 0.00011 0.99978 0.69941 0.02067 0.01584 0.13126

20 0.00010 0.99988 0.67830 0.02021 0.01591 0.12524

t-1 0.00013 0.99992 0.67895 0.02010 0.01590 0.11917

For R = 5000 repetitions, samples of length n = 2000 were generated according
to the distribution shown in Equation 12 using L = 5. The quasi maximum
likelihood estimate (L fixed) of ρ = (µ, σ, φ) and the maximum likelihood estimate
(L = t− 1) were computed for each repetition. Shown in the table are the means
and standard deviations computed from these estimates for L as shown.

either equality restrictions on the coefficients of the lags, as in the example, or inequality

restrictions. In the former case this can violate the requirement that the number of param-

eters increases with L. In the latter case, computational complexity increases dramatically

and estimates often lie close enough to the boundary to violate Assumption 2 or 4.

One possibility is to add the term τyt−L−1 to the location function and test that τ = 0

using the likelihood ratio test or, equivalently, the t-test. Experimentation with several of

the simulation repetitions described above indicates that the t-test will select a value of L

around eight. The t-test is a bit erratic as L increases so some judgment may be required.

Perhaps better is to estimate successively with increasing L until inspection of estimates

suggests stability and further decline in standard errors is of no practical importance. With

this approach experimentation indicates an L of about fifteen.

For Table 2 data were simulated according to Equation 12 with L = 5 and estimated

by quasi maximum likelihood, L fixed, and maximum likelihood, L = t− 1, for sample size

n = 2000 and repetitions R = 5000.

To repeat the above lag selection exercise, the t-test fairly definitively selects L equal to

five. Inspection also suggests L equal to five. Moreover, standard errors do not decrease

appreciably after five as they do in the infinite lag case.
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Although lag determination is a detour from the main focus of this paper, it does appear

that is possible to distinguish between infinite and finite lags in applications.

6 Conclusion

In this paper, we have constructed a score vector St,∞ defined over the infinite past for

a non-Markovian stationary process {yt}∞t=−∞. We have shown that its variance does not

depend on t and that this variance is the same as the asymptotic variance of the score for

the maximum likelihood estimator. It is also the limit, as the number of lags L goes to

infinity, of the asymptotic variance of the score for the quasi maximum likelihood estimator

on L lags. The regularity conditions used to obtain these results are the standard regularity

conditions for the asymptotics of the quasi maximum likelihood estimator and the maximum

likelihood estimator in nonlinear dynamic models. The consequence of the above is that the

asymptotic distribution of the quasi maximum likelihood estimator on L lags tends toward

the asymptotic distribution of the maximum likelihood estimator as the number of lags

increases.
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