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LIML View of Bayesian Method of Moments

• The LIML view is the most common strategy: Use a sieve likelihood
subject to (conditional) moment restrictions.

• A good discussion of the computational issues: Bornn, Luke, Neil
Shephard, and Reza Solgi (2015) “Moment conditions and Bayesian non-
parametrics,” Working paper, Department of Economics, Harvard Uni-
versity

• A computationally efficient implementation: Shin, Minchul, (2015)
“Bayesian GMM,” Working paper, Department of Economics, University
of Illinois.

• The idea is at least 25 years old: Gallant, A. Ronald, and George
Tauchen (1989), “Seminonparametric Estimation of Conditionally Con-
strained Heterogeneous Processes: Asset Pricing Applications,” Econo-

metrica 57, 1091–1120.

• In contrast: I make a distributional assumption; Do not attempt com-
plete recovery of the likelihood; Go 85 years into the past.



Motivation, Fisher (1930), 1 of 3

• Is the following correct?

• Observed variables: x = (x1, x2, ..., xn)

Sample mean: x̄ = 1
n

∑n
i=1 xi

Sample variance: s2 = 1
n−1

∑n
i=1(xi − x̄)2

• If t = x̄−θ
s/

√
n

has Student’s t-distribution,

• then

x̄− tα/2
s√
n
< θ < x̄+ tα/2

s√
n

is a valid (1− α)×100% credibility interval for θ.



Motivation, Fisher (1930), 2 of 3

• A line of thought leading to this construction is that an as-

sumption of a distribution for t induces a joint distribution

on the constituent random variables (x1, ..., xn, θ). true

• From the joint one can obtain the conditional for θ given

(x1, ..., xn). true

• And thereby make conditional probability statements on θ.

false

– Why not? Next slide.



Motivation, Fisher (1930), 3 of 3

• Although t does induce a probability space (Rn ×Θ, C, P ),

• Where C is the σ-algebra of preimages of t.

• The rectangles R
n× (a, b) are not in C and therefore cannot

be assigned conditional probability.

• Hence,

x̄− tα/2
s√
n
< θ < x̄+ tα/2

s√
n

is not a valid (1− α)×100% credibility interval for θ.



Question

• Does the probability space (X ×Θ, C, P ) induced by a vector

of moment functions m̄(x, θ) permit Bayesian inference?

• Plan

– Establish notation and state main result.

– Look at three discrete examples to explore ideas.

– Generalize.

– Look at an asset pricing application.



Method of Moments, 1 of 4

• The data are x ∈ X arranged as a matrix with columns xt.

• The parameters are θ ∈ Θ regarded as random.

• Have moment functions m(xt, θ) of dimension M with mean

m̄(x, θ) =
1

n

n
∑

t=1

m(xt, θ).

– There is only one θo for which Em̄(x, θo) = 0.

– The interesting case is when both x and θ are endogenous

E.g., m̄(x, θt) =
(

1− 1
n

∑n
i=1 θtRi,t

)

where xi = Ri,t are

gross returns at time t and θt is the MRS at time t.



Method of Moments, 2 of 4

• Define

Z(x, θ) =
√
n [W (x, θ)]−

1
2 [m̄(x, θ)] ,

– W (x, θ) = 1
n

∑n
t=1 [m(xt, θ)− m̄(x, θ)] [m(xt, θ)− m̄(x, θ)]′

– Use HAC for W if mt serially correlated.

– Essential that residuals et = m(xt, θ)− m̄(x, θ) be used to

compute W rather than relying on Em̄(x, θ) = 0



Method of Moments, 3 of 4

• Assert that

p(x | θ) = (2π)−
M
2 exp

{

−n
2
m̄′(x, θ)[W (x, θ)]−1m̄(x, θ)

}

,

is a likelihood and proceed directly to Bayesian inference us-

ing a prior p∗(θ).

• Amounts to a belief that Z(x, θ) is normally distributed.

– Not essential, can assume that Z(x, θ) has a multivariate

Student-t distribution or some other plausible distribution.

Or, use a different Z(x, θ).



Method of Moments, 4 of 4

• The usual computational method is MCMC

– Good reference: Gamerman and Lopes (2006)

– In econometics: Chernozhukov and Hong (2003)

– MCMC generates a (correlated) sample from the poste-

rior. From it compute the posterior mean and standard

deviation, which are the usual statistics used to report

Bayesian results.

– One can also compute the marginal likelihood from the

chain (Newton and Raftery (1994)), which is used for

Bayesian model comparison.



Likelihood Induced by Moment Functions
Assumptions

• Prior probability: Random variable Λ with realization θ in

parameter space Θ, a subset of R
p.

• Data: Random variable X with realization x in parameter

space X , a subset of R
K.

• Structural model and prior p∗(θ) determine a probability space

(X ×Θ, Co, P o)

– In simple cases the density of P o is the likelihood times

the prior.

– We assume existence but not the ability to construct.

• A random variable Z(x, θ) defined on (X × Θ, Co, P o) with

density ψ(z) over R
M



Likelihood Induced by Moment Functions
Main Result

• The random variable Z(x, θ) induces a probability space

(X ×Θ, C, P ) with C ⊂ Co and P (C) = P o(C) for C ∈ C.

– Note C = {C = Z−1(B) : B a Borel subset of R
M}

– And P (C) =
´

B ψ(z) dz

• Specifying a prior augments C to include the rectangles RB =

X ×B and thereby obtain a probability space (X ×Θ, C∗, P ∗)
that agrees with both P and P o on C.

– (X ×Θ, C∗, P ∗) can be used for Bayesian inference

– Complications arise if Z(x, θ) does not have some of the

properties of a pivotal.



Induced Joint Density, Dice Example

Table 1. Tossing two correlated dice (X,Λ) when the probability of the difference D = X −Λ

is the primitive.

Preimage d P (D = d) P (D = d |Λ = 1) P (D = d |Λ = 2)

C−5 = {(1,6)} -5 0 0 0

C−4 = {(1,5), (2,6)} -4 0 0 0

C−3 = {(1,4), (2,5), (3,6)} -3 0 0 0

C−2 = {(1,3), (2,4), (3,5), (4,6)} -2 0 0 0

C−1 = {(1,2), (2,3), (3,4), (4,5), (5,6)} -1 4/18 0 4/18

C0 = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} 0 10/18 10/14 10/18

C1 = {(2,1), (3,2), (4,3), (5,4), (6,5)} 1 4/18 4/14 4/18

C2 = {(3,1), (4,2), (5,3), (6,4))} 2 0 0 0

C3 = {(4,1), (5,2), (6,3)} 3 0 0 0

C4 = {(5,1), (6,2)} 4 0 0 0

C5 = {(6,1)} 5 0 0 0

Conditional probability is P (D = d |Λ = θ) = P (Cd ∩ Oθ)/P (Oθ), where Oθ is the union

of the events that can occur. Q(Λ = θ) = P (Oθ) is the marginal in the sense that

P (D = d) =
∑6

θ=1
P (D = d |Λ = θ)Q(Λ = θ)



Conditional Density, Dice Example, 1 of 2

• Let C be the smallest σ-algebra that contains the preimages in Table 1.

• Any C-measurable f must be constant on the preimages.

• For such f the formula

E(f |Λ = 2) =

6
∑

x=1

f(x,2)

5
∑

d=−5

ICd
(x,2)P (D = d |Λ = 2) (1)

can be used to compute conditional expectation because f can be re-
garded as a function of d and the right hand side of (1) equals

5
∑

d=−5

f(d)P (D = d |Λ = 2).



Conditional Density, Dice Example, 2 of 2

• Equation (1) implies that we can view P (D = d) as defining a conditional
density function

P (X = x |Λ = θ) =

5
∑

d=−5

ICd
(x, θ)P (D = d |Λ = θ) (2)

that is a function of x as long as we only use it in connection with
C-measurable f .

• Simpler expressions: rewrite (2) as

P (X = x |Λ = θ) =
P (D = x− θ)

∑6
x=1 P (D = x− θ)

• Similarly,

P (Λ = θ |X = x) =
P (D = x− θ)

∑6
θ=1 P (D = x− θ)



What if One Specifies a Prior?, Dice Example

• Then one knows the probabilities P (Rθ) of the rectangles

Rθ = D× {θ}
D = {1,2,3,4,5,6}

• Let C∗ be the smallest σ-algebra containing {Cd}5d=−5 and

{Rθ}6θ=1

• The singleton sets {(x, θ)} are in C∗ so joint probability P ∗ on

C∗ and conditional densities have their conventional definition

– P ∗(X = x |Λ = θ) =
P ∗({(x,θ)})
P ∗(Rθ)

– P ∗(Λ = θ |X = x) =
P ∗({(x,θ)})
P ∗(Rx)



Indeterminacy, Dice Example, 1 of 2

For P ∗({(x, θ)}) we have nine equations in sixteen unknowns:

4

18
=

5
∑

i=1

P ∗({(i, i+1)})

10

18
=

6
∑

i=1

P ∗({(i, i)})

4

18
=

5
∑

i=1

P ∗({(i+1, i)})

1

6
= P ∗({(1,1)}) + P ∗({(2,1)})

1

6
= P ∗({(1,2)}) + P ∗({(2,2)}) + P ∗({(3,2)})

1

6
= P ∗({(2,3)}) + P ∗({(3,3)}) + P ∗({(4,3)})

1

6
= P ∗({(3,4)}) + P ∗({(4,4)}) + P ∗({(5,4)})

1

6
= P ∗({(4,5)}) + P ∗({(5,5)}) + P ∗({(6,5)})

1

6
= P ∗({(5,6)}) + P ∗({(6,6)})

There is one linear dependency leaving eight equations in sixteen unknowns.



Indeterminacy, Dice Example, 2 of 2

• The fact that for P ∗({(x, θ)}) we have only eight equations

in sixteen unknowns is fatal.

• We have no logical basis for choosing a particular solution.

• In this instance we can set the prior 0 ≤ P ∗({(x, θ)}) ≤ 1/6 on

eight of the probabilities, estimate them along with θ, solving

for the remaining eight. Actually works well as to estimating

θ but it is not an attractive general solution.



A Second Example, Mimics Fisher (1930), 1 of 2

P [Z(X,Λ) = z] =
1− p

1+ p
p|z|

Z(X,Λ) = X − Λ

X ∈ N

Λ ∈ N

N = {0, ±1, ±2, . . . }

• The preimages of Z(x, θ) are

Cz = {(x, θ) : x = z+ θ, θ ∈ N} z ∈ N

which lie on 45 degree lines in the (x, θ) plane.

• Given θ, for every z ∈ N there is an x ∈ N with (x, θ) ∈ Cz so

every Cz can occur. Therefore Oθ = ∪z∈NCz and P (Oθ) = 1

for every θ ∈ N.



A Second Example, Mimics Fisher (1930), 2 of 2

• If P (Oθ) = 1 for every θ ∈ N.

• Then

P (Z = z |Λ = θ) =
P (Cz ∩Oθ)
P (Oθ)

= P (Cz) =
1− p

1+ p
p|z|,

which does not depend on θ.

• Consequently,

P (X = x |Λ = θ) = P (Z = x− θ)

• Provides a rationale for choosing a solution: The conditional

probability of X given Λ is the same under P ∗
θ and Pθ.

P ∗(X = x |Λ = θ) = P (Z = x− θ)

P ∗(X = x,Λ = θ) = P (Z = x− θ)P ∗(Rθ)



One Problem Remains

• Densities used in MCMC and other Bayesian computational

methods are presumed to be with respect to Lebesgue or

counting measure.

• The dominating measure for the densities constructed as in

the previous slide may not be Lebesgue or counting.

• The root cause of the problem is that for given θ and z there

may be more than one x that satisfies Z(x, θ) = z.

• Discrete case addressed next, continuous case addressed in

http://www.aronaldg.org/papers/reply.pdf



A Third Example, Sims (2015), 1 of 5

Table 2. Preimages and Probabilities for Z(x, θ)

P (Z = z |Λ = θ)

Preimage z P (Z = z) θ = 1 θ = 2 θ = 3

C1 = {(1,1), (3,3), (4,2), (4,3)} 1 Ψ1 Ψ1 Ψ1 Ψ1

C2 = {(1,2), (2,1), (2,3), (3,2), (4,1)} 2 Ψ2 Ψ2 Ψ2 Ψ2

C3 = {(1,3), (2,2), (3,1)} 3 Ψ3 Ψ3 Ψ3 Ψ3

The sets that can occur when it is known that Λ = θ has occurred

are those preimages Cz that contain (x, θ) for some x in the support

X of X. Let Oθ be the union of the sets that can occur when it is

known that Λ = θ has occurred. Conditional probability is computed as

P (Z = z |Λ = θ) = P (Cz ∩Oθ)/P (Oθ). In this instance, Oθ is the support

Θ of Λ so that P (Cz ∩Oθ) = Ψz and P (Oθ) = 1.



A Third Example, Sims (2015), 2 of 5

Table 3. Conditional Probabilities Implied by Table 2

P (X = x |Λ = θ)

x θ = 1 θ = 2 θ = 3

1 Ψ1 Ψ2 Ψ3

2 Ψ2 Ψ3 Ψ2

3 Ψ3 Ψ2 Ψ1

4 Ψ2 Ψ1 Ψ1

P (X = x |Λ = θ) is the probability of the preimage in Table 2 that

contains (x, θ), which is C1 for P (X = 1 |Λ = 1), divided by the probability

of the union of all sets that contain a point of the form (·, θ), which is

O1 = C1 ∪ C2 ∪ C3 for P (X = 1 |Λ = 1). Therefore P (X = 1 |Λ = 1) =

P (C1)/P (O1) = Ψ1/1. The column probabilities do not sum to one,

which is an issue that the adjustment adj(x, θ) resolves.



A Third Example, Sims (2015), 3 of 5

Table 4. The Sets C(θ,z) Implied by Table 2

z θ = 1 θ = 2 θ = 3

1 {1} {4} {3,4}
2 {2,4} {1,3} {2}
3 {3} {2} {1}

C(θ,z) = {x ∈ X : Z(x, θ) = z} (3)



A Third Example, Sims (2015), 4 of 5

Table 5. Dominating Measure for Table 3

adj(x, θ)

x θ = 1 θ = 2 θ = 3

1 1 1
2

1

2 1
2

1 1

3 1 1
2

1
2

4 1
2

1 1
2

When C(θ,z) given in Table 5 has more than one element, probability is

split evenly among the points. E.g., C(1,2) = {2,4}; therefore, adj(2,1) =

adj(4,1) = 1
2

When C(θ,z) is a singleton set, adj(θ, z) = 1; therefore

adj(1,1) = 1.



A Third Example, Sims (2015), 5 of 5

Table 3. Adjusted Conditional Probabilities

adj(x, θ)P (X = x |Λ = θ)

x θ = 1 θ = 2 θ = 3

1 Ψ1
1
2
Ψ2 Ψ3

2 1
2
Ψ2 Ψ3 Ψ2

3 Ψ3
1
2
Ψ2

1
2
Ψ1

4 1
2
Ψ2 Ψ1

1
2
Ψ1

Product of the entries in Tables 3 and 5.



Setup (repeated)

• Prior probability: Random variable Λ with realization θ in

parameter space Θ, a subset of R
p.

• Data: Random variable X with realization x in parameter

space X , a subset of R
K.

• Structural model and prior p∗(θ) determine a probability space

(X ×Θ, Co, P o)

– In simple cases the density of P o is the likelihood times

the prior.

– We assume existence but not the ability to construct.

• A random variable Z(x, θ) defined on (X × Θ, Co, P o) with

density ψ(z) over R
M



Abstraction, 1 of 5

• Let C be the smallest σ-algebra containing the preimages

C = {(x, θ) : Z(x, θ) ∈ B}

where B Borel.

• Because the distribution Ψ of Z(X,Λ) is determined by the

structural model and prior, the probability distribution P

induced on (X × Θ, C) by Ψ can be presumed to satisfy

P (C) = P o(C) for every C ∈ C.

• Therefore, (X ×Θ, C, P o) = (X ×Θ, C, P ), which implies that

expectations E(f) are computed the same on either proba-

bility space for C-measurable f .



Abstraction, 2 of 5

Assumption

Let

C(θ,z) = {x ∈ X : Z(x, θ) = z}.

We assume that C(θ,z) is not empty for any (θ, z) ∈ Θ×Z.



Abstraction, 3 of 5

• If C(θ,z) is not empty, then for every z ∈ Z,

Cz = {(x, θ) : Z(x, θ) = z}

can occur if Λ = θ is known to have occurred.

• The sets Cz are in C, they are a mutually exclusive and ex-

haustive partitioning of the preimage Z−1(Z), and no finer

partitioning of X ×Θ by sets from C is possible.

• Therefore the conditioning set for the event Λ = θ is

Oθ = ∪z∈ZCz = Z−1(Z),

which implies P (Oθ) = P o(Oθ) = Ψ(Z) = 1.



Abstraction, 4 of 5

• Let C∗ be the smallest σ-algebra that contains all sets in C
plus all rectangles of the form RB = (RK × B) ∩ (X × Θ),

where B is a Borel subset of R
p.

• Define a measure P ∗ on C∗ by the densities

p∗(x |Λ = θ) = adj(x, θ)ψ[Z(x, θ)] (4)

p∗(x, θ) = p∗(x |Λ = θ) p∗(θ).

– May or may not want to include this term, see Reply.

• For given θ and C-measurable f , which must be a function

of the form f [Z(x, θ)],
ˆ

f [Z(x, θ)] p∗(x |Λ = θ) dx =

ˆ

Z
f(z)ψ(z) dz, (5)



Abstraction, 5 of 5

• Using (4) and (5) one can verify that

(X ×Θ, C, P oθ ) = (X ×Θ, C, Pθ) = (X ×Θ, C, P ∗
θ ).

(X ×Θ, C∗, P oθ ) = (X ×Θ, C∗, P ∗
θ ).

• For any C-measurable f , E(f) will be computed the same

under any of these three probability measures: P oθ , Pθ, or P
∗
θ .

• Only C-measurable f arise in applications.

• The probability space (X ×Θ, C∗, P ∗
θ ) induced by the moment

functions Z(x, θ) and the prior p∗ is the one that is relevant

for Bayesian inference.



Commentary

This is the joint density used in MCMC

p∗(x, θ) = adj(x, θ)ψ[Z(x, θ)]p∗(θ)

• Sample size large or adj(x, θ) does not depend on θ, then

setting adj(x, θ) = 1 is OK.

• Group terms thusly ψ[Z(x, θ)]{adj(x, θ) p∗(θ)} then omitting

adj(x, θ) can be viewed as using a data dependent prior.

• Group terms thusly {adj(x, θ)ψ[Z(x, θ)]}p∗(θ) then can be

viewed as a particular choice of likelihood subject to the re-

striction that Z ∼ Ψ(z).

• My own view is that one should set adj(x, θ) = 1 regardless.



Habit Persistence Asset Pricing, 1 of 3

Driving Processes

Consumption: ct − ct−1 = g+ vt

Dividends: dt − dt−1 = g+ wt

Random shocks:

(

vt
wt

)

∼ NID

[(

0
0

)

,

(

σ2 ρσσw
ρσσw σ2w

)]

The time increment is one year. Lower case denotes logarithms of upper

case quantities; i.e. ct = log(Ct), dt = log(Dt). From Campbell and Cochrane

(1999).



Habit Persistence Asset Pricing, 2 of 3

Utility function

E0





∞
∑

t=0

δt
(StCt)

1−γ − 1

1− γ



 ,

Habit persistence

Surplus ratio: st − s̄ = φ(st−1 − s̄) + λ(st−1)vt

Sensitivity function: λ(s) =

{

1
S̄

√

1− 2(s− s̄)− 1 st ≤ smax

0 st > smax

Et is conditional expectation with respect to St, St−1, ... . Lower case denotes

logarithms of upper case quantities: st = log(St). S̄ and smax can be computed

from model parameters θ = (g, σ, ρ, σw, φ, δ, γ) as S̄ = σ
√

γ
1−φ and smax =

s̄+ 1
2
(1− S̄2). From Campbell and Cochrane (1999).



Habit Persistence Asset Pricing, 2 of 3

Marginal Rate of Substitution

Mt = δ

(

StCt

St−1Ct−1

)−γ
.

Euler Equations

1 = Et−1

[

Mt(Pd,t+Dt)/Pd,t−1

]

1 = Et−1

[

Mt(Pf,t+ It)/Pf,t−1

]

• (Pd,t+Dt)/Pd,t−1 is gross real return on a stock

• (Pf,t+ It)/Pf,t−1 the same for a bond.



The Prior

The prior is

π(θ) =
7
∏

i=1

N



θi

∣

∣

∣

∣

θ∗i ,
(

τiθ
∗
i

1.96

)2




• θ∗i are Campbell and Cochrane’s calibrated values

θ∗ = (g, σ, σw, ρ, φ, δ, γ)

= (0.0189,0.015,0.122,0.2,0.87,0.89,2.00)

• For, e.g., τi = 0.1 the prior states that the marginal proba-

bility that θi is within 10% of θ∗i is 95%.

• Support conditions: −0.5 < g < 0.5, σ > 0, σw > 0, −1 < ρ <

1, −1 < φ < 1, 0.7 < δ < 1.05, and 1 < γ < 20.



Footnotes

• Problem: φ and δ are not identified.

Solution: Set τi for φ and δ to smaller of overall τ or 0.1

• Problem: Habit model breaks when confronted with the

Great Depression or Great Recession.

Solution: Set τi for g and σ to smaller of overall τ or 0.3

• Problem: 1 < γ truncates posterior when overall τ > 0.5

Solution: None.

• Comment: All the above problems disappear if data from

Great Depression or Great Recession are excluded.



Table 3. Data Characteristics

Variable Mean Std. Dev.

log consumption growth 0.02183 0.01256

log dividend growth 0.02117 0.1479

ρ 0.2399

log income growth 0.02175 0.01925

geometric stock return 0.04355 0.1736

geometric bond return 0.02044 0.02969

Data are real, annual, per capital consumption and income for
the years 1950–2013 and real, annual stock and bond returns for
the same years from BEA (2013) and CRSP (2013). ρ is the
correlation between log consumption growth and log dividend
growth.



Moment Functions

m1,t = ct − ct−1 − g

m2,t = σ2 − (ct − ct−1 − g)2

m3,t = σ2w − (dt − dt−1 − g)2

m4,t = ρ− (ct − ct−1 − g)(dt − dt−1 − g)/(σσw)

m5,t = 1.0−Mt(Pd,t+Dt)/Pd,t−1

m6,t = 1.0−Mt(Pf,t+ It)/Pf,t−1)

m7,t = rd,t−1m5,t

m8,t = rf,t−1m5,t

m9,t = (ℓt−1 − ℓt−2)m5,t

m10,t = rd,t−1m6,t

m11,t = rf,t−1m6,t

m12,t = (ℓt−1 − ℓt−2)m6,t

ℓt is the log of labor income at time t.



Table 4. Parameter Estimates for the Habit Model

Prior Scale

τ = 0.01 τ = 0.1 τ = 0.5 τ = 1 τ = 2

Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

g 0.01896 0.0001040 0.02086 0.0006600 0.02196 0.001098 0.02198 0.001109 0.02205 0.001175

σ 0.01486 7.509e-05 0.01204 0.0004407 0.01093 0.0006138 0.01096 0.0006441 0.01091 0.0006507

σw 0.1121 0.0005665 0.1152 0.005595 0.1260 0.01581 0.1296 0.01781 0.1301 0.01884

ρ 0.2000 0.0009874 0.2002 0.01023 0.2033 0.04839 0.2065 0.08464 0.2189 0.1249

φ 0.8676 0.004260 0.8187 0.03066 0.8337 0.03649 0.8329 0.03685 0.8339 0.03520

δ 0.8886 0.004502 0.8742 0.02799 0.8898 0.03248 0.8873 0.03449 0.8799 0.03442

γ 2.0001 0.0150 1.9979 0.1038 2.0536 0.4894 2.3679 0.8108 3.0291 1.2303

Model Prob. 0 0.0036 0.4023 0.3345 0.2597

Data are real, annual, per capital consumption and income for the years 1950–2013 and real, annual
stock and bond returns for the same years from BEA (2013) and CRSP (2013) that are used to form
the moment functions (32) through (43) with years prior to 1950 used for lags. The likelihood given by
(45) is an assertion that the average of these moment functions over the data is normally distributed
with variance given by a one lag HAC weighting matrix with Parzen weights (Gallant, 1987, p. 446).
The prior is given by (31) with scale τ as shown in the table. It is an independence prior that states
that the marginal probability is 95% that a parameter is within τ×100 % of Campbell and Cochrane’s
(1999) calibrated values with the exceptions of φ and δ which are as shown for the first two panels and
0.1 for last three panels and g and σ which are as shown for the first two panels and 0.3 for the last
three panels. The columns labeled mean and standard deviation are the mean and standard deviations
of an MCMC chain (Gamerman and Lopes (2006), Chernozukov and Hong, 2003) of length 100,000
collected past the point where transients have dissipated. The proposal is move-one-at-a-time random
walk. Posterior model probabilities are computed using the Newton and Raftery (1994) p̂

4 method
for computing the marginal likelihood from an MCMC chain when assigning equal prior probability to
each model. The software and data for this example are at http://www.aronaldg.org/webfiles/mle.



Comparison

• θ = (g, σ, σw, ρ, φ, δ, γ)

• Campbell and Cochrane (1999)

θ = (0.0189,0.015,0.122,0.20,0.87,0.89,2.00)

• This paper

θ = (0.0220,0.011,0.126,0.20,0.83,0.89,2.05)

• Frequentist, φ and δ fixed

θ = (0.0214,0.011,0.149,0.09,0.87,0.89,1.06)

• Aldrich and Gallant (2011) for years 1930-2008

θ = (0.0200,0.017,0.111,0.19,0.86,0.89,1.96)

• Remarks:

– No efficiency loss: Coefficients of variation of this paper and Aldrich
and Gallant comparable.

– Frequentist estimates of ρ and γ are anomalous. Aldrich and Gallant
comparable.



Takeaway

p(x | θ) = (2π)−
M
2 exp

{

−n
2
m̄′(x, θ)[W (x, θ)]−1m̄(x, θ)

}

(or something similar) may be used as a likelihood for Bayesian

inference where

• m̄(x, θ) = 1
n

∑n
t=1m(xt, θ)

• W (x, θ) = 1
n

∑n
t=1 [m(xt, θ)− m̄(x, θ)] [m(xt, θ)− m̄(x, θ)]′

– Use HAC for W if mt serially correlated.

• Provided Z(x, θ) =
√
n [W (x, θ)]−

1
2 [m̄(x, θ)] (or something

similar) satisfies an easily verified support condition.


